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MAP Estimation

• Energy Function

• MAP Estimation: Find the labeling which minimizes 

the energy function

– NP Hard in general

xi

xj
θij(xi,xj)

θi(xi)



Popular Approximation

• Based on this LP relaxation (Pairwise LP Relaxation)

• Two approaches for efficiently solving the LP

– Message passing algorithms (e.g. TRW-S)

– Graph Cut based algorithms (e.g. QPBO)
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MAP Estimation via Graph Cuts

• Construct a specialized graph for the particular energy 

function

• Minimum cut on this graph minimizes the energy 

function

• Exact MAP in polynomial time when the energy 

function is sub-modular
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Assumption on Parameters

• Symmetric,  that is and 

• Zero-normalized, that is                         and

• Any Energy function can be transformed in to an 

equivalent energy function of this form



Graph Construction

00

01



Graph Construction

00

01

i0i1



Graph Construction

00

01

i0i1

θi(1)

θi(0)



Graph Construction

00

01

i0 j0

θi(1)

θi(0)

θj(1)

θj(0)

θij/2

θij= θij(0,1)+ θij(1,0)- θij(0,0)- θij(1,1) > 0

i1 j1



Graph Construction

00

01

i0 j1

θi(1)

θi(0)

-θij/2

θij= θij(0,1)+ θij(1,0)- θij(0,0)- θij(1,1) < 0

i1 j0

θj(1)

θj(0)



Bipartite Multi-Cut problem

• Given an undirected graph                       with non-negative edge 

weights and k ST pairs



Bipartite Multi-Cut problem

• Given an undirected graph                       with non-negative edge 

weights and k ST pairs

– Objective: Find the minimum cut with divides the graph into 2 

regions and separates the ST pairs 



Bipartite Multi-Cut problem

• Given an undirected graph                       with non-negative edge 

weights and k ST pairs

– Objective: Find the minimum cut with divides the graph into 2 

regions and separates the ST pairs 

• LP and SDP Relaxations (Sreyash Kenkre et.al 2006)



Bipartite Multi-Cut problem

• Given an undirected graph                       with non-negative edge 

weights and k ST pairs

– Objective: Find the minimum cut with divides the graph into 2 

regions and separates the ST pairs 

• LP and SDP Relaxations (Sreyash Kenkre et.al 2006)

– LP Relaxation gives                approximation

– SDP Relaxation gives                                        approximation



Bipartite Multi-Cut problem

• Given an undirected graph                       with non-negative edge 

weights and k ST pairs

– Objective: Find the minimum cut with divides the graph into 2 

regions and separates the ST pairs 

• LP and SDP Relaxations (Sreyash Kenkre et.al 2006)

– LP Relaxation gives                approximation

– SDP Relaxation gives                                        approximation

• Bipartite Multi-Cut  vs Multi-Cut

– Additional constraint on the number of regions the graph is cut
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BMC LP

• Infeasible to solve using LP solvers

– Large number of constraints

• Combinatorial Algorithm

– Solving LP for general graphs may not be easy

– Our graph for MAP estimation is special  we 

exploit it to design an efficient algorithm



Symmetric Graph Construction
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Symmetric Graph Construction
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Symmetric Graph Construction

• More ST pairs are added

• Trade off  is combinatorial algorithm



Approach of the Algorithm

BMC LP

Multicommodity
flow LP

MultiCut LP
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Multi-Cut LP

• denotes all paths between pair of vertices in ST

• denotes the set of paths in     which contain edge e

• Can be solved approximately  i.e ε-approximation for any error 

parameter ε

Multi – Cut LP Multi -Commodity Flow LP
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Symmetric BMC LP (BMC-Sym LP)

• Very similar to Multi-Cut LP except for the symmetric 

constraints 
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Equivalence of LPs

Theorem – When the constructed graph is symmetric, BMC LP, 

BMC-Sym LP and Multi-Cut LP are equivalent

Proof Outline

• Any feasible solution of each of the LP can be transformed into 

a feasible solution of other LPs without changing the objective 

value
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Combinatorial Algorithm

Primal Step

• Find shortest path P between

• Update 

• Update  Complementary 

path

Dual Step

• Let

• Update the flow in the path 

by

• Update flow in 

complementary path 

• Converges  in

• Can be improved to                   (Fleischer  1999)   
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Relationship with Cycle Inequalities

• BMC LP is closely related to cycle inequalities

– BMC LP with slight modification is equivalent to  cycle 

inequalities

• Relates our work to many recent works solving cycle 

inequalities 
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• Data Sets

– Synthetic Problems

• Clique Graphical models of various sizes

– Benchmark  Data Set

• Max Cut Graphs of various sizes and density

• Algorithms

– TRW-S

– BMC 

• ε = 0.02

– MPLP

• 1000 iterations or up to convergence
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