Online Learning : Random Averages, Combinatorial Parameters and Learnability

Alexander Rakhlin,

Wharton School University of Pennsylvania

Karthik Sridharan,

Toyota Technological Institute at Chicago

Ambuj Tewari

University of Texas at Austin

Statistical Learning	Online Learning

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	
$\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	
$\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner	
Learner picks $\hat{f} \in \mathcal{F}$	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	
$\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner	
Learner picks $\hat{f} \in \mathcal{F}$	
Goal :	
$\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	For $t = 1$ to T
$\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner	
Learner picks $\hat{f} \in \mathcal{F}$	
Goal:	
$\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X}	For $t = 1$ to T
$\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner	Learner picks $f_t \in \mathcal{F}$
Learner picks $\hat{f} \in \mathcal{F}$	
Goal:	
$\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	Goal: $\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	Goal: $\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$
Certificate for learnability and rates : Complexity measures on \mathcal{F}	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	Goal: $\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$
Certificate for learnability and rates : Complexity measures on \mathcal{F} Eg. : VC dimension, Rademacher Complexity, Covering Numbers, Fat-shattering Dimension	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	Goal: $\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$
 Certificate for learnability and rates : Complexity measures on <i>F</i> Eg. : VC dimension, Rademacher Complexity, Covering Numbers, Fat-shattering Dimension Algorithm : Empirical Risk Minimization 	

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal :	Goal:
$\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	$\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$
 Certificate for learnability and rates :	Certificate for learnability and rates :
Complexity measures on <i>F</i> Eg. : VC dimension, Rademacher Complexity,	Algorithmic : Algorithm + Regret Bound
Covering Numbers, Fat-shattering Dimension Algorithm : Empirical Risk Minimization	(case by case)

Statistical Learning	Online Learning
Nature picks distribution D on \mathcal{X} $\{x_t\}_{t=1}^T \stackrel{\text{i.i.d.}}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$	For $t = 1$ to T Learner picks $f_t \in \mathcal{F}$ Adversary simultaneously picks $x_t \in \mathcal{X}$ End
Goal : $\mathbb{E}_D[\ell(\hat{f}, x)] - \inf_{f \in F} \mathbb{E}_D[\ell(f, x)] \to 0$	Goal: $\frac{1}{T} \sum_{t=1}^{T} \ell(f_t, x_t) - \inf_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f, x_t) \to 0$
Certificate for learnability and rates : Complexity measures on \mathcal{F} Eg. : VC dimension, Rademacher Complexity, Covering Numbers, Fat-shattering Dimension Algorithm : Empirical Risk Minimization	Certificate for learnability and rates : Algorithmic : Algorithm + Regret Bound (case by case)

Complexity measures on ${\mathcal F}$ for Online Learning ?

```
For t = 1 to T
Learner picks f_t \in \mathcal{F}
Adversary simultaneously picks x_t \in \mathcal{X}
Learner pays loss \ell(f_t, x_t)
End
```

For t = 1 to TLearner picks $q_t \in \Delta(\mathcal{F})$ Adversary simultaneously picks $x_t \in \mathcal{X}$ Learner pays loss $\ell(f_t, x_t)$ End

```
For t = 1 to T
Learner picks q_t \in \Delta(\mathcal{F})
Adversary picks x_t \in \mathcal{X}
Learner pays loss \ell(f_t, x_t)
End
```

```
For t = 1 to T
Learner picks q_t \in \Delta(\mathcal{F})
Adversary picks x_t \in \mathcal{X}
f_t \sim q_t and learner pays loss \ell(f_t, x_t)
End
```

```
For t = 1 to T
Learner picks q_t \in \Delta(\mathcal{F})
Adversary picks x_t \in \mathcal{X}
f_t \sim q_t and learner pays loss f_t(x_t)
End
```

For t = 1 to TLearner picks $q_t \in \Delta(\mathcal{F})$ Adversary picks $x_t \in \mathcal{X}$ $f_t \sim q_t$ and learner pays loss $f_t(x_t)$ End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$\left[\sum_{t=1}^{T} f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{T} f(x_t)\right]$$

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

 $\inf_{q_1 \in \Delta(\mathcal{F})}$

$$\left[\sum_{t=1}^{T} f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{T} f(x_t)\right]$$

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$\left[\sum_{t=1}^{T} f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{T} f(x_t)\right]$$

 $\inf_{q_1\in\Delta(\mathcal{F})}\sup_{x_1\in\mathcal{X}}$

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

 $\inf_{q_1 \in \Delta(\mathcal{F})} \sup_{x_1 \in \mathcal{X}} \mathbb{E}_{f_1 \sim q_1}$

$$\left[\sum_{t=1}^{T} f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{T} f(x_t)\right]$$

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$\mathcal{V}_T(\mathcal{F}) := \inf_{q_1 \in \Delta(\mathcal{F})} \sup_{x_1 \in \mathcal{X}} \mathbb{E}_{f_1 \sim q_1} \cdots \inf_{q_T \in \Delta(\mathcal{F})} \sup_{x_T \in \mathcal{X}} \mathbb{E}_{f_T \sim q_T} \left[\sum_{t=1}^T f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^T f(x_t) \right]$$

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$\mathcal{V}_T(\mathcal{F}) := \inf_{q_1 \in \Delta(\mathcal{F})} \sup_{x_1 \in \mathcal{X}} \mathbb{E}_{f_1 \sim q_1} \cdots \inf_{q_T \in \Delta(\mathcal{F})} \sup_{x_T \in \mathcal{X}} \mathbb{E}_{f_T \sim q_T} \left[\sum_{t=1}^T f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^T f(x_t) \right]$$

Exists randomized online learning algorithm whose expected regret is bounded by $\mathcal{V}_T(\mathcal{F})$.

For
$$t = 1$$
 to T
Learner picks $q_t \in \Delta(\mathcal{F})$
Adversary picks $x_t \in \mathcal{X}$
 $f_t \sim q_t$ and learner pays loss $f_t(x_t)$
End

Regret of optimal learner against optimal adversary : [Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$\mathcal{V}_T(\mathcal{F}) := \inf_{q_1 \in \Delta(\mathcal{F})} \sup_{x_1 \in \mathcal{X}} \mathbb{E}_{f_1 \sim q_1} \cdots \inf_{q_T \in \Delta(\mathcal{F})} \sup_{x_T \in \mathcal{X}} \mathbb{E}_{f_T \sim q_T} \left[\sum_{t=1}^T f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^T f(x_t) \right]$$

Exists randomized online learning algorithm whose expected regret is bounded by $\mathcal{V}_T(\mathcal{F})$.

No algorithm can guarantee regret better than $\mathcal{V}_T(\mathcal{F})$.

Classical Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{x_1, \dots, x_T \in \mathcal{X}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(x_t) \right]$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_T) \sim \text{Unif} \left(\{\pm 1\}^T \right)$

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{x_1, \dots, x_T \in \mathcal{X}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(x_t) \right]$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_T) \sim \text{Unif} \left(\{\pm 1\}^T \right)$

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all $\mathcal X\text{-valued}$ trees of depth T

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Definition : (tree)

An \mathcal{X} -valued tree of depth T is a sequence $(\mathbf{x}_1, \ldots, \mathbf{x}_T)$ of Tmappings $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Definition : (tree)

An \mathcal{X} -valued tree of depth T is a sequence $(\mathbf{x}_1, \ldots, \mathbf{x}_T)$ of Tmappings $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$

Example :
$$\epsilon = (+1, -1, -1)$$

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Definition : (tree)

An \mathcal{X} -valued tree of depth T is a sequence $(\mathbf{x}_1, \ldots, \mathbf{x}_T)$ of Tmappings $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$

Example :
$$\epsilon = (+1, -1, -1)$$

$$\sum_{t=1}^{3} \epsilon_t f(\mathbf{x}_t(\epsilon)) = +f(x_1) - f(x_3) - f(x_6)$$

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Main Result :
$$\mathcal{V}_T(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$$

Example : $\mathcal{F} = \{ \mathbf{w} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle : \| \mathbf{w} \| \le 1 \}, \ \mathcal{X} = \{ \mathbf{x} : \| \mathbf{x} \| \le 1 \}$ $\mathcal{R}_T(\mathcal{F}) \le 2\sqrt{T} \text{ (online SVM)}$
Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all $\mathcal X\text{-valued}$ trees of depth T

Main Result :
$$\mathcal{V}_T(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$$

Lipschitz contraction lemma and other basic properties hold.

Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$\mathcal{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^T \epsilon_t f(\mathbf{x}_t(\epsilon)) \right]$$

where supremum is over all \mathcal{X} -valued trees of depth T

Main Result :

$$\mathcal{V}_T(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$$

Lipschitz contraction lemma and other basic properties hold.

Definition : (cover)

Definition : (cover)

Definition : (cover)

Definition : (cover)

Definition : (cover)

Definition : (cover)

Definition : (cover)

A set V of \mathbb{R} -valued trees of depth T is an α cover (w.r.t. ℓ_p -norm) of \mathcal{F} on a tree \mathbf{x} of depth T if $\forall f \in \mathcal{F}, \ \forall \epsilon \in \{\pm 1\}^T, \ \exists \mathbf{v} \in V \text{ s.t. } \left(\frac{1}{T}\sum_{t=1}^T |\mathbf{v}_t(\epsilon) - f(\mathbf{x}_t(\epsilon))|^p\right)^{1/p} \leq \alpha$ $\mathcal{N}_p(\alpha, \mathcal{F}, \mathbf{x}) = \text{ size of smallest cover } V \text{ on tree } \mathbf{x}$ $\mathcal{N}_p(\alpha, \mathcal{F}, \mathbf{x}) = \sup \mathcal{N}_p(\alpha, \mathcal{F}, \mathbf{x})$

Example :

Definition : (cover)

A set V of \mathbb{R} -valued trees of depth T is an α cover (w.r.t. ℓ_p -norm) of \mathcal{F} on a tree \mathbf{x} of depth T if $\forall f \in \mathcal{F}, \ \forall \epsilon \in \{\pm 1\}^T, \ \exists \mathbf{v} \in V \text{ s.t. } \left(\frac{1}{T}\sum_{t=1}^T |\mathbf{v}_t(\epsilon) - f(\mathbf{x}_t(\epsilon))|^p\right)^{1/p} \leq \alpha$ $\mathcal{N}_p(\alpha, \mathcal{F}, \mathbf{x}) = \text{ size of smallest cover } V \text{ on tree } \mathbf{x}$

$$\mathcal{N}_{p}(\alpha, \mathcal{F}, T) = \sup_{\mathbf{x}} \mathcal{N}_{p}(\alpha, \mathcal{F}, \mathbf{x})$$

How do we use covering numbers ?

Dudley integral complexity :

$$\mathcal{D}_T(\mathcal{F}) := \inf_{\alpha} \left\{ 8T\alpha + 24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_2(\delta, \mathcal{F}, T)} d\delta \right\}$$

Theorem : (Dudley integral bound)

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$,

$$\mathcal{V}_T(\mathcal{F}) \le 2\mathcal{R}_T(\mathcal{F}) \le \mathcal{D}_T(\mathcal{F})$$

Dudley integral complexity :

$$\mathcal{D}_T(\mathcal{F}) := \inf_{\alpha} \left\{ 8T\alpha + 24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_2(\delta, \mathcal{F}, T)} d\delta \right\}$$

Theorem : (Dudley integral bound) For any $\mathcal{F} \subset [-1,1]^{\mathcal{X}}$, $\mathcal{V}_T(\mathcal{F}) \leq 2\mathcal{R}_T(\mathcal{F}) \leq \mathcal{D}_T(\mathcal{F})$

Example : finite \mathcal{F}

$$\mathcal{D}_T(\mathcal{F}) \le 24\sqrt{T\log|\mathcal{F}|}$$

Dudley integral complexity :

$$\mathcal{D}_T(\mathcal{F}) := \inf_{\alpha} \left\{ 8T\alpha + 24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_2(\delta, \mathcal{F}, T)} d\delta \right\}$$

Theorem : (Dudley integral bound) For any $\mathcal{F} \subset [-1,1]^{\mathcal{X}}$, $\mathcal{V}_T(\mathcal{F}) \leq 2\mathcal{R}_T(\mathcal{F}) \leq \mathcal{D}_T(\mathcal{F})$

Example : finite \mathcal{F}

$$\mathcal{D}_T(\mathcal{F}) \le 24\sqrt{T\log|\mathcal{F}|}$$

Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An \mathcal{X} -valued tree \mathbf{x} of depth d is shattered by $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ s.t. for all $t \in [d], f(\mathbf{x}_t(\epsilon)) = \epsilon_t$

Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An \mathcal{X} -valued tree \mathbf{x} of depth d is shattered by $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ s.t. for all $t \in [d], f(\mathbf{x}_t(\epsilon)) = \epsilon_t$

Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An \mathcal{X} -valued tree \mathbf{x} of depth d is shattered by $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ s.t. for all $t \in [d], f(\mathbf{x}_t(\epsilon)) = \epsilon_t$

Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An \mathcal{X} -valued tree \mathbf{x} of depth d is shattered by $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ s.t. for all $t \in [d], f(\mathbf{x}_t(\epsilon)) = \epsilon_t$

This tree is not the same object as covering tree!

Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An \mathcal{X} -valued tree \mathbf{x} of depth d is shattered by $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ s.t. for all $t \in [d], f(\mathbf{x}_t(\epsilon)) = \epsilon_t$

Littlestone dimension $\operatorname{Ldim}(\mathcal{F})$ is the largest d s.t. \mathcal{F} shatters some \mathcal{X} -valued tree of depth d

This tree is not the same object as covering tree!

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Definition : (fat-shattering)

An \mathcal{X} -valued tree \mathbf{x} of depth d is α -shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a \mathbb{R} -valued tree \mathbf{s} of depth d s.t.

 $\forall \epsilon \in \{\pm 1\}^d, \ \exists f \in \mathcal{F} \text{ s.t. } \forall t \in [d], \ \epsilon_t \left(f(\mathbf{x}_t(\epsilon)) - \mathbf{s}_t(\epsilon) \right) \ge \alpha/2$

Analog to Sauer-Shelah Lemma

Theorem :

For any
$$\mathcal{F} \subset \{0, \dots, k\}^{\mathcal{X}}$$
 with $\operatorname{fat}_1(\mathcal{F}) = d$:
 $\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^d \binom{T}{i} k^i \leq \left(\frac{ekT}{d}\right)^d$

Analog to Sauer-Shelah Lemma

Theorem :

For any
$$\mathcal{F} \subset \{0, \dots, k\}^{\mathcal{X}}$$
 with $\operatorname{fat}_1(\mathcal{F}) = d$:
 $\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^d \binom{T}{i} k^i \leq \left(\frac{ekT}{d}\right)^d$

Analogous to result in statistical learning setting [Alon et al'97, Bartlett et al'96] :

Theorem :

For any
$$\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$$
 and $\alpha > 0$
 $\mathcal{N}_p(\alpha, \mathcal{F}, T) \leq \left(\frac{2eT}{\alpha}\right)^{\operatorname{fat}_{\alpha}(\mathcal{F})}$

Analog to Sauer-Shelah Lemma

Theorem :

For any
$$\mathcal{F} \subset \{0, \dots, k\}^{\mathcal{X}}$$
 with $\operatorname{fat}_1(\mathcal{F}) = d$:
 $\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^d \binom{T}{i} k^i \leq \left(\frac{ekT}{d}\right)^d$

Analogous to result in statistical learning setting [Alon et al'97, Bartlett et al'96] :

Theorem :

For any
$$\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$$
 and $\alpha > 0$
 $\mathcal{N}_p(\alpha, \mathcal{F}, T) \leq \left(\frac{2eT}{\alpha}\right)^{\operatorname{fat}_{\alpha}(\mathcal{F})}$

Binary Classification :

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Online learning : Learnable ⇔ finite Ldim [Ben-David, Pal, Shalev-Shwartz '09, Littlestone '88]

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Online learning : Learnable \Leftrightarrow finite Ldim [Ben-David, Pal, Shalev-Shwartz '09, Littlestone '88]

General Supervised Learning Problem : $\ell(f, (x, y)) = |f(x) - y|$

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Can extend to other losses

Online learning : Learnable \Leftrightarrow finite Ldim [Ben-David, Pal, Shalev-Shwartz '09, Littlestone '88]

General Supervised Learning Problem : $\ell(f, (x, y)) = |f(x) - y|$

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Online learning : Learnable \Leftrightarrow finite Ldim [Ben-David, Pal, Shalev-Shwartz '09, Littlestone '88]

General Supervised Learning Problem : $\ell(f, (x, y)) = |f(x) - y|$ Statistical learning : Learnable $\Leftrightarrow \forall \alpha > 0$, fat_{α} < ∞ [Alon et al '97, Bartlett et al. '96] (classical)

Can extend to other losses
Supervised Learning

Binary Classification :

Statistical learning : Learnable \Leftrightarrow finite VCdim [Vapnik, Chervonenkis '71, Blumer et al. '89]

Online learning : Learnable \Leftrightarrow finite Ldim [Ben-David, Pal, Shalev-Shwartz '09, Littlestone '88]

General Supervised Learning Problem : $\ell(f, (x, y)) = |f(x) - y|$ Statistical learning : Learnable $\Leftrightarrow \forall \alpha > 0$, fat_{α} < ∞ [Alon et al '97, Bartlett et al. '96] (classical)

Can extend to other losses

Analogous result for online supervised learning ?

Theorem :

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$, following are equivalent

- 1. \mathcal{F} is online learnable in the supervised setting.
- 2. For all $\alpha > 0$, fat_{α} < ∞

Theorem :

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$, following are equivalent

- 1. \mathcal{F} is online learnable in the supervised setting.
- 2. For all $\alpha > 0$, $\operatorname{fat}_{\alpha} < \infty$

Value of supervised game $\mathcal{V}_T^S(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_T(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_T(\mathcal{F})$ are all within a factor of $\mathcal{O}(\log^{3/2} T)$ of each other.

Theorem :

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$, following are equivalent

- 1. \mathcal{F} is online learnable in the supervised setting.
- 2. For all $\alpha > 0$, fat_{α} < ∞

Value of supervised game $\mathcal{V}_T^S(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_T(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_T(\mathcal{F})$ are all within a factor of $\mathcal{O}(\log^{3/2} T)$ of each other.

In fact : $\mathcal{R}_T(\mathcal{F}) \leq \mathcal{V}_T^S(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$

Theorem :

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$, following are equivalent

- 1. \mathcal{F} is online learnable in the supervised setting.
- 2. For all $\alpha > 0$, fat_{α} < ∞

Value of supervised game $\mathcal{V}_T^S(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_T(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_T(\mathcal{F})$ are all within a factor of $\mathcal{O}(\log^{3/2} T)$ of each other.

 $\mathcal{R}_T(\mathcal{F}) \leq \mathcal{V}_T^S(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$ In fact :

Theorem :

For any $\mathcal{F} \subset [-1, 1]^{\mathcal{X}}$, following are equivalent

- 1. \mathcal{F} is online learnable in the supervised setting.
- 2. For all $\alpha > 0$, fat_{α} < ∞

Value of supervised game $\mathcal{V}_T^S(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_T(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_T(\mathcal{F})$ are all within a factor of $\mathcal{O}(\log^{3/2} T)$ of each other.

In fact :
$$\mathcal{R}_T(\mathcal{F}) \leq \mathcal{V}_T^S(\mathcal{F}) \leq 2 \mathcal{R}_T(\mathcal{F})$$

Extending [Ben-David, Pal, Shalev-Shwartz '09] we provide Generic Algorithm for supervised learning.

Applications

We provide bounds for (non-constructive):

- Online convex optimization / Linear function classes
- Multi-layer Neural Networks
- Decision Trees
- Generic Margin Bounds
- Online Isotonic Regression and Regression with Classes of Lipschitz transformation
- Online Transductive Learning
- Prediction of Individual Sequences

and more . . .

Applications

We provide bounds for (non-constructive):

- Online convex optimization / Linear function classes
- Multi-layer Neural Networks
- Decision Trees
- Generic Margin Bounds
- Online Isotonic Regression and Regression with Classes of Lipschitz transformation
- Online Transductive Learning
- Prediction of Individual Sequences

and more . . .

1. Sequential Rademacher complexity.

- 1. Sequential Rademacher complexity.
- 2. Dudley Integral complexity and tree based covering numbers.

- 1. Sequential Rademacher complexity.
- 2. Dudley Integral complexity and tree based covering numbers.
- 3. Fat-shattering on trees dimension and Sauer-Shelah lemma.

- 1. Sequential Rademacher complexity.
- 2. Dudley Integral complexity and tree based covering numbers.
- 3. Fat-shattering on trees dimension and Sauer-Shelah lemma.
- 4. Characterizing online supervised learning.

Learning Vs Stochastic/constrained adversary

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?
- Fast rate results?

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?
- Fast rate results?
- Efficient algorithms for interesting applications

Thanks!