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An X -valued tree x of depth d is α-shattered by F ⊂ RX if there
exists a R-valued tree s of depth d s.t.

∀� ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], �t (f(xt(�))− st(�)) ≥ α/2

Fat-shattering dimension fatα(F) at scale α is the largest d s.t. F
α-shatters some X -valued tree of depth d.

How do we use this parameter ?
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Binary Classification :

General Supervised Learning Problem : �(f, (x, y)) = |f(x)− y|

Can extend to other losses 
like squared loss ... 

Statistical learning : Learnable ⇔ finite VCdim
[Vapnik, Chervonenkis ’71, Blumer et al. ‘89]

Online learning : Learnable ⇔ finite Ldim

[Ben-David, Pal, Shalev-Shwartz ’09 ,Littlestone ‘88]

Analogous result for online supervised learning ?

Statistical learning : Learnable ⇔ ∀α > 0, fatα < ∞
[Alon et al ’97, Bartlett et al. ‘96] (classical)
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Online Supervised Learning

Theorem :
For any F ⊂ [−1, 1]X , following are equivalent

1. F is online learnable in the supervised setting.

2. For all α > 0, fatα < ∞
Value of supervised game VS

T (F), sequential Rademacher Complexity RT (F)

and Dudley-Integral complexity DT (F) are all within a factor of O(log3/2 T )

of each other.

In fact : RT (F) ≤ VS
T (F) ≤ 2 RT (F)

Extending [Ben-David, Pal, Shalev-Shwartz ’09] we provide Generic 
Algorithm for supervised learning.
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Classes of Lipschitz transformtion
• Online Transductive Learning
• Prediction of Individual Sequences
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Come to 

poster T17!
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Summary

Tools

1. Sequential Rademacher complexity.

2. Dudley Integral complexity and tree based
covering numbers.

3. Fat-shattering on trees dimension and Sauer-Shelah
lemma.

4. Characterizing online supervised learning.
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Discussion/Further Work

• Learning Vs Stochastic/constrained adversary
• Online Learning: Beyond Regret (arxiv version 
posted) 
• Generic Algorithm whenever complexity is low?
• Fast rate results?
• Efficient algorithms for interesting applications



Thanks!


