## Online Learning : Random Averages, Combinatorial Parameters and Learnability

Alexander Rakhlin,
Wharton School
University of Pennsylvania

Karthik Sridharan,
Toyota Technological Institute at
Chicago

Ambuj Tewari<br>University of Texas at Austin

## StatisticalVs Online Learning

## Statistical Learning

Online Learning

## Statistical Vs Online Learning

## Statistical Learning

Online Learning
Nature picks distribution $D$ on $\mathcal{X}$

## Statistical Vs Online Learning

## Statistical Learning

Online Learning
Nature picks distribution $D$ on $\mathcal{X}$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { ii.d }}{\sim} D$ provided to learner

## Statistical Vs Online Learning

## Statistical Learning

Online Learning
Nature picks distribution $D$ on $\mathcal{X}$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$

## Statistical Vs Online Learning

## Statistical Learning

Online Learning
Nature picks distribution $D$ on $\mathcal{X}$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { iid. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$
Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

## StatisticalVs Online Learning

## Statistical Learning

## Online Learning

| Nature picks distribution $D$ on $\mathcal{X}$ | For $t=1$ to $T$ |
| :--- | :--- |

$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$
Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$
For $t=1$ to $T$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { ii.d. }}{\sim} D$ provided to learner
Learner picks $f_{t} \in \mathcal{F}$
Learner picks $\hat{f} \in \mathcal{F}$
Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$
For $t=1$ to $T$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { ii.d. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$
For $t=1$ to $T$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

Goal :

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$
For $t=1$ to $T$
$\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner
Learner picks $\hat{f} \in \mathcal{F}$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

Goal :

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

Certificate for learnability and rates :
Complexity measures on $\mathcal{F}$

## StatisticalVs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$ $\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$

For $t=1$ to $T$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

Goal :

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

Certificate for learnability and rates :
Complexity measures on $\mathcal{F}$
Eg. : VC dimension, Rademacher Complexity,
Covering Numbers, Fat-shattering Dimension...

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$ $\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$

For $t=1$ to $T$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

Goal :

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

Certificate for learnability and rates :
Complexity measures on $\mathcal{F}$
Eg. : VC dimension, Rademacher Complexity,
Covering Numbers, Fat-shattering Dimension...
Algorithm : Empirical Risk Minimization

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$ $\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$

For $t=1$ to $T$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

Certificate for learnability and rates: Certificate for learnability and rates:

Complexity measures on $\mathcal{F}$
Eg. : VC dimension, Rademacher Complexity,
Covering Numbers, Fat-shattering Dimension.
Algorithm : Empirical Risk Minimization

Algorithmic: Algorithm + Regret Bound (case by case)

## Statistical Vs Online Learning

## Statistical Learning

## Online Learning

Nature picks distribution $D$ on $\mathcal{X}$ $\left\{x_{t}\right\}_{t=1}^{T} \stackrel{\text { i.i. }}{\sim} D$ provided to learner Learner picks $\hat{f} \in \mathcal{F}$

For $t=1$ to $T$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$ End

Goal :

$$
\mathbb{E}_{D}[\ell(\hat{f}, x)]-\inf _{f \in F} \mathbb{E}_{D}[\ell(f, x)] \rightarrow 0
$$

$$
\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t}, x_{t}\right)-\inf _{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f, x_{t}\right) \rightarrow 0
$$

Certificate for learnability and rates: Certificate for learnability and rates:

Complexity measures on $\mathcal{F}$
Eg. : VC dimension, Rademacher Complexity,
Covering Numbers, Fat-shattering Dimension.

Algorithmic: Algorithm + Regret Bound (case by case)

Algorithm : Empirical Risk Minimization

## Value of the Game

For $t=1$ to $T$
Learner picks $f_{t} \in \mathcal{F}$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$
Learner pays loss $\ell\left(f_{t}, x_{t}\right)$
End

## Value of the Game

For $t=1$ to $T$
Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary simultaneously picks $x_{t} \in \mathcal{X}$
Learner pays loss $\ell\left(f_{t}, x_{t}\right)$
End

## Value of the Game

For $t=1$ to $T$
Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
Learner pays loss $\ell\left(f_{t}, x_{t}\right)$
End

## Value of the Game

For $t=1$ to $T$
Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $\ell\left(f_{t}, x_{t}\right)$
End

## Value of the Game

For $t=1$ to $T$
Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End

## Value of the Game

## For $t=1$ to $T$

Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

## Value of the Game

## For $t=1$ to $T$

Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

## Value of the Game

## For $t=1$ to $T$

Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\inf _{q_{1} \in \Delta(\mathcal{F})}
$$

$$
\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

## Value of the Game

## For $t=1$ to $T$

## Learner picks $q_{t} \in \Delta(\mathcal{F})$

Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\inf _{q_{1} \in \Delta(\mathcal{F})} \sup _{x_{1} \in \mathcal{X}}
$$

$$
\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

## Value of the Game

## For $t=1$ to $T$

Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\inf _{q_{1} \in \Delta(\mathcal{F})} \sup _{x_{1} \in \mathcal{X}} \underset{f_{1} \sim q_{1}}{\mathbb{E}}
$$

$$
\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

## Value of the Game

## For $t=1$ to $T$

Learner picks $q_{t} \in \Delta(\mathcal{F})$
Adversary picks $x_{t} \in \mathcal{X}$
$f_{t} \sim q_{t}$ and learner pays loss $f_{t}\left(x_{t}\right)$
End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\mathcal{V}_{T}(\mathcal{F}):=\inf _{q_{1} \in \Delta(\mathcal{F})} \sup _{x_{1} \in \mathcal{X}} \underset{f_{1} \sim q_{1}}{\mathbb{E}} \ldots \inf _{q_{T} \in \Delta(\mathcal{F})} \sup _{x_{T} \in \mathcal{X}} \underset{f_{T} \sim q_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

## Value of the Game

$$
\begin{aligned}
& \text { For } t=1 \text { to } T \\
& \quad \text { Learner picks } q_{t} \in \Delta(\mathcal{F}) \\
& \text { Adversary picks } x_{t} \in \mathcal{X} \\
& \quad f_{t} \sim q_{t} \text { and learner pays loss } f_{t}\left(x_{t}\right)
\end{aligned}
$$

End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin'09]

$$
\mathcal{V}_{T}(\mathcal{F}):=\inf _{q_{1} \in \Delta(\mathcal{F})} \sup _{x_{1} \in \mathcal{X}} \underset{f_{1} \sim q_{1}}{\mathbb{E}} \ldots \inf _{q_{T} \in \Delta(\mathcal{F})} \sup _{x_{T} \in \mathcal{X}} \underset{f_{T} \sim q_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]
$$

Exists randomized online learning algorithm whose expected regret is bounded by $\mathcal{V}_{T}(\mathcal{F})$.

## Value of the Game

$$
\begin{aligned}
& \text { For } t=1 \text { to } T \\
& \quad \text { Learner picks } q_{t} \in \Delta(\mathcal{F}) \\
& \text { Adversary picks } x_{t} \in \mathcal{X} \\
& \quad f_{t} \sim q_{t} \text { and learner pays loss } f_{t}\left(x_{t}\right)
\end{aligned}
$$

End
Regret of optimal learner against optimal adversary :
[Abernethy,Agarwal,Bartlett,Rakhlin’09]
$\mathcal{V}_{T}(\mathcal{F}):=\inf _{q_{1} \in \Delta(\mathcal{F})} \sup _{x_{1} \in \mathcal{X} f_{1} \sim q_{1}} \underset{f_{T}}{\mathbb{E}} \ldots \inf _{q_{T} \in \Delta(\mathcal{F})} \sup _{x_{T} \in \mathcal{X}} \underset{f_{T} \sim q_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\inf _{f \in \mathcal{F}} \sum_{t=1}^{T} f\left(x_{t}\right)\right]$
Exists randomized online learning algorithm whose expected regret is bounded by $\mathcal{V}_{T}(\mathcal{F})$.
No algorithm can guarantee regret better than $\mathcal{V}_{T}(\mathcal{F})$.

## Sequential Rademacher Complexity

Classical Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{x_{1}, \ldots, x_{T} \in \mathcal{X}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(x_{t}\right)\right]
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{T}\right) \sim \operatorname{Unif}\left(\{ \pm 1\}^{T}\right)$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{x_{1}, \ldots, x_{T} \in \mathcal{X}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(x_{t}\right)\right]
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{T}\right) \sim \operatorname{Unif}\left(\{ \pm 1\}^{T}\right)$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Definition : (tree)

An $\mathcal{X}$-valued tree of depth $T$ is a sequence $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right)$ of $T$ mappings $\mathbf{x}_{t}:\{ \pm 1\}^{t-1} \mapsto \mathcal{X}$


## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Definition: (tree)

An $\mathcal{X}$-valued tree of depth $T$ is a sequence $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right)$ of $T$ mappings $\mathbf{x}_{t}:\{ \pm 1\}^{t-1} \mapsto \mathcal{X}$


Example : $\epsilon=(+1,-1,-1)$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Definition : (tree)

An $\mathcal{X}$-valued tree of depth $T$ is a sequence $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right)$ of $T$ mappings $\mathrm{x}_{t}:\{ \pm 1\}^{t-1} \mapsto \mathcal{X}$


$$
\begin{gathered}
\text { Example : } \epsilon=(+1,-1,-1) \\
\sum_{t=1}^{3} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)=+f\left(x_{1}\right)-f\left(x_{3}\right)-f\left(x_{6}\right)
\end{gathered}
$$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Main Result :

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Main Result :

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

Example : $\mathcal{F}=\{\mathbf{w} \mapsto\langle\mathbf{w}, \mathbf{x}\rangle:\|\mathbf{w}\| \leq 1\}, \mathcal{X}=\{\mathbf{x}:\|\mathbf{x}\| \leq 1\}$ $\mathcal{R}_{T}(\mathcal{F}) \leq 2 \sqrt{T}$ (online SVM)

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Main Result :

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

Lipschitz contraction lemma and other basic properties hold.

## Sequential Rademacher Complexity

Sequential Rademacher complexity :

$$
\mathcal{R}_{T}(\mathcal{F})=\sup _{\mathbf{x}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{T} \epsilon_{t} f\left(\mathbf{x}_{t}(\epsilon)\right)\right]
$$

where supremum is over all $\mathcal{X}$-valued trees of depth $T$

## Main Result :

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

Lipschitz contraction lemma and other basic properties hold.


## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if
$\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if
$\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

Example :


## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if $\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

Example :

covering trees :



## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if
$\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

Example :


## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if
$\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

Example :


## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if
$\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V$ s.t. $\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha$

Example :


## Covering Numbers

## Definition : (cover)

A set $V$ of $\mathbb{R}$-valued trees of depth $T$ is an $\alpha$ cover (w.r.t. $\ell_{p}$-norm) of $\mathcal{F}$ on a tree $\mathbf{x}$ of depth $T$ if

$$
\forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V \text { s.t. }\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha
$$

$\mathcal{N}_{p}(\alpha, \mathcal{F}, \mathbf{x})=$ size of smallest cover $V$ on tree $\mathbf{x}$

$$
\mathcal{N}_{p}(\alpha, \mathcal{F}, T)=\sup _{\mathbf{x}} \mathcal{N}_{p}(\alpha, \mathcal{F}, \mathbf{x})
$$

Example :


## Covering Numbers

$$
\begin{aligned}
& \text { Definition : (cover) } \\
& \text { A set } V \text { of } \mathbb{R} \text {-valued trees of depth } T \text { is an } \alpha \text { cover (w.r.t. } \ell_{p} \text {-norm) } \\
& \text { of } \mathcal{F} \text { on a tree } \mathbf{x} \text { of depth } T \text { if } \\
& \forall f \in \mathcal{F}, \forall \epsilon \in\{ \pm 1\}^{T}, \exists \mathbf{v} \in V \text { s.t. }\left(\frac{1}{T} \sum_{t=1}^{T}\left|\mathbf{v}_{t}(\epsilon)-f\left(\mathbf{x}_{t}(\epsilon)\right)\right|^{p}\right)^{1 / p} \leq \alpha \\
& \mathcal{N}_{p}(\alpha, \mathcal{F}, \mathbf{x})=\text { size of smallest cover } V \text { on tree } \mathbf{x} \\
& \mathcal{N}_{p}(\alpha, \mathcal{F}, T)=\sup _{\mathbf{x}} \mathcal{N}_{p}(\alpha, \mathcal{F}, \mathbf{x})
\end{aligned}
$$

How do we use covering numbers ?

## Covering Numbers

Dudley integral complexity :

$$
\mathcal{D}_{T}(\mathcal{F}):=\inf _{\alpha}\left\{8 T \alpha+24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_{2}(\delta, \mathcal{F}, T)} d \delta\right\}
$$

## Theorem : (Dudley integral bound)

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$,

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{D}_{T}(\mathcal{F})
$$

## Covering Numbers

Dudley integral complexity :

$$
\mathcal{D}_{T}(\mathcal{F}):=\inf _{\alpha}\left\{8 T \alpha+24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_{2}(\delta, \mathcal{F}, T)} d \delta\right\}
$$

## Theorem : (Dudley integral bound)

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$,

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{D}_{T}(\mathcal{F})
$$

Example : finite $\mathcal{F}$

$$
\mathcal{D}_{T}(\mathcal{F}) \leq 24 \sqrt{T \log |\mathcal{F}|}
$$

## Covering Numbers

Dudley integral complexity :

$$
\mathcal{D}_{T}(\mathcal{F}):=\inf _{\alpha}\left\{8 T \alpha+24 \int_{\alpha}^{1} \sqrt{T \log \mathcal{N}_{2}(\delta, \mathcal{F}, T)} d \delta\right\}
$$

## Theorem : (Dudley integral bound)

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$,

$$
\mathcal{V}_{T}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{D}_{T}(\mathcal{F})
$$

Example: finite $\mathcal{F}$

$$
\mathcal{D}_{T}(\mathcal{F}) \leq 24 \sqrt{T \log |\mathcal{F}|}
$$



## Combinatorial Parameters : Binary

## Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is shattered by $\mathcal{F} \subset\{ \pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in\{ \pm 1\}^{d}$, there exists $f \in \mathcal{F}$ s.t. for all $t \in[d], f\left(\mathbf{x}_{t}(\epsilon)\right)=\epsilon_{t}$

## Combinatorial Parameters : Binary

## Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is shattered by $\mathcal{F} \subset\{ \pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in\{ \pm 1\}^{d}$, there exists $f \in \mathcal{F}$ s.t. for all $t \in[d], f\left(\mathbf{x}_{t}(\epsilon)\right)=\epsilon_{t}$


## Combinatorial Parameters : Binary

## Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is shattered by $\mathcal{F} \subset\{ \pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in\{ \pm 1\}^{d}$, there exists $f \in \mathcal{F}$ s.t. for all $t \in[d], f\left(\mathbf{x}_{t}(\epsilon)\right)=\epsilon_{t}$


## Combinatorial Parameters : Binary

## Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is shattered by $\mathcal{F} \subset\{ \pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in\{ \pm 1\}^{d}$, there exists $f \in \mathcal{F}$ s.t. for all $t \in[d], f\left(\mathbf{x}_{t}(\epsilon)\right)=\epsilon_{t}$


This tree is not the same object as covering tree!

## Combinatorial Parameters : Binary

## Definition : [Littlestone'88, Ben-David, Pal, Shalev-Shwartz'09]

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is shattered by $\mathcal{F} \subset\{ \pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in\{ \pm 1\}^{d}$, there exists $f \in \mathcal{F}$ s.t. for all $t \in[d], f\left(\mathbf{x}_{t}(\epsilon)\right)=\epsilon_{t}$

Littlestone dimension $\operatorname{Ldim}(\mathcal{F})$ is the largest $d$ s.t. $\mathcal{F}$ shatters some $\mathcal{X}$-valued tree of depth $d$


This tree is not the same object as covering tree!

## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.

## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree $\mathbf{s}$ of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree s of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


## Combinatorial Parameters

## Definition : (fat-shattering)

An $\mathcal{X}$-valued tree $\mathbf{x}$ of depth $d$ is $\alpha$-shattered by $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ if there exists a $\mathbb{R}$-valued tree $\mathbf{s}$ of depth $d$ s.t.

$$
\forall \epsilon \in\{ \pm 1\}^{d}, \exists f \in \mathcal{F} \text { s.t. } \forall t \in[d], \quad \epsilon_{t}\left(f\left(\mathbf{x}_{t}(\epsilon)\right)-\mathbf{s}_{t}(\epsilon)\right) \geq \alpha / 2
$$

Fat-shattering dimension $\operatorname{fat}_{\alpha}(\mathcal{F})$ at scale $\alpha$ is the largest $d$ s.t. $\mathcal{F}$ $\alpha$-shatters some $\mathcal{X}$-valued tree of depth $d$.


How do we use this parameter?

## Analog to Sauer-Shelah Lemma

## Theorem :

For any $\mathcal{F} \subset\{0, \ldots, k\}^{\mathcal{X}}$ with $\operatorname{fat}_{1}(\mathcal{F})=d:$

$$
\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^{d}\binom{T}{i} k^{i} \leq\left(\frac{e k T}{d}\right)^{d}
$$

## Analog to Sauer-Shelah Lemma

## Theorem :

For any $\mathcal{F} \subset\{0, \ldots, k\}^{\mathcal{X}}$ with fat $_{1}(\mathcal{F})=d:$

$$
\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^{d}\binom{T}{i} k^{i} \leq\left(\frac{e k T}{d}\right)^{d}
$$

Analogous to result in statistical learning setting [Alon et al'97, Bartlett et al'96] :

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$ and $\alpha>0$

$$
\mathcal{N}_{p}(\alpha, \mathcal{F}, T) \leq\left(\frac{2 e T}{\alpha}\right)^{\operatorname{fat}_{\alpha}(\mathcal{F})}
$$

## Analog to Sauer-Shelah Lemma

## Theorem :

For any $\mathcal{F} \subset\{0, \ldots, k\}^{\mathcal{X}}$ with $\operatorname{fat}_{1}(\mathcal{F})=d:$

$$
\mathcal{N}(0, \mathcal{F}, T) \leq \sum_{i=0}^{d}\binom{T}{i} k^{i} \leq\left(\frac{e k T}{d}\right)^{d}
$$

Analogous to result in statistical learning setting [Alon et al'97, Bartlett et al'96] :

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$ and $\alpha>0$

$$
\mathcal{N}_{p}(\alpha, \mathcal{F}, T) \leq\left(\frac{2 e T}{\alpha}\right)^{\mathrm{fat}_{\alpha}(\mathcal{F})}
$$

## Supervised Learning

## Supervised Learning

Binary Classification :

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim
[Vapnik, Chervonenkis '7I, Blumer et al. '89]

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim [Vapnik, Chervonenkis '7I, Blumer et al. '89]
Online learning : Learnable $\Leftrightarrow$ finite Ldim
[Ben-David, Pal, Shalev-Shwartz ’09, Littlestone '88]

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim [Vapnik, Chervonenkis '7I, Blumer et al. '89]

Online learning : Learnable $\Leftrightarrow$ finite Ldim [Ben-David, Pal, Shalev-Shwartz ’09, Littlestone '88]

General Supervised Learning Problem : $\ell(f,(x, y))=|f(x)-y|$

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim [Vapnik, Chervonenkis '7I, Blumer et al. '89]

Online learning : Learnable $\Leftrightarrow$ finite Ldim
[Ben-David, Pal, Shalev-Shwartz ’09, Littlestone '88]
General Supervised Learning Problem : $\ell(f,(x, y))=|f(x)-y|$

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim [Vapnik, Chervonenkis '7I, Blumer et al.'89]

Online learning : Learnable $\Leftrightarrow$ finite Ldim
[Ben-David, Pal, Shalev-Shwartz ’09, Littlestone '88]
General Supervised Learning Problem : $\ell(f,(x, y))=|f(x)-y|$
Statistical learning : Learnable $\Leftrightarrow \forall \alpha>0$, fat ${ }_{\alpha}<\infty$ [Alon et al '97, Bartlett et al. '96] (classical)

## Supervised Learning

Binary Classification :
Statistical learning : Learnable $\Leftrightarrow$ finite VCdim [Vapnik, Chervonenkis '7I, Blumer et al.'89]

Online learning : Learnable $\Leftrightarrow$ finite Ldim [Ben-David, Pal, Shalev-Shwartz ’09, Littlestone '88]

General Supervised Learning Problem : $\ell(f,(x, y))=|f(x)-y|$
Statistical learning : Learnable $\Leftrightarrow \forall \alpha>0$, fat ${ }_{\alpha}<\infty$ [Alon et al '97, Bartlett et al. '96] (classical)

Analogous result for online supervised learning?

## Online Supervised Learning

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$, following are equivalent

1. $\mathcal{F}$ is online learnable in the supervised setting.
2. For all $\alpha>0$, fat $_{\alpha}<\infty$

## Online Supervised Learning

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$, following are equivalent

1. $\mathcal{F}$ is online learnable in the supervised setting.
2. For all $\alpha>0$, fat ${ }_{\alpha}<\infty$

Value of supervised game $\mathcal{V}_{T}^{S}(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_{T}(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_{T}(\mathcal{F})$ are all within a factor of $\mathcal{O}\left(\log ^{3 / 2} T\right)$ of each other.

## Online Supervised Learning

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$, following are equivalent

1. $\mathcal{F}$ is online learnable in the supervised setting.
2. For all $\alpha>0$, fat ${ }_{\alpha}<\infty$

Value of supervised game $\mathcal{V}_{T}^{S}(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_{T}(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_{T}(\mathcal{F})$ are all within a factor of $\mathcal{O}\left(\log ^{3 / 2} T\right)$ of each other.

$$
\text { In fact : } \quad \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{V}_{T}^{S}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

## Online Supervised Learning

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$, following are equivalent

1. $\mathcal{F}$ is online learnable in the supervised setting.
2. For all $\alpha>0$, fat ${ }_{\alpha}<\infty$

Value of supervised game $\mathcal{V}_{T}^{S}(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_{T}(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_{T}(\mathcal{F})$ are all within a factor of $\mathcal{O}\left(\log ^{3 / 2} T\right)$ of each other.

$$
\text { In fact : } \quad \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{V}_{T}^{S}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$



## Online Supervised Learning

## Theorem :

For any $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$, following are equivalent

1. $\mathcal{F}$ is online learnable in the supervised setting.
2. For all $\alpha>0$, fat ${ }_{\alpha}<\infty$

Value of supervised game $\mathcal{V}_{T}^{S}(\mathcal{F})$, sequential Rademacher Complexity $\mathcal{R}_{T}(\mathcal{F})$ and Dudley-Integral complexity $\mathcal{D}_{T}(\mathcal{F})$ are all within a factor of $\mathcal{O}\left(\log ^{3 / 2} T\right)$ of each other.

$$
\text { In fact : } \quad \mathcal{R}_{T}(\mathcal{F}) \leq \mathcal{V}_{T}^{S}(\mathcal{F}) \leq 2 \mathcal{R}_{T}(\mathcal{F})
$$

Extending [Ben-David, Pal, Shalev-Shwartz '09] we provide Generic Algorithm for supervised learning.

## Applications

We provide bounds for (non-constructive):

- Online convex optimization / Linear function classes
- Multi-layer Neural Networks
- Decision Trees
- Generic Margin Bounds
- Online Isotonic Regression and Regression with Classes of Lipschitz transformtion
- Online Transductive Learning
- Prediction of Individual Sequences
and more . . .


## Applications

We provide bounds for (non-constructive):

- Online convex optimization / Linear function classes
- Multi-layer Neural Networks
- Decision Trees
- Generic Margin Bounds
- Online Isotonic Regression and Regression with Classes of Lipschitz transformtion
- Online Transductive Learning
- Prediction of Individual Sequences
and more . . .



## Summary

## Summary



## Summary

1. Sequential Rademacher complexity.


## Summary

1. Sequential Rademacher complexity.
2. Dudley Integral complexity and tree based covering numbers.


## Summary

1. Sequential Rademacher complexity.
2. Dudley Integral complexity and tree based covering numbers.
3. Fat-shattering on trees dimension and Sauer-Shelah lemma.


## Summary

1. Sequential Rademacher complexity.
2. Dudley Integral complexity and tree based covering numbers.
3. Fat-shattering on trees dimension and Sauer-Shelah lemma.
4. Characterizing online supervised learning.


## Discussion/Further Work

## Discussion/Further Work

- Learning Vs Stochastic/constrained adversary


## Discussion/Further Work

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)


## Discussion/Further Work

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?


## Discussion/Further Work

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?
- Fast rate results?


## Discussion/Further Work

- Learning Vs Stochastic/constrained adversary
- Online Learning: Beyond Regret (arxiv version posted)
- Generic Algorithm whenever complexity is low?
- Fast rate results?
- Efficient algorithms for interesting applications

Thanks!

