Dependent Dirichlet Processes based on Poisson Processes

Dahua Lin CSAIL, MIT dhlin@mit.edu Eric Grimson CSAIL, MIT welg@csail.mit.edu John Fisher CSAIL, MIT fisher@csail.mit.edu

Mixture Models : From Static to Dynamic

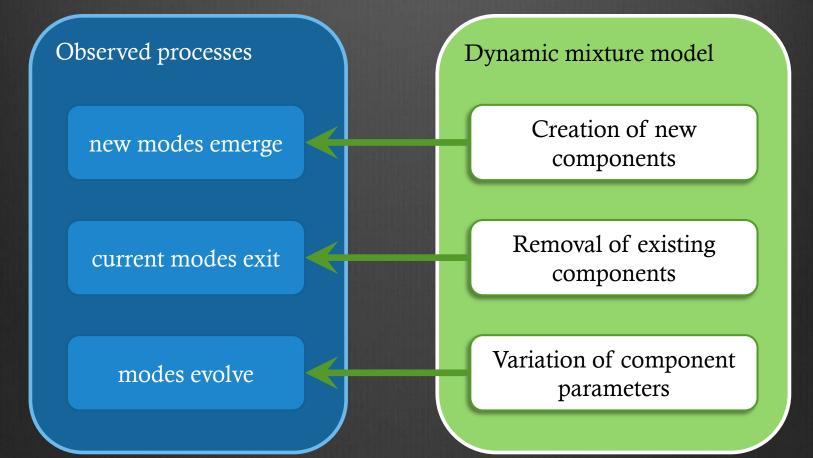
Document modeling

Financial analysis

Image understanding

How to do mixture modeling in response to changes?

Dynamic Mixture Models

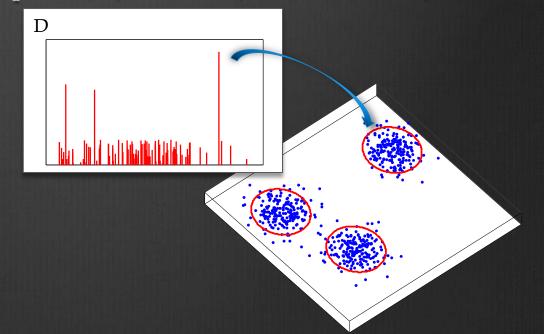


Dirichlet Processes

Mixture Models

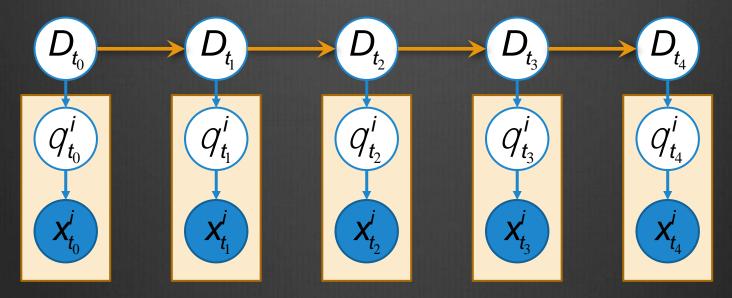
- Finite mixture model (FMM): pre-specified number of components. (see Everitt and Hand, 1981)
- Dirichlet process mixture model (DPMM): allows indefinite number of mixture components. (see Rasmussen, 2000, and Neal, 2000)

$$\begin{array}{c|c} D & D \sim DP(\mu) \\ \hline q_i & \theta_i \sim D \\ \hline \mathbf{x}_i & x_i \sim G(\theta_i) \end{array}$$



From DP to Dependent DP

Extend DPMM to model a dynamic process



Central Problem: introduce **dependency** between Dirichlet processes. Important to maintain the property of being marginal DP.

Why a New Approach?

- Related work
 - Single-p DDP (McEachern, 99)
 - Time-sensitive DP (Zhu and Lafferty, 05)
 - Hierarchical DP (Teh et. al, 06)
 - Bynamic HDP (Ren et. al, 08)
 - Seneralized Pólya Urn (Caron et. al, 07)
 - Securrent CRP (Ahmed and Xing, 08)
 - \circledast πDDP (Griffin and Steel, 06)
 - Solution Local DP (Chung and Dunson, 09)
 - Spatially normalized Gamma processes (Rao and Teh, 09)

Poisson, Gamma, and Dirichlet Given a measure space $(\Omega, \mathcal{F}, \mu)$ Poisson process (over $\Omega \times R^+$): $\Pi^* \sim \text{PoissonP}(\mu \times \gamma)$ $\gamma(dw) = w^{-1}e^{-w}dw$

Gamma process:

 $G \triangleq \sum_{(\theta, w_{\theta}) \in \Pi^*} w_{\theta} \delta_{\theta} \sim \Gamma P(\mu)$

Dirichlet process (Normalized Gamma process): $D \triangleq G/G(\Omega) \sim DP(\mu)$

Our Approach

Completely Random Measure

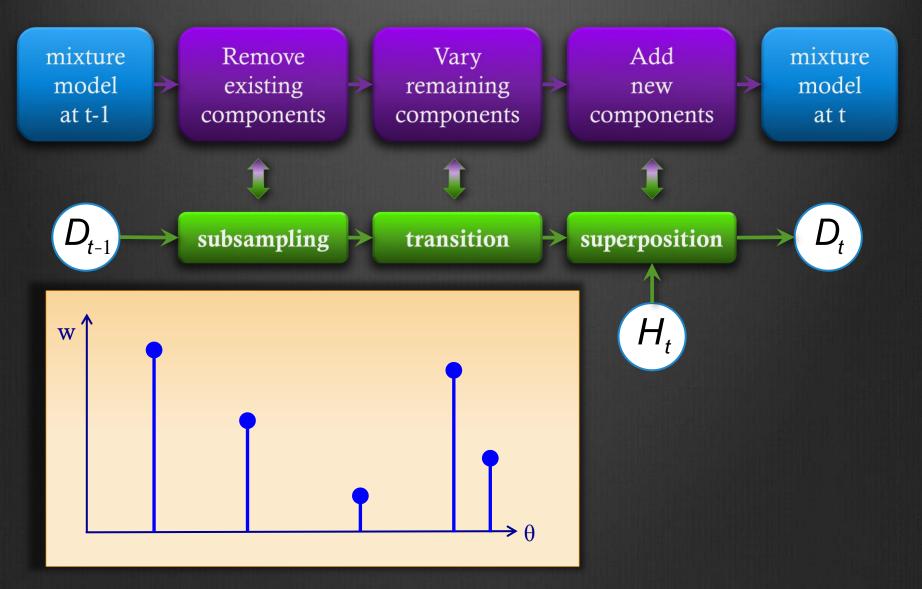
A random measure of which the measure values of disjoint subsets are independent.



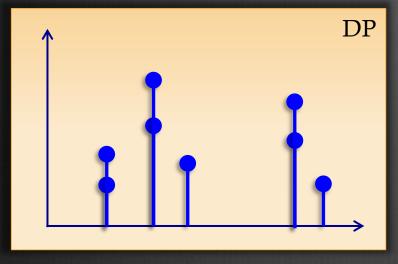
Complete Randomness Preserving Operations

Applying any operations that preserve complete randomness to Poisson processes results in a new Poisson process.

Construct a Chain of DPs



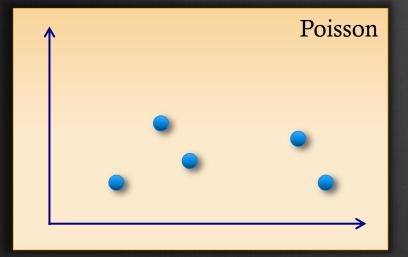
Subsampling



Equivalent operations directly on a DP

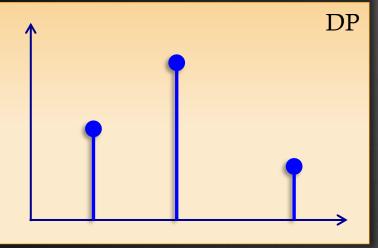
$$D = \sum_{\eta} w_{\theta} \delta_{\theta} \Rightarrow$$

 $S_q(D) \triangleq \sum_{z_\eta = 1} w'_{\theta} \delta_{\theta} \sim DP(q\mu)$
 $w'_{\theta} = w_{\theta} / \sum_{z_\eta = 1} w_{\theta}$

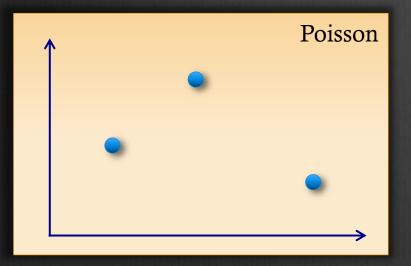


Subsampling via Independent Bernoulli Trial: $\forall \eta = (\theta, w_{\theta}) \in \Pi^*, \ z_{\eta} \sim \text{Bernoulli}(q)$ $S_q(\Pi^*) \triangleq \{\eta \in \Pi^* : z_{\eta} = 1\} \sim \text{PoissonP}(q\mu)$

Transition

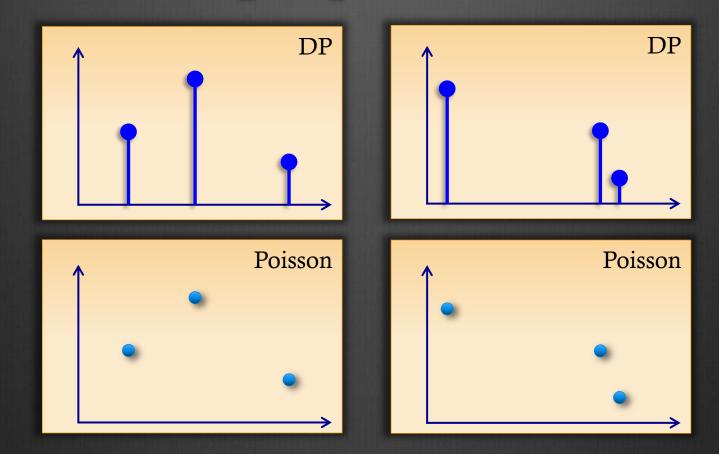


Equivalent operation directly on a DP $D = \sum_{\eta \in \Pi^*} w_{\theta} \delta_{\theta} \Rightarrow$ $T(D) \triangleq \sum_{\eta \in \Pi^*} w_{\theta} \delta_{T(\theta)} \sim DP(T\mu)$

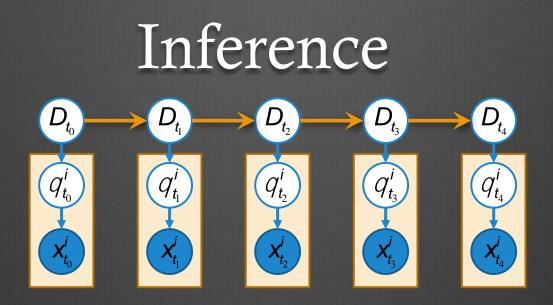


Independent movement of each point T: probabilistic transition kernel $T(\Pi^*) = \{(T(\theta), w_{\theta}) : (\theta, w_{\theta}) \in \Pi^*\}$ $\sim \text{PoissonP}(T\mu)$ with $(T\mu)(A) = \int_{\Omega} T(\theta, A)\mu(d\theta), \ \forall \ A \in \mathcal{F}$

Superposition

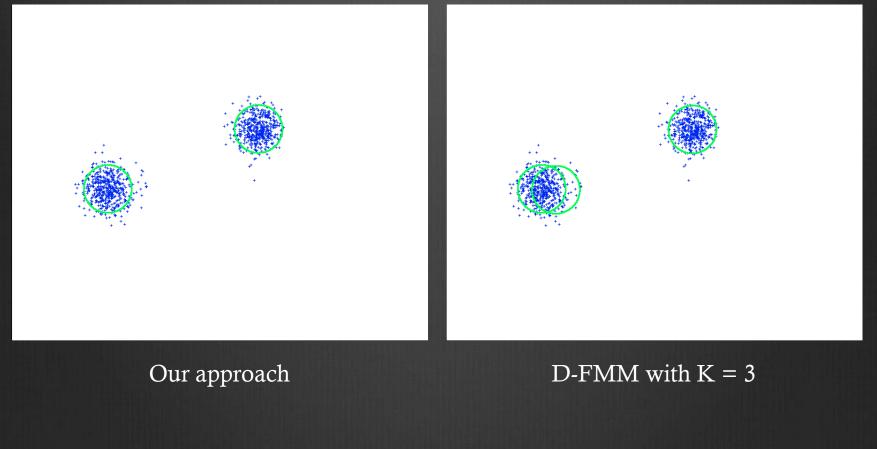


 $D_k \sim DP(\mu_k), k = 1, \dots, m \text{ be independent },$ $(c_1, \dots, c_m) \sim \text{Dir}(\mu_1(\Omega), \dots, \mu_m(\Omega))$ $\Rightarrow c_1 D_1 + \dots + c_m D_m \sim DP(\mu_1 + \dots + \mu_m)$

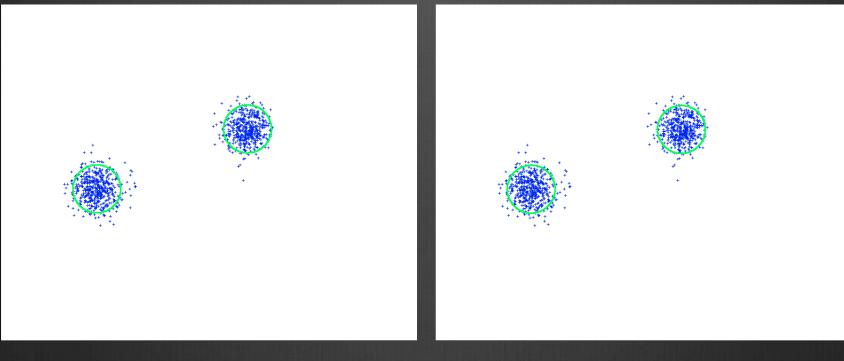


- Second Secon
- Gibbs sampling algorithm for inference from observations.
 - Sequential sampling (particle filtering, etc.)
 - The sampling in each phase generalizes CRP
- Solution Fundamental difference in theoretical foundation.

Simulation Compare with FMM



Simulation Compare with Independent DPs

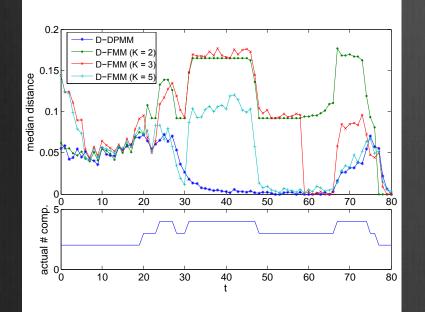


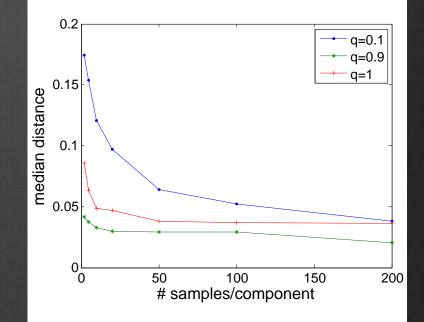
Our approach

Independent DPs

The estimation based on independent DPs does not maintain component identities across phases, making it difficult when we intend to study the evolution of a particular component.

Empirical Comparison





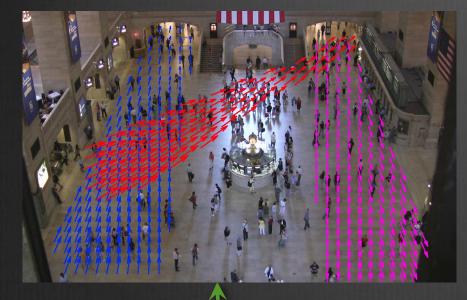
Real Applications

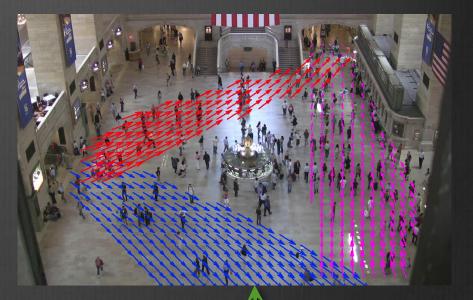
- Modeling people flows in a rail station
- Modeling the evolution of the trends of research topics (presented in poster)

Modeling People Flows

- The motion of people in New York Grand Central station.
- Data: 90,000 frames in one hour, divided into 60 phases
- Try to group people tracks into flows depending on their motion patterns

Results





Summary

- Propose a principled methodology to construct dependent Dirichlet processes based on the theoretical connections between Poisson, Gamma and Dirichlet processes.
- Develop a framework of evolving mixture model, which allows creation and removal of mixture components, as well as variation of parameters.
- Derive a Gibbs sampling algorithm for inferring mixture model parameters from observations.
- Test the approach on both synthetic data and real applications.

THANK YOU!

More details are provided at poster W84