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Machine Learning v.s. Statistics

Shared Grand Task: Separating signal from noise

Stereotypical complaint about statisticians:
Excessive worries over modeling and inferential
principles, to a degree of being willing to produce
nothing

Stereotypical complaint about machine learners:
Strong tendency to let ease of implementation or good
performance trump principled justifications, to a point
of being willing to deliver anything
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Principled Corner Cutting ( PC2)

Principle Oriented v.s. Performance Oriented

We need BOTH in order to reach a sensible
compromise between statistical efficiency and
computational efficiency

We need to train more Principled Corner Cutters:
Who can formulate the solution from the soundest
principles available but are at ease of cutting corners
guided by these principles, to achieve as much
statistical efficiency as feasible while maintaining
computational efficiency under time and resource
constraints.
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Let’s start with a simple illustration

Mr. Littlestat was given a black box which computes
the Least Squares Estimate (LSE) of β for the linear
regression

yi = βxi + ǫi, i = 1, . . . , n, ǫi i.i.d. ∼ F [0, 1].
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Mr. Littlestat was given a black box which computes
the Least Squares Estimate (LSE) of β for the linear
regression

yi = βxi + ǫi, i = 1, . . . , n, ǫi i.i.d. ∼ F [0, 1].

And it only works when n = 24 = 16, outputting

β̂16(y1, . . . , y16) =

∑16
i=1 yixi
∑16

i=1 x2
i

. (A)
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Let’s start with a simple illustration

Mr. Littlestat was given a black box which computes
the Least Squares Estimate (LSE) of β for the linear
regression

yi = βxi + ǫi, i = 1, . . . , n, ǫi i.i.d. ∼ F [0, 1].

And it only works when n = 24 = 16, outputting

β̂16(y1, . . . , y16) =

∑16
i=1 yixi
∑16

i=1 x2
i

. (A)

But Mr. Littlestat only has n = 13. Can he still use the
same program?
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Is it possible?

Is it possible to use the black box designed for LSE
with n = 16 to compute the LSE exactly with n = 13?
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Is it possible to use the black box designed for LSE
with n = 16 to compute the LSE exactly with n = 13?

The answer has to be YES because ...
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Is it possible?

Is it possible to use the black box designed for LSE
with n = 16 to compute the LSE exactly with n = 13?

The answer has to be YES because ...

The Principle of Selection Bias!
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What questions would you ask?

From all: How general is this method???

From a statistical estimation perspective:
What’s the statistical principle behind it? Is it
(asymptotically) efficient in some sense? What
assumptions on missing-data mechanism are needed
to justify its validity?
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What questions would you ask?

From all: How general is this method???

From a statistical estimation perspective:
What’s the statistical principle behind it? Is it
(asymptotically) efficient in some sense? What
assumptions on missing-data mechanism are needed
to justify its validity?

From an algorithmic implementation perspective:
How many iterations usually does it take? Does the
number of iterations depend on where I put the initial
points? Does the method scalable to high dimensional
data sets? Can it be implemented generically?
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The Self-Consistency Principle

Suppose f̂ com is an estimator for f given complete
data ycom, but we only observe a subset yobs.
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The Self-Consistency Principle

Suppose f̂ com is an estimator for f given complete
data ycom, but we only observe a subset yobs.

Intuitively, the “best" estimate of f given the procedure
f̂ com and the imputation model p(ycom|yobs, f), f̂ obs,
should satisfy (exactly or asymptotically)

E
[

f̂ com(·)
∣

∣yobs;f = f̂ obs

]

= f̂ obs(·)
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The Self-Consistency Principle

Suppose f̂ com is an estimator for f given complete
data ycom, but we only observe a subset yobs.

Intuitively, the “best" estimate of f given the procedure
f̂ com and the imputation model p(ycom|yobs, f), f̂ obs,
should satisfy (exactly or asymptotically)

E
[

f̂ com(·)
∣

∣yobs;f = f̂ obs

]

= f̂ obs(·)

It is a form of Self-Rao-Blackwellization – bring out the
best. We will theoretically justify being the “best".
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For i.i.d. data with independent right censoring, the
Kaplan-Meier estimator of CDF F is an NPMLE.
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It all started by Efron (1967) ...

For i.i.d. data with independent right censoring, the
Kaplan-Meier estimator of CDF F is an NPMLE.

Efron (1967) introduced “self-consistency", and shown
that the estimator F̂ obs from solving

E
[

F̂ com(·)
∣

∣yobs;F = F̂ obs

]

= F̂ obs(·)

is exactly the K-M estimator, where F̂ com is the
complete-data empirical CDF.
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It all started by Efron (1967) ...

For i.i.d. data with independent right censoring, the
Kaplan-Meier estimator of CDF F is an NPMLE.

Efron (1967) introduced “self-consistency", and shown
that the estimator F̂ obs from solving

E
[

F̂ com(·)
∣

∣yobs;F = F̂ obs

]

= F̂ obs(·)

is exactly the K-M estimator, where F̂ com is the
complete-data empirical CDF.

Considerable progresses by Turnbull (1974, 1976),
Tasi and Crowley (1985), Tasi (1986), Chan and Yang
(1987), Ren and Mykland (1996), Van der Laan (1997,
1998, etc. under more general censoring.
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Least Squares Estimator is Self-consistent

Self-consistency directs us to seek β̂13 such that

E
[

β̂16(y1, . . . , y16)
∣

∣

∣
y1, . . . , y13;β = β̂13

]

= β̂13, (B)
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Least Squares Estimator is Self-consistent

Self-consistency directs us to seek β̂13 such that

E
[

β̂16(y1, . . . , y16)
∣

∣

∣
y1, . . . , y13;β = β̂13

]

= β̂13, (B)

(B) can be solved iteratively without knowing the form
of β̂16. Starting with β

(0)
13 , at the tth iteration, (1) impute

the missing yi by y
(t)
i = β

(t)
13 xi and (2) compute

β
(t+1)
13 = β̂16(y1, . . . , y13, y

(t)
14 , y

(t)
15 , y

(t)
16 ). (C)
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Least Squares Estimator is Self-consistent

Self-consistency directs us to seek β̂13 such that

E
[

β̂16(y1, . . . , y16)
∣

∣

∣
y1, . . . , y13;β = β̂13

]

= β̂13, (B)

(B) can be solved iteratively without knowing the form
of β̂16. Starting with β

(0)
13 , at the tth iteration, (1) impute

the missing yi by y
(t)
i = β

(t)
13 xi and (2) compute

β
(t+1)
13 = β̂16(y1, . . . , y13, y

(t)
14 , y

(t)
15 , y

(t)
16 ). (C)

The limit of (C), denoted by β̂13, satisfies

β̂13 =

∑13
i=1 yixi + β̂13

∑16
i=14 x2

i
∑16

i=1 x2
i

=⇒ β̂13 =

∑13
i=1 yixi
∑13

i=1 x2
i
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... so are (almost) all Parametric MLEs ...
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... so are (almost) all Parametric MLEs ...

log-likelihood ℓ(θ|ycom); complete-data MLE θ̂com

score S(θ|ycom) & expected Fisher information I(θ)

θ̂com − θ =
S(θ|ycom)

I(θ)
+ op(N

−1/2).

E[θ̂com|yobs; θ] − θ =
E[S(θ|ycom)|yobs; θ]

I(θ)
+ op(n

−1/2)
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... so are (almost) all Parametric MLEs ...

log-likelihood ℓ(θ|ycom); complete-data MLE θ̂com

score S(θ|ycom) & expected Fisher information I(θ)

θ̂com − θ =
S(θ|ycom)

I(θ)
+ op(N

−1/2).

E[θ̂com|yobs; θ] − θ =
E[S(θ|ycom)|yobs; θ]

I(θ)
+ op(n

−1/2)

Because of the Fisher’s identity

E[S(θ|ycom)|yobs; θ] = S(θ|yobs)

& S(θ̂obs|yobs) = 0, observed-data MLE θ̂obs must satisfy

E[θ̂com|yobs, θ = θ̂obs] = θ̂obs + op(n
−1/2).
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A Multiple Imputation Self-Consistent (MISC) Algorithm

Starting from f̂
(0)

, for t = 1, . . . , iterating three steps:
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A Multiple Imputation Self-Consistent (MISC) Algorithm

Starting from f̂
(0)

, for t = 1, . . . , iterating three steps:

1. Multiple Imputation: for ℓ = 1, . . . ,m, draw

independently yℓ
mis ∼ P (ymis

∣

∣yobs;f = f̂
(t−1)

)
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∣

∣yobs;f = f̂
(t−1)

)

2. Applying the complete-data procedure to
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ℓ
mis} to compute f̂ ℓ, ℓ = 1, . . . ,m
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A Multiple Imputation Self-Consistent (MISC) Algorithm

Starting from f̂
(0)

, for t = 1, . . . , iterating three steps:

1. Multiple Imputation: for ℓ = 1, . . . ,m, draw

independently yℓ
mis ∼ P (ymis

∣

∣yobs;f = f̂
(t−1)

)

2. Applying the complete-data procedure to
yℓ = {yobs,y

ℓ
mis} to compute f̂ ℓ, ℓ = 1, . . . ,m

3. Combining Estimates:

Under L2 : f̂
(t)

= 1
m

∑m
ℓ=1 f̂ ℓ.
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A Multiple Imputation Self-Consistent (MISC) Algorithm

Starting from f̂
(0)

, for t = 1, . . . , iterating three steps:

1. Multiple Imputation: for ℓ = 1, . . . ,m, draw

independently yℓ
mis ∼ P (ymis

∣

∣yobs;f = f̂
(t−1)

)

2. Applying the complete-data procedure to
yℓ = {yobs,y

ℓ
mis} to compute f̂ ℓ, ℓ = 1, . . . ,m

3. Combining Estimates:

Under L2 : f̂
(t)

= 1
m

∑m
ℓ=1 f̂ ℓ.

Under L1 : f̂
(t)

= Median{f̂ ℓ, ℓ = 1, . . . ,m}
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A Multiple Imputation Self-Consistent (MISC) Algorithm

Starting from f̂
(0)

, for t = 1, . . . , iterating three steps:

1. Multiple Imputation: for ℓ = 1, . . . ,m, draw

independently yℓ
mis ∼ P (ymis

∣

∣yobs;f = f̂
(t−1)

)

2. Applying the complete-data procedure to
yℓ = {yobs,y

ℓ
mis} to compute f̂ ℓ, ℓ = 1, . . . ,m

3. Combining Estimates:

Under L2 : f̂
(t)

= 1
m

∑m
ℓ=1 f̂ ℓ.

Under L1 : f̂
(t)

= Median{f̂ ℓ, ℓ = 1, . . . ,m}
(nuisance part of f can be handled differently.)

NIPS 2010 – p. 19/47



MISC: No corner cutting, but ...

Advantages:
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MISC: No corner cutting, but ...

Advantages:

1. A generic algorithm: can be applied with any
complete-data procedure;

2. And any error norm: simply modify the combining
rule accordingly.

3. Additional programming is often easy.

4. Provides a benchmark.

Disadvantage: computationally very expensive,
especially when the Monte Carlo size m is large (e.g.,
m = 100).
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So What Are The Theoretical Guarantees?

Let f̂com be an estimator of f based on ycom, and the
error norm be Lp

||f̂com − f ||p =

[

E

(
∫

|f̂com(t) − f(t)|pdt
)]1/p
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So What Are The Theoretical Guarantees?

Let f̂com be an estimator of f based on ycom, and the
error norm be Lp

||f̂com − f ||p =

[

E

(
∫

|f̂com(t) − f(t)|pdt
)]1/p

Let M(f ;ycom) be the projection of f̂com under the
conditionally expected norm:

M(f ;yobs) = argmingE

[
∫

|f̂com(t) − g(t)|pdt
∣

∣

∣

∣

yobs; f

]

E.g., for p = 2, M(f ;yobs)(t) = E[f̂com(t)|yobs; f ]
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So What Are The Theoretical Guarantees?

Let f̂com be an estimator of f based on ycom, and the
error norm be Lp

||f̂com − f ||p =

[

E

(
∫

|f̂com(t) − f(t)|pdt
)]1/p

Let M(f ;ycom) be the projection of f̂com under the
conditionally expected norm:

M(f ;yobs) = argmingE

[
∫

|f̂com(t) − g(t)|pdt
∣

∣

∣

∣

yobs; f

]

E.g., for p = 2, M(f ;yobs)(t) = E[f̂com(t)|yobs; f ]

Let M(f̂) ≡ M(f = f̂ ;yobs) be the induced mapping
from Fobs—a suitably defined sub-space of Lp that
includes the true f0—into itself.
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The Power of Contraction Mapping

Define |f |p =
[∫

|f(t)|pdt
]1/p. Suppose M(f) is (a.s.) a

contraction mapping on Fobs with respect to |f |p, then (a.s)

there exists a unique solution to |M(f̂obs) − f̂obs|p = 0.
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The Power of Contraction Mapping

Define |f |p =
[∫

|f(t)|pdt
]1/p. Suppose M(f) is (a.s.) a

contraction mapping on Fobs with respect to |f |p, then (a.s)

there exists a unique solution to |M(f̂obs) − f̂obs|p = 0.

Suppose there exists a 0 < δ < 1 such that ∀f̂1, f̂2 ∈ Fobs,

||M(f̂1) −M(f̂2)||p ≤ δ||f̂1 − f̂2||p. Then for any f ∈ Fobs,

||f̂obs − f ||p ≤ 2
||f̂com − f ||p

1 − δ
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The Power of Contraction Mapping

Define |f |p =
[∫

|f(t)|pdt
]1/p. Suppose M(f) is (a.s.) a

contraction mapping on Fobs with respect to |f |p, then (a.s)

there exists a unique solution to |M(f̂obs) − f̂obs|p = 0.

Suppose there exists a 0 < δ < 1 such that ∀f̂1, f̂2 ∈ Fobs,

||M(f̂1) −M(f̂2)||p ≤ δ||f̂1 − f̂2||p. Then for any f ∈ Fobs,

||f̂obs − f ||p ≤ 2
||f̂com − f ||p

1 − δ

Proof: ||f̂obs − f ||p ≤ ||M(f̂obs) −M(f)||p + ||M(f) − f ||p
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The Power of Contraction Mapping

Define |f |p =
[∫

|f(t)|pdt
]1/p. Suppose M(f) is (a.s.) a

contraction mapping on Fobs with respect to |f |p, then (a.s)

there exists a unique solution to |M(f̂obs) − f̂obs|p = 0.

Suppose there exists a 0 < δ < 1 such that ∀f̂1, f̂2 ∈ Fobs,

||M(f̂1) −M(f̂2)||p ≤ δ||f̂1 − f̂2||p. Then for any f ∈ Fobs,

||f̂obs − f ||p ≤ 2
||f̂com − f ||p

1 − δ

Proof: ||f̂obs − f ||p ≤ ||M(f̂obs) −M(f)||p + ||M(f) − f ||p

||f̂obs − f ||p ≤ δ||f̂obs − f ||p + ||M(f) − f ||p

||M(f)− f ||p ≤ ||M(f)− f̂com||p + ||f̂com − f ||p ≤ 2||f̂com − f ||p
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Theory without Contraction Mapping

If Fobs is compact and M(f) is continuous with respect to

|f |p, then there exists a solution to |M(f̂obs) − f̂obs|p = 0 by

applying Brouwer’s Fixed Point Theorem.
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|f |p, then there exists a solution to |M(f̂obs) − f̂obs|p = 0 by

applying Brouwer’s Fixed Point Theorem.

Suppose

(1) Fobs is compact and M(f) is continuous w.r.t || · ||p;

(2) ψ̂n(f) = f −M(f) uniformly converges on Fobs to some

ψ(f) with respect to || · ||p as the sample size n→ ∞;

(3) and the true f0 is the only solution to ψ(f) = 0.
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Theory without Contraction Mapping

If Fobs is compact and M(f) is continuous with respect to

|f |p, then there exists a solution to |M(f̂obs) − f̂obs|p = 0 by

applying Brouwer’s Fixed Point Theorem.

Suppose

(1) Fobs is compact and M(f) is continuous w.r.t || · ||p;

(2) ψ̂n(f) = f −M(f) uniformly converges on Fobs to some

ψ(f) with respect to || · ||p as the sample size n→ ∞;

(3) and the true f0 is the only solution to ψ(f) = 0.

Then any solution of M(f) = f converges to the true f0 w.r.t

|| · ||p, as n→ ∞.
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applying Brouwer’s Fixed Point Theorem.

Suppose

(1) Fobs is compact and M(f) is continuous w.r.t || · ||p;

(2) ψ̂n(f) = f −M(f) uniformly converges on Fobs to some

ψ(f) with respect to || · ||p as the sample size n→ ∞;

(3) and the true f0 is the only solution to ψ(f) = 0.

Then any solution of M(f) = f converges to the true f0 w.r.t

|| · ||p, as n→ ∞.

Many generalizations/refinements are possible ...
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The result holds for any p ≥ 1. Important for LASSO,
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f̂com have the same order of rate of convergence, as
long as we can show M(f) is a contraction mapping.
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For wavelets soft thresholding and with p = 2, under
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% of missing data
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Generality and Implications

The result holds for any p ≥ 1. Important for LASSO,
L1 regressions, etc.

Potentially a useful theoretical tool, ensuring f̂obs and
f̂com have the same order of rate of convergence, as
long as we can show M(f) is a contraction mapping.

For wavelets soft thresholding and with p = 2, under
normality and random missingness,

δ =
√

% of missing data

M(f) is not a contraction map for hard thresholding.
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What is the connection with the EM algorithm?

EM builds on Fisher’s identity (Efron, 1977)

E[S(θ;ycom)|yobs; θ] = S(θ;yobs),

and solves

E[S(θ(t+1);ycom)|yobs; θ
(t)] = 0.
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What is the connection with the EM algorithm?

EM builds on Fisher’s identity (Efron, 1977)

E[S(θ;ycom)|yobs; θ] = S(θ;yobs),

and solves

E[S(θ(t+1);ycom)|yobs; θ
(t)] = 0.

Elashoff and Ryan’s (2004) ES (Expectation-Solve)
replaces S(θ|ycom) with a complete-data Estimating
Equation Ucom(θ;ycom):

E[Ucom(θ(t+1);ycom)|yobs; θ
(t)] = 0.
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Moving from Algorithmic Principle to Estimation Principle

For quasi-likelihood, Heyde and Morton
(1996) emphasized viewing the E-step as a
projection, providing an estimation principle.
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Moving from Algorithmic Principle to Estimation Principle

For quasi-likelihood, Heyde and Morton
(1996) emphasized viewing the E-step as a
projection, providing an estimation principle.

Self-consistency offers a general principle for
defining an incomplete-data estimator for f
when given

an arbitrary complete-data procedure;
a missing-data mechanism P (ycom|yobs; f);
an error norm.
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Wavelet Denoising (Donoho and Johnstone, 1994)
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Incomplete Designs

Suppose we observe yobs = {xi, yi}n
i=1 that satisfy

yi = f(xi) + ei, ei ∼ i.i.d N (0, σ2), i = 1, . . . , n
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i=1 that satisfy
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i=1 is a subset of XN = { i
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Incomplete Designs

Suppose we observe yobs = {xi, yi}n
i=1 that satisfy

yi = f(xi) + ei, ei ∼ i.i.d N (0, σ2), i = 1, . . . , n

Xobs = {xi}n
i=1 is a subset of XN = { i

N
}N−1

i=0 .

Aim: estimate f via wavelet regression given yobs.

Key idea: View yobs as incomplete data from
ycom = {xi = i

N
, yi}N−1

i=0 with yi missing when xi 6∈ Xobs.

Applications:

1. Actual missing y′s with a regular design.

2. Deleting outliers from a regular design data set.

3. Cross-validation for a regular design problem.
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Incomplete/Missing Data in 2D

instrument malfunction, damaged photos, etc.

missing at random clustering
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A Simple (SIM) Approximated Algorithm

Starting with f̂
(0)

and σ̂(0), for t = 1, . . ., iterating:
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A Simple (SIM) Approximated Algorithm

Starting with f̂
(0)

and σ̂(0), for t = 1, . . ., iterating:

1. Impute the missing yi by y
(t)
i = f̂

(t−1)
i and create

y(t) = {yi : yi is observed} ∪ {y(t)
i : yi is missing}
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A Simple (SIM) Approximated Algorithm

Starting with f̂
(0)

and σ̂(0), for t = 1, . . ., iterating:

1. Impute the missing yi by y
(t)
i = f̂

(t−1)
i and create

y(t) = {yi : yi is observed} ∪ {y(t)
i : yi is missing}

2. Obtain w(t) = Wy(t) & “finest scale" estimate σ̃(t)

3. Use the variance inflation formula to compute

σ̂(t) =
√

[σ̃(t)]2 + Cm[σ̂(t−1)]2,

where Cm = 1 − n
N

is fraction of missing data
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A Simple (SIM) Approximated Algorithm

Starting with f̂
(0)

and σ̂(0), for t = 1, . . ., iterating:

1. Impute the missing yi by y
(t)
i = f̂

(t−1)
i and create

y(t) = {yi : yi is observed} ∪ {y(t)
i : yi is missing}

2. Obtain w(t) = Wy(t) & “finest scale" estimate σ̃(t)

3. Use the variance inflation formula to compute

σ̂(t) =
√

[σ̃(t)]2 + Cm[σ̂(t−1)]2,

where Cm = 1 − n
N

is fraction of missing data

4. Threshold w(t) with g(σ̂(t)) (e.g. g(σ) = σ
√

2 log N )

to obtain ŵ(t), and then f̂
(t)

= W T ŵ(t)
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SIM: Extreme Corner Cutting

It is fast, and it works very well when Cm << 1 —
Quick and Dirty, but it can be filthy!
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SIM: Extreme Corner Cutting

It is fast, and it works very well when Cm << 1 —
Quick and Dirty, but it can be filthy!

Key component: variance inflation formula, which
accounts for the effect of those imputed y

(t)
i ’s on the

estimation of σ2.
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SIM: Extreme Corner Cutting

It is fast, and it works very well when Cm << 1 —
Quick and Dirty, but it can be filthy!

Key component: variance inflation formula, which
accounts for the effect of those imputed y

(t)
i ’s on the

estimation of σ2.

Derived by assuming the conditional expectation

E
[

1|wl|≥g(σ̃)wl|yobs,f = f̂
(t−1)

]

≈ 1∣
∣

∣

∣

E

[

wl|yobs,f=
ˆf

(t−1)
]
∣

∣

∣

∣

≥g(σ̂)
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SIM: Extreme Corner Cutting

It is fast, and it works very well when Cm << 1 —
Quick and Dirty, but it can be filthy!

Key component: variance inflation formula, which
accounts for the effect of those imputed y

(t)
i ’s on the

estimation of σ2.

Derived by assuming the conditional expectation

E
[

1|wl|≥g(σ̃)wl|yobs,f = f̂
(t−1)

]

≈ 1∣
∣

∣

∣

E

[

wl|yobs,f=
ˆf

(t−1)
]
∣

∣

∣

∣

≥g(σ̂)

Extreme corner cutting, but we understand when it can
help and when it will do great harm.
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A Refined (REF) Algorithm: Much Better Corner Cutting

Similar to SIM, but much better approximation to the

E-step ŵ
(t)
l ≡ E

[

1|wl|≥g(σ̃)wl|yobs,f = f̂
(t−1)

]

pretending c = g(σ̃) is fixed. Under normality, ŵ
(t)
l is

expressible via normal pdf φ and CDF Φ:
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A Refined (REF) Algorithm: Much Better Corner Cutting

Similar to SIM, but much better approximation to the

E-step ŵ
(t)
l ≡ E

[

1|wl|≥g(σ̃)wl|yobs,f = f̂
(t−1)

]

pretending c = g(σ̃) is fixed. Under normality, ŵ
(t)
l is

expressible via normal pdf φ and CDF Φ:

ŵ
(t)
l = α(w

(t)
l , ηl) + β(w

(t)
l , ηl) × w

(t)
l

with α(w, η) = ησ

[

φ

(

c + w

ησ

)

− φ

(

c − w

ησ

)]

,

β(w, η) = 2 − Φ

(

c + w

ησ

)

− Φ

(

c − w

ησ

)
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E-step ŵ
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[
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ŵ
(t)
l = α(w

(t)
l , ηl) + β(w

(t)
l , ηl) × w

(t)
l

with α(w, η) = ησ

[

φ

(

c + w

ησ

)

− φ

(

c − w

ησ

)]

,

β(w, η) = 2 − Φ

(

c + w

ησ

)

− Φ

(

c − w

ησ

)

ηl can be approximated by Cm = 1− n
N

, and c = g(σ̂(t))
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A Refined (REF) Algorithm: Much Better Corner Cutting

Similar to SIM, but much better approximation to the

E-step ŵ
(t)
l ≡ E

[

1|wl|≥g(σ̃)wl|yobs,f = f̂
(t−1)

]

pretending c = g(σ̃) is fixed. Under normality, ŵ
(t)
l is

expressible via normal pdf φ and CDF Φ:

ŵ
(t)
l = α(w

(t)
l , ηl) + β(w

(t)
l , ηl) × w

(t)
l

with α(w, η) = ησ

[

φ

(

c + w

ησ

)

− φ

(

c − w

ησ

)]

,

β(w, η) = 2 − Φ

(

c + w

ησ

)

− Φ

(

c − w

ησ

)

ηl can be approximated by Cm = 1 − n
N

, and c = g(σ̂(t))

A form of “soft thresholding": β(w, η) ∈ (0, 1).
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Hard Thresholding Perhaps Should be Avoided ...
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Hard Thresholding Perhaps Should be Avoided ...

For soft-thresholding, 1(|wl|≥c)sign(wl){|wl| − c}:

ŵ
(t)
l,soft = ŵ

(t)
l,hard + c

[

Φ

(

c − w
(t)
l

ηlσ

)

− Φ

(

c + w
(t)
l

ηlσ

)]
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Hard Thresholding Perhaps Should be Avoided ...

For soft-thresholding, 1(|wl|≥c)sign(wl){|wl| − c}:

ŵ
(t)
l,soft = ŵ

(t)
l,hard + c

[

Φ

(

c − w
(t)
l

ηlσ

)

− Φ

(

c + w
(t)
l

ηlσ

)]

This blue term ensures the contraction property of the
self-consistency map, M(f), because for

µ(w) = α(w, η)+wβ(w, η)+c

[

Φ

(

c − w

ησ

)

− Φ

(

c + w

ησ

)]

,

dµ(w)

dw
= β(w, η) ∈ (0, 1).
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Hard Thresholding Perhaps Should be Avoided ...

For soft-thresholding, 1(|wl|≥c)sign(wl){|wl| − c}:

ŵ
(t)
l,soft = ŵ

(t)
l,hard + c

[

Φ

(

c − w
(t)
l

ηlσ

)

− Φ

(

c + w
(t)
l

ηlσ

)]

This blue term ensures the contraction property of the
self-consistency map, M(f), because for

µ(w) = α(w, η)+wβ(w, η)+c

[

Φ

(

c − w

ησ

)

− Φ

(

c + w

ησ

)]

,

dµ(w)

dw
= β(w, η) ∈ (0, 1).

Not true without the blue term.
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Visual Inspection: Simulation Configurations

Using four test functions of Donoho & Johnstone
(1994).

Hard universal thresholding: |wjk| ≥ σ̂
√

2 log N.

Mother wavelet: D5; primary resolution = 3.

Signal-to-noise ratio: snr= ‖f‖/σ = 7.

Complete data size N=2048.

Random deletion percentage: 10%, 30%, 50%.

Initial values: f̂ (0) = Lowess; σ̂(0): from residuals.

Stopping criterion: |σ̂(t+1) − σ̂(t)|/σ̂(t) < 0.0001.
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SIM (Cm = ρ = .5), SIM (ρ = .5, Cm = 0), REF (ρ = .5), MISC (ρ = .5)
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Number of Iterations ∝ [− log(ρ)]−1
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L1 Generalization: Applications to Variable Selection
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L1 Generalization: Applications to Variable Selection

Many variable selection methods (e.g., LASSO)
emphasize estimates being exactly zero (e.g., β̂1 = 0).
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L1 Generalization: Applications to Variable Selection

Many variable selection methods (e.g., LASSO)
emphasize estimates being exactly zero (e.g., β̂1 = 0).

L2 combining rule, i.e., averaging does not preserve
this property.

But L1 combining rule does. It works like a “voting
method”: if more than 50% of {β̂1,ℓ, ℓ = 1, . . . ,m} are

zero, then the next iterate β̂
(t+1)
1 = 0.
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L1 Generalization: Applications to Variable Selection

Many variable selection methods (e.g., LASSO)
emphasize estimates being exactly zero (e.g., β̂1 = 0).

L2 combining rule, i.e., averaging does not preserve
this property.

But L1 combining rule does. It works like a “voting
method”: if more than 50% of {β̂1,ℓ, ℓ = 1, . . . ,m} are

zero, then the next iterate β̂
(t+1)
1 = 0.

We illustrate this with adaptive LASSO (the same can
be applied to other methods such as SCAD).
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Variable Selection in a Linear Model
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Variable Selection in a Linear Model

univariate response: yi
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Variable Selection in a Linear Model

univariate response: yi

p-variate explanatory variable: xi = (xi1, . . . , xip)
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Variable Selection in a Linear Model

univariate response: yi

p-variate explanatory variable: xi = (xi1, . . . , xip)

model: yi =
∑p

j=1 βjxij + ei, ei ∼ i.i.d. N (0, σ2)
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univariate response: yi

p-variate explanatory variable: xi = (xi1, . . . , xip)

model: yi =
∑p

j=1 βjxij + ei, ei ∼ i.i.d. N (0, σ2)

Model parameters β = (β1, . . . , βp)
T .
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Variable Selection in a Linear Model

univariate response: yi

p-variate explanatory variable: xi = (xi1, . . . , xip)

model: yi =
∑p

j=1 βjxij + ei, ei ∼ i.i.d. N (0, σ2)

Model parameters β = (β1, . . . , βp)
T .

Aim: identify and estimate those non-zero βj ’s when
some of the entries in {xi1, . . . , xip, yi}n

i=1 are missing.
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When there is no missing data:

β̂ = argmin
β

{

n
∑

i=1

(yi −
p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

αj|βj|
}

λ: tuning parameter, selected via BIC.

αj: pre-chosen fixed weights; we use αj = 1/β̂ols
j

We need a model to impute the missing xij ’s given all
observed data (both x’s and y); we used Joe Shafer’s
imputation software based on multivariate normal.

We applied LASSO to each imputed data set, and then
used the L1 and L2 combining rules.
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Numerical Experiment

True model: β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , with σ = 3.

xij and xik normal with correlation 0.5|j−k|.

Sample sizes: n =20 and 60.

Random deletion missing percentages: 10% and 30%.

500 replicates, and each uses m = 100 imputations.

For comparisons, we include the complete-data
results, and the results from stacking all m imputed
data sets to form a size mN data set, but using
effective sample size (ESS) for BIC.
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Simulation Results withn = 20

algorithm missing PC PS MSER

Median-Combining 9.8 16 1.26

Mean-Combining 10% 0.2 75.6 1.38

Stacking with ESS 6.6 10.6 0.923

Median-Combining 0.6 0.6 3.32

Mean-Combining 30% 0 99.6 3.08

Stacking with ESS 0.6 0.6 0.662

complete data 16.6 39.6 1.0

PC is % the correct model was recovered, PS is % the
selected model was a superset of the true, and MSER is
the MSE ratio relative to the complete data procedure.
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Simulation Results withn = 60

algorithm missing PC PS MSER

Median-Combining 54.6 72.4 1.06

Mean-Combining 10% 5 95.4 1.11

Stacking with ESS 53 73.2 0.833

Median-Combining 17.2 19 2.51

Mean-Combining 30% 0 99.4 2.31

Stacking with ESS 19.4 21.4 0.382

complete data 57.2 88.4 1.0

PC is % the correct model was recovered, PS is % the
selected model was a superset of the true, and MSER is
the MSE ratio relative to the complete data procedure.
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Summary of Key Contributions

Formulated the Self-consistency Principle for any
complete-data procedure.

Generalized self-consistency methods beyond L2

norm, especially the median combining rule for
multiple imputation inference with discrete parameters.

Provided an initial unified theory via contraction
mapping and fixed-point theorems.

Obtained Refined Algorithm for good compromise
between statistical and computational efficiency for
wavelet applications.

BUT, there are a lot more to be done ...
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Lee, Thomas C. M. and Meng, Xiao-Li (2005), “A Self-Consistent
Wavelet Method for Denoising Images with Missing Pixels”,
Proceedings of the 30th IEEE Inter. Conf. on Acoustics, Speech,
and Signal Processing Vol II, 41-44.

NIPS 2010 – p. 44/47



If you still want more ...

Lee, Thomas C. M. and Meng, Xiao-Li (2005), “A Self-Consistent
Wavelet Method for Denoising Images with Missing Pixels”,
Proceedings of the 30th IEEE Inter. Conf. on Acoustics, Speech,
and Signal Processing Vol II, 41-44.

Meng, Xiao-Li (2007) “A Helicopter View of The Self-Consistency
Framework for Wavelets and Other Signal Extraction Methods In
the Presence of Missing and Irregularly Spaced Data", Wavelets
XII, Proceedings of SPIE Vol. 6701 (Bellingham, WA, 2007).

NIPS 2010 – p. 44/47



If you still want more ...

Lee, Thomas C. M. and Meng, Xiao-Li (2005), “A Self-Consistent
Wavelet Method for Denoising Images with Missing Pixels”,
Proceedings of the 30th IEEE Inter. Conf. on Acoustics, Speech,
and Signal Processing Vol II, 41-44.

Meng, Xiao-Li (2007) “A Helicopter View of The Self-Consistency
Framework for Wavelets and Other Signal Extraction Methods In
the Presence of Missing and Irregularly Spaced Data", Wavelets
XII, Proceedings of SPIE Vol. 6701 (Bellingham, WA, 2007).

Lee, Thomas C. M., Li, Zhan, and Meng, Xiao-Li (2010), “What
can we do when EM is not applicable? Self Consistency: A
general recipe for semi-parametric and non-parametric estimation
with incomplete and irregularly spaced data." Revision for Statistical

Science.

NIPS 2010 – p. 44/47



Missing at Random

degraded reconstructed

NIPS 2010 – p. 45/47



Missing at Random

degraded reconstructed

NIPS 2010 – p. 45/47



Clustered Missing Pixels – pushing beyond principles ...
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A Politically Correct Picture – Brad Efron in 1967-68
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