

The neurobiology of simple choice

Antonio Rangel

Caltech

- Characterize the computational processes used by the brain to make different types of choices
- Understand how does the neurobiology implements and constraints those computations
- Characterize the computational and neurobiological differences underlying decision maker heterogeneity Ex:
 - > addicts vs non-addicts
 - > healthy eaters vs. Big Mac lovers

Simple economic choice

Why study simple choice?

- Simplest setting to study the neurobiology of human DM
- Foundation for more complex choice situations
- Insights about limitations and unexpected features of DM circuitry already be present here

I A simple but useful framework

Useful conceptual framework

II Valuation

Experiment 1

JNeuro 2007, Plassmann O'Doherty Rangel

MAIN RESULT: mOFC and DLPFC encode for WTP in free trials, but not in forced trials

Experiment 2

JNeuro 2010, Plassmann O'Doherty Rangel

Areas with increased activity with bid (i.e., with aversive value)

p < 0.01 (uncor), 5 voxel

Conjunction of appetitive vs aversive goal value signals

Increased activity changes: modulation by appetitive DVs in free bid trials Decreased activity changes: modulation by aversive DVs in free bid trials

Experiment 3

Cerebral Cortex 2010, Lit et al

Experiment 3 Chib, O'Doherty, Rangel, JNeuro, 2009

Behavior

Commonly active areas

[\$3-\$4]

choices against a fixed monetary bid

choices against a fixed snack item

Value only activity

Saliency only activity

Value & saliency related activity

III Comparison

Common reduced from view

Experimental 4 Nature Neuro 2010, Krajbich Armel Rangel

Computational model

$$V(t)=V(t-1)+a(v_{target} - \theta v_{non-target})+u_t$$
$$u_t \sim N(0,s^2)$$

Examples of simulations

Key features:

- Fixation lengths drawn from common distribution
- Integrator follows a random walk with slope r_{target} -0.3 $r_{non-target}$

- Free model parameters:
 - -- a = slope of integration
 - -- s²= noise variance
 - -- θ = attentional bias
- Estimate parameters in even trials using ML Match: choices and reaction times
- Simulate model in odd trials

Basic psychometrics

Basic fixation patterns

Key tests of the model

Predicted choice biases

Experiment 5 under review, Seung O'Doherty Rangel

mOFC encodes attention modulated relative value signals

Attentional effect modulated by the STS

IV From choices to motor output

Experiment 6 under review, Hare O'Doherty Schulz Rangel

mOFC correlates with stimulus values

Markers of a region involved in comparison

- Should exhibit aggregate activation pattern consistent with predictions of plausible neural implementations of the DDM
- Should exhibit connectivity w/ vmPFC valuation areas at time of choice
- 3. Should exhibit <u>choice dependent</u> connectivity with motor cortex output areas

dmPFC activity correlates with predictions of simple neural implementation of best fitting DDM

dmPFC modulates transformation of values into motor responses

Choose left

Choose right

V Self-control

Neural mechanisms of dietary self-control

Hare, Camerer, Rangel (Science 2009)

Behavioral differences across groups

Hypotheses

H1) vmPFC encodes a common decision value signal that has different properties in good and poor self-controllers

H2) Attentional self-control involves DLFPC modulation of the vmPFC valuation system

Activity in vmPFC is correlated with a behavioral measure of decision value (regardless of SC)

vmPFC BOLD signal reflects both taste and health ratings

The effect of HR in the vmPFC is correlated with its effect on behavior

SC group has greater DLPFC than NSC when implementing self-control

More activity in DLPFC in successful SC trials than in failed SC trials

DLPFC activity does not correlate with HR

Attentional self-control network

Group difference in PPI

Remarks

- Evidence attentional self-control involves modulation of vmPFC value signals by dIPFC so that they incorporate all dimensions of stimuli
- Healthy eaters in sample can do this Unhealthy eaters cannot do this
- Have replicated results in a monetary discounting task

V Final Remarks

- mOFC/vmPFC plays critical role in valuation during decision-making, probably by computing relative values
- A modified DDM provides very high accuracy description of psychometric data
- Both the valuation and comparison process are modulated by visual attention
- Evidence that dmPFC might be part of the comparator process that transforms values into motor responses

Valuation:

- > How EXACTLY are the value signals in mOFC computed at time of choice?
- > What is the network of inputs that help at work in different decision problems and situations?
- > What EXACTLY is the code used in OFC to represent value of a stimulus?
- > How are the various components of the valuation learnt?
- > How does the brain know when to start and stop valuing a stimuli & which stimuli to evaluate?

Comparison:

> More detailed models of comparator process and neurobiological basis

Ex:

- -- how are multiple value neurons integrated in comparison
- -- how is the DDM mapped to underlying neurobiology

Motor:

- > How are stimuli and action representations mapped to each other?
- > Role of Supplementary Motor Areas
- > Role of basal ganglia- thalamic- cortical loops
- > Computational role for IPS

Interested in post-doc or PhD studies in neuroeconomics? rangel@hss.caltech.edu