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Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)

• Generalization to unsupervised learning

– dictionary learning/sparse PCA



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Modelling of text corpora (Jenatton et al., 2010)



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Predictive performance

– When prior knowledge matches data

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008)



ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)
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• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Submodular functions (Fujishige, 2005; Bach, 2010b)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)

– Optimal design (Krause and Guestrin, 2005)



Submodular functions - Lovász extension

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex

– Minimizing f(w) on w ∈ [0, 1]p equivalent to minimizing F on 2V



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A ⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2

all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}
Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}
+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈G
‖wG‖∞

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero: Supp(w)c =
⋃

G∈HG for some H ⊆ G



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈G
‖wG‖∞

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero: Supp(w)c =
⋃

G∈HG for some H ⊆ G

• Associated submodular function

F (A) = Card
(

{G ∈ G, G ∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns
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Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈G
‖wG‖∞ ⇒ F (A) = Card

(

{G ∈ G, G∩A 6= ∅}
)

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ Ω is a combination of order statistics

– Non-factorial priors for supervised learning: Ω depends on the

eigenvalues of X⊤
AXA and not simply on the cardinality of A



Non-factorial priors for supervised learning

• Selection of subset A from design matrix X ∈ R
n×p

• Frequentist analysis (Mallow’s CL): trX
⊤
AXA(X

⊤
AXA + λI)−1

– Not submodular

• Bayesian analysis (marginal likelihood): log det(X⊤
AXA + λI)

– Submodular (also true for tr(X⊤
AXA)

1/2)

p n k submod. ℓ2 vs. submod. ℓ1 vs. submod. greedy vs. submod.
120 120 80 40.8 ± 0.8 -2.6 ± 0.5 0.6 ± 0.0 21.8 ± 0.9
120 120 40 35.9 ± 0.8 2.4 ± 0.4 0.3 ± 0.0 15.8 ± 1.0
120 120 20 29.0 ± 1.0 9.4 ± 0.5 -0.1 ± 0.0 6.7 ± 0.9
120 120 10 20.4 ± 1.0 17.5 ± 0.5 -0.2 ± 0.0 -2.8 ± 0.8
120 20 20 49.4 ± 2.0 0.4 ± 0.5 2.2 ± 0.8 23.5 ± 2.1
120 20 10 49.2 ± 2.0 0.0 ± 0.6 1.0 ± 0.8 20.3 ± 2.6
120 20 6 43.5 ± 2.0 3.5 ± 0.8 0.9 ± 0.6 24.4 ± 3.0
120 20 4 41.0 ± 2.1 4.8 ± 0.7 -1.3 ± 0.5 25.1 ± 3.5



Unified optimization algorithms

• Polyhedral norm with O(3p) extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow



Unified optimization algorithms

• Polyhedral norm with O(3p) extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow

• Proximal methods (e.g., Beck and Teboulle, 2009)

– minw∈Rp L(y,Xw) + λΩ(w): differentiable + non-differentiable

– Efficient when (P ) : minw∈Rp
1
2‖w − v‖22 + λΩ(w) is “easy”

• Proposition: (P ) is equivalent to min
A⊂V

λF (A) −
∑

j∈A |vj| with

minimum-norm-point algorithm

– No complexity bounds, but empirically O(p2)

– Faster algorithm for special case: poster T24 (Mairal et al., 2010)



Comparison of optimization algorithms

• Synthetic example with p = 1000 and F (A) = |A|1/2

• ISTA: proximal method

• FISTA: accelerated variant (Beck and Teboulle, 2009)
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Unified theoretical analysis

• Decomposability

– Key to theoretical analysis (Negahban et al., 2009)

– Property: ∀w ∈ R
p, and ∀J ⊂ V , if minj∈J |wj| > maxj∈Jc |wj|,

then Ω(w) = ΩJ(wJ) + ΩJ(wJc)

• Support recovery

– Extension of known sufficient condition (Zhao and Yu, 2006;

Negahban and Wainwright, 2008)

• High-dimensional inference

– Extension of known sufficient condition (Bickel et al., 2009)

– Matches with analysis of Negahban et al. (2009) for common cases
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– Unified analysis and algorithms



Conclusion

• Structured sparsity through submodular functions

– Many applications (image, audio, text, etc.)

– Unified analysis and algorithms

• On-going work on structured sparsity

– Extension to symmetric submodular functions (Bach, 2010a)

∗ Shaping all level sets {w = α}, α ∈ R, rather than only α = 0

– Norm design beyond submodular functions

– Links with greedy methods (Haupt and Nowak, 2006; Huang et al.,

2009)

– Extensions to matrices
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Selection of contiguous patterns in a sequence

• G is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern

•
∑

G∈G ‖wG‖∞ ⇒ F (A) = p− 2 + Range(A) if A 6= ∅, F (∅) = 0

– Jump from 0 to p− 1: tends to include all variables simultaneously

– Add ν|A| to smooth the kink: all sparsity patterns are possible

– Contiguous patterns are favored (and not forced)



Extensions of norms with overlapping groups

• Selection of rectangles (at any position) in a 2-D grids

• Hierarchies



Support recovery - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Notation

– ρ(J) = minB⊂Jc
F (B∪J)−F (J)

F (B) ∈ (0, 1] (for J stable)

– c(J) = supw∈Rp ΩJ(wJ)/‖wJ‖2 6 |J |1/2maxk∈V F ({k})

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Assume ν = minj,w∗
j 6=0 |w

∗
j | > 0

– Let Q = 1
nX

⊤X ∈ R
p×p. Assume κ = λmin(QJJ) > 0

– Assume that for η > 0, (ΩJ)∗[(ΩJ(Q
−1
JJQJj))j∈Jc] 6 1− η

– If λ 6
κν

2c(J), ŵ has support equal to J , with probability larger than

1− 3P
(

Ω∗(z) > ληρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q



Consistency - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Let Q = 1
nX

⊤X ∈ R
p×p.

– Assume that ∀∆ s.t. ΩJ(∆Jc) 6 3ΩJ(∆J), ∆
⊤Q∆ > κ‖∆J‖

2
2

– Then Ω(ŵ − w∗) 6
24c(J)2λ

κρ(J)2
and

1

n
‖Xŵ−Xw∗‖22 6

36c(J)2λ2

κρ(J)2

with probability larger than 1− P
(

Ω∗(z) > λρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q

• Concentration inequality (z normal with covariance matrix Q):

– T set of stable inseparable sets

– Then P (Ω∗(z) > t) 6
∑

A∈T 2|A| exp
(

− t2F (A)2/2

1⊤QAA1

)


