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Outline

e Introduction: Sparse methods for machine learning

— Need for structured sparsity: Going beyond the /1-norm

e Submodular functions

— Lovasz extension

e Structured sparsity through submodular functions

— Relaxation of the penalization of supports
— Examples
— Unified algorithms and analysis



Sparsity in supervised machine learning
e Observed data (z;,y,) E RP xR, i =1,...,n

e Regularized empirical risk minimization:

min —Z€ yi, w ' x;) + AQ(w)

weERP N

e Norm () to promote sparsity

— square loss + £1-norm = basis pursuit in signal processing (Chen
et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
— Proxy for interpretability

— Allow high-dimensional inference: | logp = O(n)

e Generalization to unsupervised learning

— dictionary learning/sparse PCA



Why structured sparsity?

e Interpretability

— Structured dictionary elements (Jenatton et al., 2009b)
— Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Modelling of text corpora (Jenatton et al., 2010)
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Why structured sparsity?

e Interpretability

— Structured dictionary elements (Jenatton et al., 2009b)
— Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

e Predictive performance

— When prior knowledge matches data

e Numerical efficiency

— Non-linear variable selection with 2P subsets (Bach, 2008)



¢1-norm = convex envelope of cardinality of support
o Let we RP. Let V ={1,...,p} and Supp(w) ={5 €V, w; #0}
e Cardinality of support: ||w|o = Card(Supp(w))

e Convex envelope = largest convex lower bound (see, e.g., Boyd and
Vandenberghe, 2004)
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e /1-norm = convex envelope of {y-quasi-norm on the ¢ -ball [—1, 1P



Submodular functions (Fujishige, 2005; Bach, 2010b)

o [':2Y — R is submodular if and only if

VA,BCV, F(A)+F(B)>F(ANnB)+ F(AUB)
& VekeV, Aw— F(AU{k})— F(A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010b)

o [':2V — R is submodular if and only if

VA,BCV, F(A)+F(B)>F(AnB)+ F(AUB)
& VekeV, Aw— F(AU{k})— F(A) is non-increasing

e Intuition 1: defined like concave functions ( “diminishing returns”)

— Example: F: A~ g(Card(A)) is submodular if g is concave

e Intuition 2: behave like convex functions

— Polynomial-time minimization, conjugacy theory

e Used in several areas of signal processing and machine learning

— Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
— Optimal design (Krause and Guestrin, 2005)



Submodular functions - Lovasz extension

e Given any set-function F' and w such that w;, > --- > w; , define:
p
f(w) — ijk[F({]lv SRR 7]k}) _ F({]lv SRR 7j7€—1})]
k=1

— If w=14, f(w) = F(A) = extension from {0,1}” to RP
— f is piecewise affine and positively homogeneous

e F'is submodular if and only if f is convex

— Minimizing f(w) on w € [0, 1]P equivalent to minimizing F on 2"



Submodular functions and structured sparsity

o Let I': 2" — R be a non-decreasing submodular set-function

e Proposition: the convex envelope of © : w — F(Supp(w)) on the
lso-ball is 0 : w — f(|lw]) where f is the Lovasz extension of F



Submodular functions and structured sparsity

o Let I': 2" — R be a non-decreasing submodular set-function

e Proposition: the convex envelope of © : w — F(Supp(w)) on the
lso-ball is © : w — f(|lw]) where f is the Lovasz extension of F

e Sparsity-inducing properties: () is a polyhedral norm

>

(0,1)/F({2}) (1,1)/F({1,2})

Y
Y

>

(1,0)/F({1})

— Aifstableif forall B> A B# A= F(B) > F(A)
— With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

F(A) = [4] F(A) = min{|A|, 1} F(A) = |A]\/?
Q(w) = [Jwly Q(w) = ||w||so all possible extreme points

F(A) = 1ian{1,2,3) 20}
+1ran{2,3120} T 1{an(3}£0}
Q(w) = ||[w||oo + [[wiz,3y]]cc + |ws]

F(A) = 1ianiy2oy + liange,3120)
Q(w) = |wi] + w2330



Submodular functions and structured sparsity
Examples

e From (w) to F(A): provides new insights into existing norms

— Grouped norms with overlapping groups (Jenatton et al., 2009a)

Qw) = Y [wello

— l1-fo, norm =- sparsity at the group level
— Some wg's are set to zero: Supp(w)® = Jzcqy G for some H C G



Submodular functions and structured sparsity
Examples

e From (w) to F(A): provides new insights into existing norms

— Grouped norms with overlapping groups (Jenatton et al., 2009a)

Qw) = Y [wello

— l1-fo, norm =- sparsity at the group level
— Some wg's are set to zero: Supp(w)® = Jzcqy G for some H C G

e Associated submodular function
F(A) = Card({G cg, GNA# @})

— Justification not only limited to allowed sparsity patterns
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Examples
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Submodular functions and structured sparsity
Examples

e From (w) to F(A): provides new insights into existing norms

— Grouped norms with overlapping groups (Jenatton et al., 2009a)

Qw) = fwelle = F(A)=Card({Geg, GNA+#o})

e From F(A) to Q(w): provides new sparsity-inducing norms

— F(A) = g(Card(A)) = € is a combination of order statistics
— Non-factorial priors for supervised learning: () depends on the
eigenvalues of X ; X4 and not simply on the cardinality of A



e Selection of subset A from design matrix X € R"*P

Non-factorial priors for supervised learning

e Frequentist analysis (Mallow's Cp): tr X ; X A(X 1 X4+ A)7}

— Not submodular

e Bayesian analysis (marginal likelihood): logdet(X ; X 4 + A\I)

— Submodular (also true for tr(X | X 4)'/?)

P n k submod. | ¢5 vs. submod. /; vs. submod. greedy vs. submod.
120 120 80 | 40.8 = 0.8 26 £ 0.5 0.6 = 0.0 21.8 £ 0.9
120 120 40 | 35.9 = 0.8 24 £ 0.4 0.3 0.0 15.8 = 1.0
120 120 20 | 29.0 = 1.0 9.4 + 0.5 -0.1 £ 0.0 6.7 £ 0.9
120 120 10 | 204 = 1.0 17.5 = 0.5 -0.2 £0.0 -2.8 0.8
120 20 20| 494+ 2.0 0.4 £+ 0.5 2.2 £ 0.8 23.5 £ 2.1
120 20 10 | 49.2 £ 2.0 0.0 £0.6 1.0 £ 0.8 20.3 + 2.6
120 20 6 | 435+ 2.0 3.5+ 0.8 0.9 +£ 0.6 24.4 + 3.0
120 20 4 |410=x21 4.8 + 0.7 -1.3+05 25.1 £ 3.5




Unified optimization algorithms

e Polyhedral norm with O(3P) extreme points

— Not suitable to linear programming toolboxes

e Subgradient (w — Q(w) non-differentiable)

— subgradient may be obtained in polynomial time =- too slow



Unified optimization algorithms

e Polyhedral norm with O(3P) extreme points

— Not suitable to linear programming toolboxes

e Subgradient (w — Q(w) non-differentiable)

— subgradient may be obtained in polynomial time =- too slow

e Proximal methods (e.g., Beck and Teboulle, 2009)
— mingere L(y, Xw) + AQ(w): differentiable 4+ non-differentiable
— Efficient when (P) : ming,epe 2]|w — v[|3 + AQ(w) is “easy”

e Proposition: (P) is equivalent to Elér‘} AF(A) = > icalvs| with

minimum-norm-point algorithm

— No complexity bounds, but empirically O(p?)
— Faster algorithm for special case: poster T24 (Mairal et al., 2010)



Comparison of optimization algorithms
e Synthetic example with p = 1000 and F(A) = |A|'/?
e ISTA: proximal method

e FISTA: accelerated variant (Beck and Teboulle, 2009)

10° @ . —»— fista
—O—ista

—B— subgradient

f(w)—min(f)

0 20 40 60
time (seconds)



Unified theoretical analysis

e Decomposability

— Key to theoretical analysis (Negahban et al., 2009)
— Property: Vw € R?, and VJ C V, if min ey |w;| = max,e e |w,|,
then Q(w) = Qs (wy) + Q7 (wye)
e Support recovery
— Extension of known sufficient condition (Zhao and Yu, 2006;
Negahban and Wainwright, 2008)

e High-dimensional inference

— Extension of known sufficient condition (Bickel et al., 2009)
— Matches with analysis of Negahban et al. (2009) for common cases



Conclusion

e Structured sparsity through submodular functions

— Many applications (image, audio, text, etc.)
— Unified analysis and algorithms



Conclusion

e Structured sparsity through submodular functions

— Many applications (image, audio, text, etc.)
— Unified analysis and algorithms

e On-going work on structured sparsity

— Extension to symmetric submodular functions (Bach, 2010a)

+ Shaping all level sets {w = a}, a € R, rather than only @ =0
— Norm design beyond submodular functions
— Links with greedy methods (Haupt and Nowak, 2006; Huang et al.,

2009)
— Extensions to matrices
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Structured sparse PCA (Jenatton et al., 2009b)
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Structured sparse PCA (Jenatton et al., 2009b)
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e Enforce selection of convex nonzero patterns =- robustness to
occlusion in face identification



Selection of contiguous patterns in a sequence

in

e ( is the set of blue groups: any union of blue groups set to zero
leads to the selection of a contiguous pattern

> ceollwgllee = F(A)=p—2+ Range(A) if A# 3, F(9)=0

— Jump from 0 to p — 1: tends to include all variables simultaneously
— Add v|A| to smooth the kink: all sparsity patterns are possible
— Contiguous patterns are favored (and not forced)



Extensions of norms with overlapping groups

A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

S E E S S EE S S S S EE S ...y,

(at any position) in a 2-D grids

S E S S EE S EE S S S EE S ...y,

e Hierarchies

e Selection of rectangles



Support recovery - min,ere 5-[ly — Xwl3 + A2 (w)

e Notation

— p(J) = mingc e “ESIT € (0,1] (for J stable)

— c(J) = supycpr Qs (wy)/|wyll2 < [TV ? maxpev F({k})

e Proposition

— Assume y = Xw* + o¢, with e ~ N (0, 1)

— J = smallest stable set containing the support of w*
— Assume v = min x4 wi| >0

— Let ) = %XTX € RP*P. Assume kK = Apin(Qy7) > 0

— Assume that for n > 0, | (Q7)*[(2,(Q;;Q1;))jes] <1 -7
—If A<

w has support equal to J, with probability larger than
— z Is a multivariate normal with covariance matrix ()

X 26 (J)




Consistency - min,crr 5-|ly — Xwl||3 + A2 (w)

e Proposition

— Assume y = Xw* + o¢, with e ~ N (0, 1)

— J = smallest stable set containing the support of w*
— Let Q) = %XTX c RP*P,
— Assume that VA s.t. Q7(Aje) <3Q5(A)), ATQA > k||Ay|3

— Then | Q(w — w™) <

24c(J)*\

rp(J)?

and

1
|| X - X} <

36¢(J)2 N\

kp(J)?

with probability larger than 1 — P(Q*(z) > /\p(iz\/ﬁ)
— 2z iIs a multivariate normal with covariance matrix ()

e Concentration inequality (z normal with covariance matrix Q):

— T set of stable inseparable sets

— Then P(Q*(z) > t) < ZA6T2|A| exp ( _ 75217(14)2/2)




