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Fig. 2. Frequency histogams (0.5-sec bins)
of two units (A and B) in prefrontal cortex
during five trials with 18-second delays.
Cue presentation periods marked by hori-
zontal lines. Arrows mark the lifting of the
blind and unlocking of doors which termi-
nate the delay and immediately precede
the animal's response. The two lower ex-
cerpts from the unit at left (A) represent
tests of stereo tape-recorded cries of mon-
keys at the time of their daily feeding,
played back to the experimental animal by
means of overhead loudspeakers.

Each door allows the animal to reach
one of the objects by using the cor-
responding hand. Between test trials the
doors remain locked and a sliding blind
blocks the view of the objects. A trial
is initiated by the lifting of the blind,
after which a piece of apple is placed
in a small well under one of the ob-
jects in full view of the animal. The
blind is lowered immediately there-
after, thus terminating the "cue"
period.
A period of delay ensues, at the end

of which the doors are unlocked and
the blind lifted. The animal is thus
permitted the choice of one object. If
the correct ("baited") object is chosen,
the animal retrieves the reward. If the
other is chosen, the trial is terminated
by relocking the doors, showing the
reward to the animal, and lowering the
blind. The position of the reward is
changed in random order from trial to
trial. Throughout the procedure the
monkey can be observed by the ex-
perimenter throuLgh a one-way vision
screen.

After having been trained to cor-
rect performance on delays of at least
15 seconds in duLration, the animals
were surgically prepared for chronic
single-unit recording of action poten-
tials by means of roving metal micro-
electrodes. This was accomplished by
use of a method previously described
(4), somewhat modified for application
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to the monkey. Unit discharges were
extracellularly recorded in the pre-
frontal cortex (area FD of von Bonin
and Bailey) (5), inCluLding the banks
of the sulICUs principalis, and in the
nucleuLs medialis dorsalis of the thala-
mus (MD), mainly in its parvocellu-
lar region. Unit records were taken
during intertrial periods of at least 45
seconds in order to establish baseline
levels of spontaneouLs firing and during
test trials with delays of durations be-
tween 15 and 60 seconds. The perform-
ance of all the animals was nearly 100
percent correct, partiCLularly at delays
in the 15- to 30-second range, which
were the ones most often used. Electro-
lytic tisstue marks, made by small cur-
rents at various points along the micro-
electrode tracts, permitted histological
determination of unit locations.

Almost all the uinits investigated (57
in MD, 110 in prefrontal cortex)
showed rather irregular patterns of
spontaneous firing while the animal was
at rest during intertrial periods. The
MD units generally displayed higher
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frequencies of firing than the cor-
tical units did and, similar to units in
other thalamic nuclei, a tendency to dis-
charge in periodic grouLps or bLursts of
action potentials (6).

In the course of delayed response
trials the majority of units (58 percent
of those in MD, 65 percent in pre-
frontal cortex) increased their spike
activity to levels higher thatn those
prevalent in intertrial periods. Some
uLnits exhibited a higher discharge rate
dulring cue presentation, others during
the delay, atid still others duLring both
cue anId delay periods (Figs. I and 2).
The magnitude of the activation varied
sidlely betvseen different units, some
reaching discharge levels more than
tenfold higher tha.n the spontaneouLs
discharge level. Increased firing was in
some uinits preceded by an inhibitory
phase covering the beginning or the en-
tirety of the cue presentation period.
This inhibition was most conspicuLoLus
in ulnits sho\ ing maximum discharge
during the delay (Fig. 3). In some de-
lav -activa;Ited uinits the increased firing
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Fig. 3. Firing of a prefrontal cortex unit in five consecutive trials with delays of 32, 32, 32, 67, and 65 seconds, respectively, from
top to bottom. Spikes are represented by standard vertical lines in a graphic display obtained by a compLuter method. Event indica-
tors as in Fig. 2.
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Problem: Time-invariant 
Activity is rare

Can time-variant neuronal  activity 
represent time invariant percepts?

Fi
ri

ng
 r

at
e

Time

Traditional answer: No!
Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

 = a1 ×         + a2 ×         + a3 ×         + a4 ×        +...

Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

 = a1 ×         + a2 ×         + a3 ×         + a4 ×        +...

s

= ×

D a

4
8
6
3

1
3

s = Da

Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

 = a1 ×         + a2 ×         + a3 ×         + a4 ×        +...

s

= ×

D a

Persistent percept: ds
dt

= 0

4
8
6
3

1
3

s = Da

Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

 = a1 ×         + a2 ×         + a3 ×         + a4 ×        +...

s

= ×

D a

Persistent percept: ds
dt

= 0

4
8
6
3

1
3

s = Da

=⇒

Monday, December 20, 2010



Linear encoding with orth. basis: 
persistent percepts    persistent activity

 = a1 ×         + a2 ×         + a3 ×         + a4 ×        +...

s

= ×

D a

da

dt
= 0Persistent activity:Persistent percept: ds

dt
= 0

4
8
6
3

1
3

s = Da

=⇒

Monday, December 20, 2010



Thalamus-Cortex Divergence

Thalamus
(LGN)

Monday, December 20, 2010



Thalamus-Cortex Divergence
Input structure to Cortex is the Thalamus

Thalamus
(LGN)

Monday, December 20, 2010



Thalamus-Cortex Divergence
Input structure to Cortex is the Thalamus

Number of cortical neurons much greater than the 
number of thalamic input neurons

Thalamus
(LGN) Cortex (V1)

Cortex uses a non-orthogonal (over-complete) representation
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Time-variant neuronal activity can represent a time 
invariant percept
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ṡ = Dȧ

ȧ = −a+ La

s = Da

= D(−a+ La)= 0

D = DL

L = I

Da = DLa

Linear encoding

Rate dynamics

If to hold for all a

Trivial solution
Solutions

Persistency

s: stimulus, a: activity
D: dictionary (feature vectors), L: lateral connections
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We pick the most economic solution, in terms of 
the resources taken up by synapses

Sparsity

{

Reconstruction
Error

{
D = DL

=D D
L

min(L) :
�
(D −DL)2 + λ|L|1

�

Monday, December 20, 2010



a1

a2a3

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Monday, December 20, 2010



D = DL a1

a2a3

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Monday, December 20, 2010



D = DL a1

a2a3

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Monday, December 20, 2010



D = DL a1

a2a3

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Sum of outgoing synapses 
times post-syn. receptive 
field equals neuron’s own 

receptive field
Monday, December 20, 2010



D = DL a1

a2a3

a1

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Sum of outgoing synapses 
times post-syn. receptive 
field equals neuron’s own 

receptive field
Monday, December 20, 2010



D = DL a1

a2a3

-a2

-a3
a1

Neurons compensate for their changing 
representation by modifying post-

synaptic neuronal activity 

Sum of outgoing synapses 
times post-syn. receptive 
field equals neuron’s own 

receptive field
Monday, December 20, 2010



D = DL

REceptive FIeld RE-combination (REFIRE) 
guarantees persistent percepts

Sum of outgoing synapses 
times post-syn. receptive 
field equals neuron’s own 

receptive field
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REFIRE with V1 receptive fields

D = DL

= + + + ...+

Receptive fields after:
Olshausen and Field, 1997

L21 L31 L41 L51=
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Song, Sjostrom, Reigl, Nelson, Chklovskii (2005)
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Synaptic weight distribution  
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Song, Sjostrom, Reigl, Nelson, Chklovskii (2005)

Experiment Model
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Network Motifs match Experiments

pp Precip

In cortex and in REFIRE network: Precip  >  p * p

Over expression of reciprocal motifs

2 Neuron motifs:

3 Neuron motifs:

A B A B A B
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Summary

Can  time-variant neuronal  activity represent 
time invariant percepts?

Yes. But not in an orthogonal basis!

We propose a specific form of a network that 
supports time invariant percepts with time-
variant neuronal activity: REFIRE network

This network qualitatively matches known 
statistical properties of cortical networks
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and thank you for your attention!

Monday, December 20, 2010



Poster: T9

druckmanns@janelia.hhmi.org
Monday, December 20, 2010

mailto:druckmanns@janelia.hhmi.org
mailto:druckmanns@janelia.hhmi.org


Eigenvalues

Monday, December 20, 2010



Similar Orientations, More 
Connections

Monday, December 20, 2010



Similar Orientations, More 
Connections

Monday, December 20, 2010



Similar Orientations, More 
Connections

Monday, December 20, 2010



Similar Orientations, More 
Connections

Monday, December 20, 2010



Similar Orientations, More 
Connections

Monday, December 20, 2010



Similar Orientations, More 
Connections
∆

Monday, December 20, 2010



Similar Orientations, More 
Connections
∆

Monday, December 20, 2010



Similar Orientations, More 
Connections
∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections
∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆

?

Monday, December 20, 2010



Similar Orientations, More 
Connections

Youssef et al. (1999)

∆

∆
∆0 90

?

Monday, December 20, 2010



Persistence across Cortex

Monday, December 20, 2010



Persistence across Cortex

Hernandez, alii, et Romo (2010)
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