Neural Networks Supporting Persistent Percepts

Shaul Druckmann and Mitya Chklovskii Janelia Farm Research Campus

NIPS 2010

Working Memory persistent representation from transient stimuli

Working Memory persistent representation from transient stimuli

Brody, alii, et Romo, 2003

Brody, alii, et Romo, 2003

Brody, alii, et Romo, 2003

Can time-variant neuronal activity represent time invariant percepts? Traditional answer: No! Linear encoding with orth. basis: persistent percepts -> persistent activity

Linear encoding with orth. basis: persistent percepts \rightarrow persistent activity

Linear encoding with orth. basis: persistent percepts \rightarrow persistent activity

Linear encoding with orth. basis: persistent percepts \rightarrow persistent activity

Persistent percept: $\frac{ds}{dt} = 0$

Linear encoding with orth. basis: persistent percepts \rightarrow persistent activity

Linear encoding with orth. basis: persistent percepts \rightarrow persistent activity

dt

Thalamus-Cortex Divergence

Thalamus (LGN)

Thalamus-Cortex Divergence

Input structure to Cortex is the Thalamus

Thalamus (LGN)

Thalamus-Cortex Divergence

Input structure to Cortex is the Thalamus

Number of cortical neurons much greater than the number of thalamic input neurons

Cortex uses a non-orthogonal (over-complete) representation

Linear Encoding in Overcomplete Representation?

Persistent percept: $\frac{ds}{dt} = 0 \implies$

Linear Encoding in Overcomplete Representation?

Stimulus dimension: 2

Number of neurons (activity dimension): 3

Stimulus dimension: 2

Number of neurons (activity dimension): 3

invariant percept

Lateral connectivity maintains persistency

s: stimulus, a: activity D: dictionary (feature vectors), L: lateral connections

Linear encoding

s = Da $\dot{a} = -a + La$

Linear encoding Rate dynamics

s = Da $\dot{a} = -a + La$ $\dot{s} = D\dot{a} = 0 = D(-a + La)$

Linear encoding Rate dynamics

Persistency

s = Da Linear encoding $\dot{a} = -a + La$ Rate dynamics $\dot{s} = D\dot{a} = 0 = D(-a + La)$ Persistency Da = DLa If to hold for all a

s = Da Linear encoding $\dot{a} = -a + La$ Rate dynamics $\dot{s} = D\dot{a} = 0 = D(-a + La)$ Persistency Da = DLa If to hold for all a D = DL Family of Solutions

s = DaLinear encoding $\dot{a} = -a + La$ Rate dynamics $\dot{s} = D\dot{a} = 0 = D(-a + La)$ Persistency Da = DLaIf to hold for all a D = DLFamily of Solutions L = ITrivial solution

s = Da $\dot{a} = -a + La$

Linear encoding Rate dynamics

D = DL

Family of Solutions

D = DL

Entries in L represent synaptic connections

Entries in L represent synaptic connections

We pick the most economic solution, in terms of the resources taken up by synapses

Entries in L represent synaptic connections

We pick the most economic solution, in terms of the resources taken up by synapses

$$min_{(L)} : \left[(\underline{D - DL})^2 + \underline{\lambda |L|_1} \right]$$

Reconstruction Sparsity
Error

DI

$$D = D L$$

D = DL

aı

a3

8.2

D = DL

aı

a.2

a3

D = DL

 a_1

aı

a.2

a3

D = DL

-**a**3

 a_1

aı

a2

a3

REceptive FIeld RE-combination (REFIRE) guarantees persistent percepts

D = DL

 L_{31}

+

 $L_{21} +$

Receptive fields after: Olshausen and Field, 1997

L51

Network Structure

Network Structure

Numerical validation: Percepts are Persistent

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Neuron 6

Network

Synaptic weight distribution matches Experiments

Synaptic weight distribution matches Experiments

Song, Sjostrom, Reigl, Nelson, Chklovskii (2005)

Synaptic weight distribution matches Experiments

Song, Sjostrom, Reigl, Nelson, Chklovskii (2005)

Network Motifs match Experiments

Network Motifs match Experiments

2 Neuron motifs:

Network Motifs match Experiments

2 Neuron motifs:

2 Neuron motifs:

In cortex and in REFIRE network: $P_{recip} > p * p$

2 Neuron motifs:

In cortex and in REFIRE network: $P_{recip} > p * p$

3 Neuron motifs:

2 Neuron motifs:

In cortex and in REFIRE network: $P_{recip} > p * p$

3 Neuron motifs:

2 Neuron motifs:

In cortex and in REFIRE network: $P_{recip} > p * p$

3 Neuron motifs:

Over expression of reciprocal motifs

Can time-variant neuronal activity represent time invariant percepts?

Can time-variant neuronal activity represent time invariant percepts?

Yes. But not in an orthogonal basis!

Summary

Can time-variant neuronal activity represent time invariant percepts?

Yes. But not in an orthogonal basis!

We propose a specific form of a network that supports time invariant percepts with timevariant neuronal activity: REFIRE network

Summary

Can time-variant neuronal activity represent time invariant percepts?

Yes. But not in an orthogonal basis!

We propose a specific form of a network that supports time invariant percepts with timevariant neuronal activity: REFIRE network

This network qualitatively matches known statistical properties of cortical networks

Thanks

Mitya Chklovskii

Thanks

Mitya Chklovskii

Shiv Vitaladevuni, Tao Hu, William Katz, Juan Nunez-Iglesias, Arjun Bharioke, Anatoli Grinspan and Lav Varshney

Frank Midgley

and thank you for your attention!

Poster: T9

druckmanns@janelia.hhmi.org

Eigenvalues

Youssef et al. (1999)

Youssef et al. (1999)

Youssef et al. (1999)

Youssef et al. (1999)

Δ

90

Persistence across Cortex

Persistence across Cortex

Hernandez, alii, et Romo (2010)