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Traditional Explanation:
Constant Percept by Constant Activity

Firing rate
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Problem: Time-invariant
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Can time-variant neuronal activity
represent time invariant percepts?

Traditional answer:
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Thalamus-Cortex Divergence

Input structure to Cortex is the Thalamus

Number of cortical neurons much greater than the
number of thalamic input neurons

Thalamus

(LGN) ® Cortex (V1)

Cortex uses a non-orthogonal (over-complete) representation



Linear Encoding in
Overcomplete Representation®
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Over-complete
Representation 1s Non-unique

Stimulus dimension: 2

Number of neurons (activity dimension): 3
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Meuronal activity

MNeuronal representation
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Freedom in Representation
in an Over-complete Frame

Firing rate aa
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Time-variant neuronal activity can represent a time
invariant percept
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Lateral connectivity maintains persistency
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Lateral connectivity maintains persistency

T— Linear encoding
a=—a-+ La Rate dynamics
$s=Da =0= D(—a+ La) Persistency
Da = DLa If to hold for all a
1) = 1)E Family of Solutions
b= Trivial solution

S: stimulus, a: activity
D: dictionary (feature vectors), L: lateral connections




Lateral connectivity maintains persistency

— g Linear encoding
— —a+ La Rate dynamics
)= 1D Family of Solutions

S: stimulus, a: activity
D: dictionary (feature vectors), L: lateral connections










Our Solution: sparse
solution

Entries in L represent synaptic connections
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Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity



Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity



Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity




Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity

Sum of outgoing synapses T
times post-syn. receptive /
field equals neuron’s own

receptive field



Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity

a1
Sum of outgoing synapses T
times post-syn. receptive /
field equals neuron’s own
receptive field



Neurons compensate for their changing
representation by modifying post-
synaptic neuronal activity

a1
Sum of outgoing synapses T
times post-syn. receptive /
field equals neuron’s own
receptive field



REceptive Fleld RE-combination (REFIRE)
guarantees persistent percepts

Sum of outgoing synapses

times post-syn. receptive

field equals neuron’s own
receptive field






REFIRE with V1 receptive fields

Receptive fields after:
Olshausen and Field, 1997
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Receptive fields after:
Olshausen and Field, 1997
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Network Structure




Numerical validation:
Percepts are Persistent
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Synaptic weight distribution
matches ExXperiments
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Synaptic weight distribution
matches ExXperiments
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Network Motifs match Experiments
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summary

Can time-variant neuronal activity represent
time invariant percepts?

Yes. But not in an orthogonal basis!

We propose a specific form of a network that
supports time invariant percepts with time-
variant neuronal activity: REFIRE network




summary

Can time-variant neuronal activity represent
time invariant percepts?

Yes. But not in an orthogonal basis!

We propose a specific form of a network that
supports time invariant percepts with time-
variant neuronal activity: REFIRE network

This network qualitatively matches known
statistical properties of cortical networks
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Similar Orientations, More
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Persistence across Cortex




Persistence across Cortex

Hernandez, alii, et Romo (2010)



