Learning to combine foveal glimpses with a third-order Boltzmann machine

Hugo Larochelle and Geoffrey Hinton University of Toronto

Introduction

- Human vision has the two following characteristics
 - ★ Uses an intelligent "fixation point strategy"
 - * Based on a retina with variable spatial resolution

Foveated images

Introduction

- Human vision has the two following characteristics
 - ★ Uses an intelligent "fixation point strategy"
 - * Based on a retina with variable spatial resolution

Foveated images

 Many vision systems are instead based on a uniform resolution retina and "fixate everywhere"

Components of the system

- Recognition component (RBM)
- Attentional component (controller)

Multi-fixation RBM

Multi-fixation RBM

Multi-fixation RBM

Components of the system

- Recognition component (RBM)
- Attentional component (controller)

Summary vector \mathbf{S}_k

previous fixation
 positions

$$\star p(h_j = 1 | \mathbf{x}_{1:k-1})$$

Summary vector \mathbf{S}_k

- previous fixation
 positions
- $\star p(h_j = 1 | \mathbf{x}_{1:k-1})$

Summary vector \mathbf{S}_k

previous fixation
 positions

$$\star p(h_j = 1 | \mathbf{x}_{1:k-1}) i_k$$

►
$$f(\mathbf{s}_k, (i_k, j_k))$$

 $||$
 $\mathbf{v}^{(i_k, j_k)^{\top}} \mathbf{s}_k$

• Training objective of scoring function: $|f(\mathbf{s}_k, (i_k, j_k)) - \log p(\mathbf{y} | \mathbf{x}_{1:k-1}, \mathbf{x}_k)|$

- Training objective of scoring function: $|f(\mathbf{s}_k, (i_k, j_k)) - \log p(\mathbf{y}|\mathbf{x}_{1:k-1}, \mathbf{x}_k)|$
- Controller distribution: $\exp(f(\mathbf{s}_k, (i_k, j_k)))/Z(\mathbf{s}_k)$

Related work

- Alpaydin (NIPS 1996):
 - ***** neural net accumulating fixations
 - ★ based on a fixed saliency map
- Kanan and Cottrell (CVPR 2010):
 ★ learned saliency map
 - * non-parametric nearest neighbor recognition
- Our work:
 - joint training of a recognition component (RBM) and an attentional component (controller)
 - explicitly avoids looking everywhere (unlike saliency maps on high resolution image)

Experiments

- Evaluating the Multi-fixation RBM
- Evaluating the controller
- Evaluating the whole system

Experiment I: MNIST (subset) with 4 fixations

Model	Error
NNet+RBM [22]	3.17% (± 0.15)
SVM [21]	$3.03\% (\pm 0.15)$
Multi-fixation RBM	3.20% (+0.15)
(hybrid)	$3.2070 (\pm 0.13)$
Multi-fixation RBM	$2.76\% (\pm 0.14)$
(hybrid-sequential)	$2.7070(\pm 0.14)$

Experiment 2: Synthetic dataset

C = right

Experiment 2: Synthetic dataset

Experiment 3: Facial expression recognition

Experiment 3: Facial expression recognition

Experiment 3: Facial expression recognition

Full image + sequence of fixations

Individual glimpses

Conclusion

 Investigated a model for jointly learning a recognition and attentional component using a Boltzmann machine

- Future work:
 - ***** impact of retinal rep. on performance
 - ***** improvement to controller algorithm
 - ★ multitask learning

Thank you!