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Introduction
• Human vision has the two following characteristics

★ Uses an intelligent ‘‘fixation point strategy’’
★ Based on a retina with variable spatial resolution

• Many vision systems are 
instead based on a 
uniform resolution retina 
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How to look: retinal transformation

• Information from the input image is extracted 
based on a retinal transformation (‘‘glimpse’’)
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Figure 1: A: Illustration of the retinal transformation r(I, (i, j)). The center dot marks the pixel

at position (i, j) (pixels are drawn as dotted squares). B: examples of glimpses computed by the

retinal transformation, at different positions (visualized through reconstructions). C: Illustration of

the multi-fixation RBM.

To tackle these issues, we rely on a special type of restricted Boltzmann machine (RBM) with third-

order connections between visible units (the glimpses), hidden units (the accumulated features) and

position-dependent units which gate the connections between the visible and hidden units. We

describe approaches for training this model to jointly learn and accumulate useful features from the

image and control where these features should be extracted, and evaluate it on a synthetic dataset

and two image classification datasets.

2 Vision as a sequential process with retinal fixations

Throughout this work, we will assume the following problem framework. We are given a training

set of image and label pairs {(It, lt)}N
t=1 and the task is to predict the value of lt (e.g. a class label

lt ∈ {1, . . . , C}) given the associated image It
. The standard machine learning approach would

consist in extracting features from the whole image It
and from those directly learn to predict lt.

However, since we wish to incorporate the notion of fixation into our problem framework, we need

to introduce some constraints on how information from It
is acquired.

To achieve this, we require that information about an image I (removing the superscript t for sim-

plicity) must be acquired sequentially by fixating (or querying) the image at a series of K positions

[(i1, j1), . . . , (iK , jK)]. Given a position (ik, jk), which identifies a pixel I(ik, jk) in the image,

information in the neighborhood of that pixel is extracted through what we refer to as a retinal
transformation r(I, (ik, jk)). Much like the fovea of the human retina, this transformation extracts

high-resolution information (i.e. copies the value of the pixels) from the image only in the neigh-

borhood of pixel I(ik, jk). At the periphery of the retina, lower-resolution information is extracted

by averaging the values of pixels falling in small hexagonal regions of the image. The hexagons

are arranged into a spiral, with the size of the hexagons increasing with the distance from the center

(ik, jk) of the fixation
1
. All of the high-resolution and low-resolution information is then concate-

nated into a single vector given as output by r(I, (ik, jk)). An illustration of this retinal transforma-

tion is given in Figure 1. As a shorthand, we will use xk to refer to the glimpse given by the output

of the retinal transformation r(I, (ik, jk)).

3 A multi-fixation model

We now describe a system that can predict l from a few glimpses x1, . . . ,xK . We know that this

problem is solvable: [1] demonstrated that people can “see” a shape by combining information

from multiple glimpses through a hole that is much smaller than the whole shape. He called this

“anorthoscopic perception”. The shape information derived from each glimpse cannot just be added

1
A retina with approximately hexagonal pixels produced by a log conformal mapping centered on the cur-

rent fixation point has an interesting property: It is possible to use weight-sharing over scale and orientation

instead of translation, but we do not explore this here.
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Components of the system
• Recognition component (RBM)

• Attentional component (controller)
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Training objectives

Generative: = − log p(yt,xt
1:K)Cgen

Discriminative: = − log p(yt|xt
1:K)Cdisc

                                                               
                                                    

Hybrid-
sequential 

units, input units and implicit position units (one for each possible value of positions (ik, jk)). Con-

ditioned on the position units (which are assumed to be given), this model is still an RBM satisfying

the traditional conditional independence properties between the hidden and visible units.

For a given m×m grid of possible fixation positions, all W(ik,jk)
matrices contain m

2
HR parame-

ters where H is the number of hidden units and R is the size of the retinal transformation. To reduce

that number, we parametrize or factorize the W(ik,jk)
matrices as follows

W(ik,jk) = P diag(z(ik, jk)) F (7)

where F is R × D, P is D × H , z(ik, jk) is a (learned) vector associated to position (ik, jk) and

diag(a) is a matrix whose diagonal is the vector a. Hence, W(ik,jk)
is now an outer product of the

D lower-dimensional bases in F (“filters”) and P (“pooling”), gated by a position specific vector

z(ik, jk). Instead of learning a separate matrix W(ik,jk)
for each possible position, we now only

need to learn a separate vector z(ik, jk) for each position. Intuitively, the vector z(ik, jk) controls

which rows of F and columns of P are used to accumulate the glimpse at position (ik, jk) into the

hidden layer of the RBM. A similar factorization has been used by [8]. We emphasize that z(ik, jk)
is not stochastic but is a deterministic function of position (ik, jk), trained by backpropagation

of gradients from the multi-fixation RBM learning cost. In practice, we force the components of

z(ik, jk) to be in [0, 1]3. The multi-fixation RBM is illustrated in Figure 1.

4 Learning in the multi-fixation RBM

The multi-fixation RBM must learn to accumulate useful features from each glimpse, and it must

also learn a good policy for choosing the fixation points. We refer to these two goals as “learning

the what-where combination” and “learning where to look”.

4.1 Learning the what-where combination

For now, let’s assume that we are given the sequence of glimpses xt
1:K fed to the multi-fixation RBM

for each image It
. As suggested by [9], we can train the RBM to minimize the following hybrid cost

over each input xt
1:K and label l

t
:

Hybrid cost: Chybrid = − log p(yt|xt
1:K)− α log p(yt

,xt
1:K) (8)

where yt = elt . The first term in Chybrid is the discriminative cost and its gradient with respect to

the RBM parameters can be computed exactly, since p(yt|xt
1:K) can be computed exactly (see [9]

for more details on how to derive these gradients) . The second term is the generative cost and its

gradient can only be approximated. Contrastive Divergence [10] based on one full step of Gibbs

sampling provides a good enough approximation. The RBM is then trained by doing stochastic or

mini-batch gradient descent on the hybrid cost.

In [9], it was observed that there is typically a value of α which yields better performance than

using either discriminative or generative costs alone. Putting more emphasis on the discriminative

term ensures that more capacity is allocated to predicting the label values than to predicting each

pixel value, which is important because there are many more pixels than labels. The generative

term acts as a data-dependent regularizer that encourages the RBM to extract features that capture

the statistical structure of the input. This is a much better regularizer than the domain-independent

priors implemented by L1 or L2 regularization.

We can also take advantage of the following obvious fact: If the sequence xt
1:K is associated with a

particular target label yt
, then so are all the subsequences xt

1:k where k < K. Hence, we can also

train the multi-fixation RBM on these subsequences using the following “hybrid-sequential” cost:

Hybrid-sequential cost: Chybrid−seq =
K�

k=1

− log p(yt|xt
1:k)− α log p(yt

,xt
k|xt

1:k−1) (9)

where the second term, which corresponds to negative log-likelihoods under a so-called conditional

RBM [8], plays a similar role to the generative cost term of the hybrid cost and encourages the

3
This is done by setting z(ik, jk) = sigm(z̄(ik, jk)) and learning the unconstrained z̄(ik, jk) vectors

instead. We also use a learning rate 100 times larger for learning those parameters.

4

:

+αHybrid: Chybrid = Cdisc Cgen
Bouchard & 
Triggs, 2004
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• Given           fixations, where should the       one bek − 1 kth
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• Alpaydin (NIPS 1996): 
★ neural net accumulating fixations
★ based on a fixed saliency map

• Kanan and Cottrell (CVPR 2010): 
★ learned saliency map
★ non-parametric nearest neighbor recognition

• Our work:
★ joint training of a recognition component (RBM) 

and an attentional component (controller)
★ explicitly avoids looking everywhere (unlike saliency 

maps on high resolution image)

Related work



Experiments
• Evaluating the Multi-fixation RBM

• Evaluating the controller

• Evaluating the whole system



Experiment 1: 
MNIST (subset) with 4 fixationsPseudocode for training update

· compute s1 based on center of image

for k from 1 to K do
· sample (ik, jk) from pcontroller((ik, jk)|xt

1:k−1)
· compute xk = r(I, (ik, jk))
· update controller with a gradient step for error

|f(sk, (ik, jk))− log p(y|x1:k)|
if using hybrid-sequential cost then

· accumulate gradient on RBM parameters

of k
th

term in cost Chybrid−seq

end if
· compute sk+1

end for
if using hybrid-sequential cost then

· update RBM parameters based on accumulated

gradient of hybrid-sequential cost Chybrid−seq

else {using hybrid cost}
· update RBM based on gradient of hybrid cost Chybrid

end if

A

Experiment 1: MNIST with 4 fixations

Model Error

NNet+RBM [22] 3.17% (± 0.15)

SVM [21] 3.03% (± 0.15)

Multi-fixation RBM
3.20% (± 0.15)

(hybrid)

Multi-fixation RBM
2.76% (± 0.14)

(hybrid-sequential)

B

Figure 2: A: Pseudocode for the training update of the multi-fixation RBM, using either the hybrid

or hybrid-sequential cost. B: illustration of glimpses and results for experiment on MNIST.

there is a horizontal (positive class) or vertical (negative class) 3-pixel white bar somewhere near the

edge of a 15× 15 pixel image. At the center of the image is one of 8 visual symbols, indicating the

location of the bar. This symbol conveys no information about the class (the positive and negative

classes are equiprobable) but is necessary to identify where to fixate. Figure 3 shows positive and

negative examples. There are only 48 possible images and the model is trained on all of them (i.e.

we are measuring the capacity of the model to learn this problem perfectly). Since, as described

earlier, the input s1 of the controller contains information about the center of the image, only one

fixation decision by the controller suffices to solve this problem.

A multi-fixation RBM was trained jointly with a controller on this problem
6
, with only K = 1

fixation. When trained according to the hybrid cost of Equation 8 (α = 1), the model was able to

solve this problem perfectly without errors, i.e. the controller always proposes to fixate at the region

containing the white bar and the multi-fixation RBM always correctly recognizes the orientation

of the bar. However, using only the discriminative cost (α = 0), it is never able to solve it (i.e.

has an error rate of 50%), even if trained twice as long as for α = 1. This is because the purely

discriminative RBM never learns meaningful features for the non-discriminative visual symbol at

the center, which are essential for the controller to be able to predict the position of the white bar.

6.3 Experiment 3: facial expression recognition experiment

Finally, we applied the multi-fixation RBM with its controller to a problem of facial expression

recognition. The dataset [23] consists in 4178 images of size 100 × 100, depicting people acting

one of seven facial expressions (anger, disgust, fear, happiness, sadness, surprise and neutral, see

Figure 3 for examples). Five training, validation and test set splits where generated, ensuring that

all images of a given person can only be found in one of the three sets. Pixel values of the images

were scaled to the [−0.5, 0.5] interval.

A multi-fixation RBM learned jointly with a controller was trained on this problem
7
, with K = 6

fixations. Possible fixation positions were layed out every 10 pixels on a 7× 7 grid, with the top-left

6
Hyper-parameters: H = 500, D = 250. Stochastic gradient descent was used with a learning rate of

0.001. The controller had the choice of 9 possible fixation positions, each covering either one of the eight

regions where bars can be found or the middle region where the visual symbol is. The retinal transformation

was such that information from only one of those regions is transferred.
7
Hyper-parameters: H = 250, D = 250. Stochastic gradient descent was used with a learning rate of 0.01.

The RBM was trained with the hybrid cost of Equation 8 with α = 0.001 (the hybrid cost was preferred mainly

because it is faster). Also, the matrix P was set to the identity matrix and only F was learned (this removed a

matrix multiplication and thus accelerated learning in the model, while still giving good results). The vectors

7
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Figure 3: A: positive and negative from the synthetic dataset of experiment 2. B: examples and

results for the facial expression recognition dataset.

position being at pixel (20, 20). The retinal transformation covered around 2000 pixels and didn’t

use a periphery
8

(all pixels were from the fovea). Moreover, glimpses were passed through a “pre-

processing” hidden layer of size 250, initialized by unsupervised training of an RBM with Gaussian

visible units (but without target units) on glimpses from the 7× 7 grid. During training of the multi-

fixation RBM, the discriminative part of its gradient was also passed through the preprocessing

hidden layer for fine-tuning of its parameters.

Results are reported in Figure 3, where the multi-fixation RBM is compared to an RBF kernel SVM

trained on the full images. The accuracy of the RBM is given after a varying number of fixations.

We can see that after 3 fixations (i.e. around 60% of the image) the multi-fixation RBM reaches

a performance that is statistically equivalent to that of the SVM (58.2 ± 1.5%) trained on the full

images. Training the SVM on a scaled-down version of the data (48 × 48 pixels) gives a similar

performance of 57.8% (±1.5%). At 5 fixations, the multi-fixation RBM now improves on the SVM,

and gets even better at 6 fixations, with an accuracy of 62.7% (±1.5%). Finally, we also computed

the performance of a linear SVM classifier trained on the concatenation of the hidden units from

a unique RBM with Gaussian visible units applied at all 7 × 7 positions (the same RBM used

for initializing the preprocessing layer of the multi-fixation RBM was used). This convolutional

approach, which requires 49 fixations, yields a performance of 61.2% (±1.5%), slightly worse but

statistically indistinguishable from the multi-fixation RBM which only required 6 fixations.

7 Conclusion
Human vision is a sequential sampling process in which only a fraction of the optic array is ever

processed at the highest resolution. Most computer vision work on object recognition ignores this

fact and can be viewed as modelling tachistoscopic recognition of very small objects that lie entirely

within the fovea. We have focused on the other extreme, i.e. recognizing objects by using multiple

task-specific fixations of a retina with few pixels, and obtained positive results. We believe that the

intelligent choice of fixation points and the integration of multiple glimpses will be essential for

making biologically inspired vision systems work well on large images.
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Figure 3: A: positive and negative from the synthetic dataset of experiment 2. B: examples and

results for the facial expression recognition dataset.

position being at pixel (20, 20). The retinal transformation covered around 2000 pixels and didn’t

use a periphery
8

(all pixels were from the fovea). Moreover, glimpses were passed through a “pre-

processing” hidden layer of size 250, initialized by unsupervised training of an RBM with Gaussian

visible units (but without target units) on glimpses from the 7× 7 grid. During training of the multi-

fixation RBM, the discriminative part of its gradient was also passed through the preprocessing

hidden layer for fine-tuning of its parameters.

Results are reported in Figure 3, where the multi-fixation RBM is compared to an RBF kernel SVM

trained on the full images. The accuracy of the RBM is given after a varying number of fixations.

We can see that after 3 fixations (i.e. around 60% of the image) the multi-fixation RBM reaches

a performance that is statistically equivalent to that of the SVM (58.2 ± 1.5%) trained on the full

images. Training the SVM on a scaled-down version of the data (48 × 48 pixels) gives a similar

performance of 57.8% (±1.5%). At 5 fixations, the multi-fixation RBM now improves on the SVM,

and gets even better at 6 fixations, with an accuracy of 62.7% (±1.5%). Finally, we also computed

the performance of a linear SVM classifier trained on the concatenation of the hidden units from

a unique RBM with Gaussian visible units applied at all 7 × 7 positions (the same RBM used

for initializing the preprocessing layer of the multi-fixation RBM was used). This convolutional

approach, which requires 49 fixations, yields a performance of 61.2% (±1.5%), slightly worse but

statistically indistinguishable from the multi-fixation RBM which only required 6 fixations.

7 Conclusion
Human vision is a sequential sampling process in which only a fraction of the optic array is ever

processed at the highest resolution. Most computer vision work on object recognition ignores this

fact and can be viewed as modelling tachistoscopic recognition of very small objects that lie entirely

within the fovea. We have focused on the other extreme, i.e. recognizing objects by using multiple

task-specific fixations of a retina with few pixels, and obtained positive results. We believe that the

intelligent choice of fixation points and the integration of multiple glimpses will be essential for

making biologically inspired vision systems work well on large images.
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processing” hidden layer of size 250, initialized by unsupervised training of an RBM with Gaussian

visible units (but without target units) on glimpses from the 7× 7 grid. During training of the multi-

fixation RBM, the discriminative part of its gradient was also passed through the preprocessing

hidden layer for fine-tuning of its parameters.

Results are reported in Figure 3, where the multi-fixation RBM is compared to an RBF kernel SVM

trained on the full images. The accuracy of the RBM is given after a varying number of fixations.

We can see that after 3 fixations (i.e. around 60% of the image) the multi-fixation RBM reaches

a performance that is statistically equivalent to that of the SVM (58.2 ± 1.5%) trained on the full

images. Training the SVM on a scaled-down version of the data (48 × 48 pixels) gives a similar

performance of 57.8% (±1.5%). At 5 fixations, the multi-fixation RBM now improves on the SVM,

and gets even better at 6 fixations, with an accuracy of 62.7% (±1.5%). Finally, we also computed

the performance of a linear SVM classifier trained on the concatenation of the hidden units from

a unique RBM with Gaussian visible units applied at all 7 × 7 positions (the same RBM used

for initializing the preprocessing layer of the multi-fixation RBM was used). This convolutional

approach, which requires 49 fixations, yields a performance of 61.2% (±1.5%), slightly worse but

statistically indistinguishable from the multi-fixation RBM which only required 6 fixations.

7 Conclusion
Human vision is a sequential sampling process in which only a fraction of the optic array is ever

processed at the highest resolution. Most computer vision work on object recognition ignores this

fact and can be viewed as modelling tachistoscopic recognition of very small objects that lie entirely

within the fovea. We have focused on the other extreme, i.e. recognizing objects by using multiple

task-specific fixations of a retina with few pixels, and obtained positive results. We believe that the

intelligent choice of fixation points and the integration of multiple glimpses will be essential for

making biologically inspired vision systems work well on large images.
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Figure 3: A: positive and negative from the synthetic dataset of experiment 2. B: examples and

results for the facial expression recognition dataset.

position being at pixel (20, 20). The retinal transformation covered around 2000 pixels and didn’t

use a periphery
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(all pixels were from the fovea). Moreover, glimpses were passed through a “pre-

processing” hidden layer of size 250, initialized by unsupervised training of an RBM with Gaussian

visible units (but without target units) on glimpses from the 7× 7 grid. During training of the multi-

fixation RBM, the discriminative part of its gradient was also passed through the preprocessing

hidden layer for fine-tuning of its parameters.

Results are reported in Figure 3, where the multi-fixation RBM is compared to an RBF kernel SVM

trained on the full images. The accuracy of the RBM is given after a varying number of fixations.

We can see that after 3 fixations (i.e. around 60% of the image) the multi-fixation RBM reaches
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Conclusion

• Investigated a model for jointly learning a 
recognition and attentional component 
using a Boltzmann machine

• Future work:
★ impact of retinal rep. on performance
★ improvement to controller algorithm
★ multitask learning



Thank you!


