# IDENTIFYING GRAPH-STRUCTURED ACTIVATION PATTERNS IN NETWORKS 

James Sharpnack ${ }^{1,2}$ Aarti Singh ${ }^{1}$<br>${ }^{1}$ Machine Learning Dept. CMU, Pittsburgh, PA<br>${ }^{2}$ Statistics Dept. CMU, Pittsburgh, PA

8 Dec. 2010

This work was supported in part by AFOSR grant FA9550-10-1-0382.

## Activation Patterns in Networks



1. Localizing router congestion
2. Detecting water contamination

## Normal Means Estimation

$\mathbf{x} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbf{x} \in\{0,1\}^{p}\right)$


## Normal Means Estimation

$\mathbf{x} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbf{x} \in\{0,1\}^{p}\right)$
$\mathbf{y}=\mathbf{x}+\zeta, \zeta \sim N\left(0, \sigma^{2} I_{p}\right)$


Task: reconstruct $\mathbf{x}$ from $\mathbf{y}$

## Structured Normal Means Estimation

$$
\mathbf{x} \in \mathbb{R}^{p}\left(\text { or } \mathbf{x} \in\{0,1\}^{p}\right)
$$



## Structured Normal Means Estimation

$$
\mathbf{x} \in \mathbb{R}^{p}\left(\text { or } \mathbf{x} \in\{0,1\}^{p}\right)
$$

Graph: $G=(V, E, W)$


## Structured Normal Means Estimation

Noisy observations


Task: reconstruct $\mathbf{x}$ from $\mathbf{y}$ exploiting dependencies (given by $G$ )

## Statistical Model

The Model
1 Graph: $G \sim \mathcal{G}_{p}$ with $p$ nodes.


## Statistical Model

## The Model

1 Graph: $G \sim \mathcal{G}_{p}$ with $p$ nodes.
2 Signal: $\mathbf{x} \sim f_{\mathrm{L}} d \nu$ with

$$
f_{L}(x) \propto e^{-x^{\top} L x}
$$

GGM: $\nu$ is Lebesgue $\left(\Sigma^{-1}=L\right)$ Using: $\nu$ is Counting
$L=D-W$
$\mathbf{x}^{T} L \mathbf{x}=\sum_{i \sim j} W_{i, j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}$


## Statistical Model

## The Model

1 Graph: $G \sim \mathcal{G}_{p}$ with $p$ nodes.
2 Signal: $\mathbf{x} \sim f_{\mathrm{L}} d \nu$ with

$$
f_{L}(x) \propto e^{-x^{\top} L x}
$$

GGM: $\nu$ is Lebesgue $\left(\Sigma^{-1}=L\right)$ Ising: $\nu$ is Counting
$L=D-W$
$\mathbf{x}^{T} L \mathbf{x}=\sum_{i \sim j} W_{i, j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}$
3 Observations: draw iid. noise $\zeta \sim N\left(0, \sigma^{2} I_{p}\right)$

$$
\mathbf{y}=\mathbf{x}+\zeta
$$

## Estimation of Graph-structured patterns

Bayes Optimal Rules:
Mean square error: posterior mean Hamming distance: posterior centroid 0/1-loss: posterior max (MAP)
\} hard to implement implementation via min-cut

Optimal estimator and risk have no closed form - analysis intractable computing posterior requires knowledge of signal parameters

## Estimation of Graph-Structured patterns

Bayes Optimal Rules:

Mean square error: posterior mean Hamming distance: posterior centroid 0/1-loss: posterior max (MAP)
\} hard to implement implementation via min-cut

Optimal estimator and risk have no closed form - analysis intractable computing posterior requires knowledge of signal parameters

Graph-based Regularization:
[Smola-Kondor '03, Belkin-Niyogi '04, Ando-Zhang '06]
Mainly justified in the embedded (manifold) setting results focus on importance of second eigenvalue of Laplacian

## Laplacian Eigenmaps Estimator

Define eigenvalue, eigenvector pairs $\left\{\lambda_{i}, u_{i}\right\}$ of Laplacian, $\mathbf{L}$, with $\lambda_{i} \leq \lambda_{i+1}$

$$
\text { Estimator of } \mathbf{x} \text { given } k \in\{1, \ldots, p\} \text { : }
$$

$$
\hat{\mathbf{x}}=U_{[k]} U_{[k]}^{T} \mathbf{y}=\sum_{i=1}^{k}\left(u_{i}^{T} \mathbf{y}\right) u_{i}
$$

1. Easy to analyze asymptotic risk
2. Easy to implement

## Laplacian Eigenmaps Estimator

Define eigenvalue, eigenvector pairs $\left\{\lambda_{i}, u_{i}\right\}$ of Laplacian, $\mathbf{L}$, with $\lambda_{i} \leq \lambda_{i+1}$

Estimator of $\mathbf{x}$ given $k \in\{1, \ldots, p\}$ :

$$
\hat{\mathbf{x}}=U_{[k]} U_{[k]}^{T} \mathbf{y}=\sum_{i=1}^{k}\left(u_{i}^{T} \mathbf{y}\right) u_{i}
$$

1. Easy to analyze asymptotic risk
2. Easy to implement
```
# 3 lines in R
L = graph.laplacian(g) # igraph package
U = eigen(L)$vectors
Xhat = U[,(p-k):p] %*% t(U[,(p-k):p]) %*% Y
```


## Laplacian Eigenmaps Estimator

Hierarchical Graph


Hierarchical L


Lattice L


Haar Wavelet


Fourier Basis


## Laplacian Eigenmaps Estimator

Network activation pattern: x


## Laplacian Eigenmaps Estimator

Noisy observations: $\mathbf{y}\left(\sigma^{2}=\frac{1}{2}\right)$


## Laplacian Eigenmaps Estimator

Noisy observations: $\mathbf{y}\left(\sigma^{2}=\frac{1}{2}\right)$ Eigenmaps estimator: $\hat{\mathbf{x}}(k=3)$


## Laplacian Eigenmaps Estimator

Large real-world graph ( $p=100$ )


## Laplacian Eigenmaps Estimator

Noisy observations: $\mathbf{y}\left(\sigma^{2}=\frac{4}{5}\right)$


## Laplacian Eigenmaps Estimator

Noisy observations: $\mathbf{y}\left(\sigma^{2}=\frac{4}{5}\right)$


Eigenmaps estimator: $\hat{\mathbf{x}}(k=10)$


## Laplacian Eigenmaps Estimator

Thresholded observations: $\mathbf{y}>\tau$


Thresholded eigenmaps estimator: $\hat{\mathbf{x}}>\tau$


## Big Picture

Consistent estimation: $R_{B}=\mathbb{E}_{\mathrm{x}} \frac{1}{p}\left\|\widehat{x}_{k}-\mathbf{x}\right\|^{2} \underset{p \rightarrow \infty}{\longrightarrow} 0$


## Big Picture

Consistent estimation: $R_{B}=\mathbb{E}_{\mathbf{x}} \frac{1}{p}\left\|\widehat{x}_{k}-\mathbf{x}\right\|^{2} \underset{p \rightarrow \infty}{\longrightarrow} 0$


Tolerable noise: $\sigma^{2}=o\left(p^{\gamma}\right) \Rightarrow$ consistent estimation
$\gamma$ depends on the network evolution model

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

$$
R_{B} \leq \text { concentration bound }+ \text { bias }+ \text { variance }
$$

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

$$
R_{B} \leq \text { concentration bound }+ \text { bias }+ \text { variance }
$$

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

$$
R_{B} \leq \text { concentration bound }+ \text { bias }+ \text { variance }
$$

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

$$
R_{B} \leq \text { concentration bound }+ \text { bias }+ \text { variance }
$$

## Main Result

## Theorem

Let $\mathbf{x}$ be drawn from the Ising with graph Laplacian $\mathbf{L}$.

$$
R_{B}:=\frac{1}{p} \mathbb{E}\left[\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2}\right] \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

where $0<\delta<2$ is a constant and $\lambda_{k+1}$ is the $(k+1)^{\text {th }}$ smallest eigenvalue of $\mathbf{L}$.

$$
R_{B} \leq \text { concentration bound }+ \text { bias }+ \text { variance }
$$

- Tradeoff between quantile of the eigenvalue distribution $\left(\lambda_{k+1}\right)$ and which quantile it is $\left(\frac{k}{p}\right)$.


## Eigenmaps Geometry

$$
\begin{gathered}
\hat{\mathbf{x}}=U_{[k]} U_{[k]}^{T} \mathbf{y}=U_{[k]} U_{[k]}^{T} \mathbf{x}+U_{[k]} U_{[k]}^{T} \zeta \\
R_{B} \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
\end{gathered}
$$

- Chernoff type bound $\Rightarrow$ concentration of prior


## Eigenmaps Geometry

$$
\begin{gathered}
\hat{\mathbf{x}}=U_{[k]} U_{[k]}^{T} \mathbf{y}=U_{[k]} U_{[k]}^{T} \mathbf{x}+U_{[k]} U_{[k]}^{T} \zeta \\
R_{B} \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
\end{gathered}
$$



- Chernoff type bound $\Rightarrow$ concentration of prior
- Projection loss at most $\frac{\delta p}{\lambda_{k+1}}$


## Eigenmaps Geometry

$$
\hat{\mathbf{x}}=U_{[k]} U_{[k]}^{T} \mathbf{y}=U_{[k]} U_{[k]}^{T} \mathbf{x}+U_{[k]} U_{[k]}^{T} \zeta
$$

$$
R_{B} \leq e^{-p}+\min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$



- Chernoff type bound $\Rightarrow$ concentration of prior
- Projection loss at most $\frac{\delta p}{\lambda_{k+1}}$
- Projection reduces isotropic noise, $\zeta$


## Big Picture

$$
\text { Recall: } R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}
$$



Goal: for simple graph models $\mathcal{G}_{p}$ what is $\gamma$ ?

## Hierarchical Structure: Eigenvalue Concentration

## Lemma (Ogielski \& Stein '85)

For the hierarchical structure with interaction strength, $\beta$, and maximum distance between leaves with interaction, $2 \ell^{*}$,

$$
\lambda_{\ell} \geq 2^{\beta \ell^{*}-1} \text { is } 2^{\ell-1} \text {-fold degenerate for } \ell \geq \log _{2} p-\ell^{*}+1
$$



Figure: Hierarchical Graph


Figure: Eigenvalue Histogram

## Hierarchical Structure: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


Figure: Eigenvalue Histogram


Figure: Bias Var Trade-off

## Hierarchical Structure: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


$$
\begin{gathered}
\#\left\{\lambda_{\ell}<2^{\beta \ell^{*}-1}\right\} \leq 2^{\log _{2} p-\ell^{*}+1} \\
\ell^{*}=1+\gamma \log _{2} p \\
\text { Set } k=2^{\log _{2} p-\ell^{*}+1}=p^{1-\gamma} \\
1 / \lambda_{k+1} \leq 2^{1-\beta \ell^{*}} \\
\sigma^{2}=o\left(p^{\gamma}\right) \Rightarrow R_{B} \rightarrow 0
\end{gathered}
$$

Figure: Eigenvalue Histogram

## Lattice: Eigenvalue Concentration

## Lemma

For the lattice graph in $d$ dimensions with $p=n^{d}$ vertices,

$$
\frac{\#\left\{\lambda_{i}^{L} \leq d\right\}}{p} \leq \exp \{-d / 8\}
$$



Figure: Lattice Graph


Figure: Eigenvalue Histogram

## Lattice: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


Figure: Eigenvalue Histogram
lattice dimension $=3$


Figure: Bias Var Trade-off

## Lattice: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


Figure: Eigenvalue Histogram
lattice dimension $=4$


Figure: Bias Var Trade-off

## Lattice: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


Figure: Eigenvalue Histogram
lattice dimension $=5$


Figure: Bias Var Trade-off

## Lattice: Risk Consistency

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


$$
\begin{gathered}
\#\left\{\lambda_{i}^{\mathrm{L}} \leq d\right\} \leq p \exp \{-d / 8\} \\
d=8 \gamma \ln p \\
\text { Set } k=p \exp \{-d / 8\}=p^{1-\gamma} \\
1 / \lambda_{k+1} \leq 1 / d \\
\sigma^{2}=o\left(p^{\gamma}\right) \Rightarrow R_{B} \rightarrow 0
\end{gathered}
$$

Figure: Eigenvalue Histogram

## ERDÖS-RÉNYI GRAPH

## Lemma

Let the probability of an edge be $p^{\gamma-1}$. For any $\alpha_{p}$ increasing in $p$, with probability $1-\mathcal{O}\left(1 / \alpha_{p}\right)$,

$$
\begin{equation*}
\frac{\#\left\{\lambda_{i} \leq p^{\gamma} / 2-p^{\gamma-1}\right\}}{p} \leq \alpha_{p} p^{-\gamma} \tag{1}
\end{equation*}
$$




Figure: Erdös-Rényi Graph
Figure: Eigenvalue Distribution

## Big Picture



Tree Interaction distance: $1+\gamma \log _{2} p$
Lattice Dimensions: $d=8 \gamma \ln p$
ER Edge probability: $p^{\gamma-1}$

## Estimator Performance: Simulations



Figure: Tree Graph

## Estimator Performance: Simulations



Figure: Tree Graph


Figure: Lattice Graph

## Estimator Performance: Simulations



Figure: Tree Graph



Figure: Lattice Graph

Figure: Erdös-Rényi Graph

## Estimator Performance: Simulations



Figure: Tree Graph


Figure: Erdös-Rényi Graph


Figure: Lattice Graph


Figure: Small World Graph

## SUMMARY

## Setup

Signal: $\mathbf{x} \sim f_{\mathrm{L}} d \nu$ with

$$
f_{\mathrm{L}}(X) \propto e^{-X^{\top} L X}
$$

Observations: $\mathbf{y}=\mathbf{x}+\zeta$ with $\zeta \sim N\left(0, \sigma^{2} I_{p}\right)$


Results
Estimator: $\widehat{\mathbf{x}}_{k}=\mathbf{U}_{[k]} \mathbf{U}_{[k]}^{T} \mathbf{y}$


- Hierarchical Graph
- Lattice Graph
- Random Graphs


## Loss and Bayes Rules

What loss do we use?

## Loss and Bayes Rules

What loss do we use?
GGM: Mean Square Error $\operatorname{MSE}(\widehat{\mathbf{x}})=\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}$
Ising: Hamming, $d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)$, applies to binary estimators
note: $\mathbb{E}\left[d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)\right]=\operatorname{MSE}\left(\widehat{\mathbf{x}}^{\prime}\right) \leq 4 \operatorname{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}_{i}^{\prime}=I\left\{\widehat{\mathbf{x}}_{i}>1 / 2\right\}$

## Loss and Bayes Rules

What loss do we use?
GGM: Mean Square Error $\operatorname{MSE}(\widehat{\mathbf{x}})=\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}$
Ising: Hamming, $d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)$, applies to binary estimators
note: $\mathbb{E}\left[d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)\right]=\operatorname{MSE}\left(\widehat{\mathbf{x}}^{\prime}\right) \leq 4 \operatorname{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}_{i}^{\prime}=I\left\{\widehat{\mathbf{x}}_{i}>1 / 2\right\}$

Can't we calculate a posterior?

## Loss and Bayes Rules

What loss do we use?
GGM: Mean Square Error $\operatorname{MSE}(\widehat{\mathbf{x}})=\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}$
Ising: Hamming, $d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)$, applies to binary estimators
note: $\mathbb{E}\left[d_{H}\left(\widehat{\mathbf{x}}^{\prime}, \mathbf{x}\right)\right]=\operatorname{MSE}\left(\widehat{\mathbf{x}}^{\prime}\right) \leq 4 \operatorname{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}_{i}^{\prime}=I\left\{\widehat{\mathbf{x}}_{i}>1 / 2\right\}$

Can't we calculate a posterior? (generalized normal)

$$
\mathbf{x} \mid \mathbf{y} \sim \mathcal{G} \mathcal{N}\left(\left(2 \sigma^{2} \mathbf{L}+\mathbf{I}\right)^{-1} \mathbf{y},\left(2 \mathbf{L}+\sigma^{-2} \mathbf{I}\right)^{-1}, d \nu\right)
$$

1 Posterior mean for Ising is difficult to calculate
2 No closed form makes asymptotic risk analysis difficult

## Loss and Bayes Rules

What about the MAP estimate?

## Loss and Bayes Rules

What about the MAP estimate?

- MAP minimizes the $0-1$ risk:

$$
\widehat{X_{M A P}}=\min _{\hat{X}} \mathbb{E} \delta_{\{\hat{X}=\mathbf{x}\}}
$$

- For the Ising model we can solve MAP efficiently with graph cuts.

GGM: MAP estimate $=$ Posterior mean $=$ Bayes optimal rule under MSE
Ising: MAP estimate $\neq$ Posterior mean

## Loss and Bayes Rules

What about the MAP estimate?

- MAP minimizes the $0-1$ risk:

$$
\widehat{X_{M A P}}=\min _{\hat{X}} \mathbb{E} \delta_{\{\hat{X}=\mathrm{x}\}}
$$

- For the Ising model we can solve MAP efficiently with graph cuts.

GGM: MAP estimate $=$ Posterior mean $=$ Bayes optimal rule under MSE
Ising: MAP estimate $\neq$ Posterior mean

MAP is not sufficient for the Ising model

## The Bulk Spectrum

Recall: $R_{B} \leq \frac{2}{\lambda_{k+1}}+\frac{k \sigma^{2}}{p}+e^{-p}$


- Choose from $\left\{\lambda_{i}\right\}$ uniformly at random $\lambda_{\text {- }}$


## Modeling and Inference

## Dynamics OF Networks

Random Graph Models

- Erdös-Rényi graph [Erdös \& Rényi '60, Bollobas '01]
- ERGMs [Rinaldo, Fienberg, Zhou '09, Kolacyzk '09]
- Real-World Graphs [Watts \& Strogatz '98, Barabasi \& Albert '99]
Community Detection [Bickel \& Chen '09, Newman \& Girvan '04]
Evolving networks [Durrett '06]
Manifold Sampling [Belkin \& Niyogi '08]

Dynamics ON Networks
Graphical Models [Wasserman '03]

- Ising Model [Ising '25], Glauber Dynamics [Martinelli '97]
- Gaussian Graphical Models [Koller \& Friedman '09]
Infection Models [Zhou et al '05, Boguna '02]
Signal Estimation
- Estimation [Coifman '06, Lee at al '08]
- Detection [Singh at al '10, Arias-Castro at al '10]


## GRAPH LAPLACIAN

Graph $G=(V, E, W)$ with $D_{i, i}=d_{i}=\sum_{j} W_{i, j}$ then

$$
\mathbf{L}=D-W
$$

Define eigenvalue, eigenvector pairs $\left\{\lambda_{i}, u_{i}\right\}$ of $\mathbf{L}$ with $\lambda_{i} \leq \lambda_{i+1}$


- $\mathbf{x}^{T} L \mathbf{x}=\sum_{i \sim j} W_{i, j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}$
- $\lambda_{0}=0$ and $u_{0}=\overrightarrow{1}$
- $\sum_{i} \lambda_{i}=\sum_{i} d_{i}$
- Spectral clustering: thresholding first eigenvector [Shi \& Malik '00]
- Dimension reduction: projection to first few generalized eigenvectors [Belkin \& Niyogi '02, Ng et al '01]

Figure: A Random Graph

## Proof pt. 1: Chernoff Bound

## Lemma

Let $\mathbf{x}$ be drawn from an Ising model with Laplacian $\mathbf{L}$ and $p$ nodes.

$$
\mathbb{P}\left\{\mathbf{x}^{T} \mathbf{L x}>\delta p\right\} \leq e^{-p}
$$

for any $\delta \in(1+\log (2), 2]$

- strategic use of Markov's inequality
- essential that $\mathbf{L} \overrightarrow{1}=0$


## Proof pt. 2: Minimax Risk

## Lemma

Let $\left\{\lambda_{i}\right\}_{i=1}^{p}$ be eigenvalues of the Laplacian $\mathbf{L}$, with $\lambda_{i} \leq \lambda_{i+1}$. For any $\mathbf{x} \in \mathbb{R}^{p}$ such that $\mathbf{x}^{T} \mathbf{L x}<\delta p$,

$$
\mathbb{E}\left(\left.\frac{1}{p}\left\|\widehat{\mathbf{x}}_{k}-\mathbf{x}\right\|^{2} \right\rvert\, \mathbf{x}\right) \leq \min \left(1, \frac{\delta}{\lambda_{k+1}}\right)+\frac{k \sigma^{2}}{p}
$$

- Set up primal problem of maximizing $\left\|\mathcal{P}_{U_{[\mid]}^{\frac{1}{2}}} \mathbf{x}\right\|^{2}$ subject to constraints
- Low dimensional projection reduces variance


## Hierarchical Structure: Bulk Spectrum Lemma (Ogielski \& Stein '85)

For the hierarchical structure with $L$ levels, the $\ell^{\text {th }}$ smallest unique eigenvalue $\left(\ell \in[L]\right.$ ) is $2^{\ell-1}$-fold degenerate and given as

$$
\lambda_{\ell}=\sum_{i=L-\ell+1}^{L} 2^{i-1} \epsilon_{i}+2^{L-\ell} \epsilon_{L-\ell+1}
$$



Figure: Hierarchical Graph


Figure: Hierarchical Weight Matrix
See also: Singh at al. Detecting Weak but Hierarchically-Structured Patterns in Networks, '10

## Hierarchical Structure: Consistency Region

Corollary
If $\epsilon_{\ell}=2^{-\ell(1-\beta)} \forall \ell \leq \gamma \log _{2} p+1$, for constants $\gamma, \beta \in(0,1)$, and $\epsilon_{\ell}=0$ otherwise, then the noise threshold for consistent MSE recovery ( $\left.R_{B}=o(1)\right)$ is

$$
\sigma^{2}=o\left(p^{\gamma}\right) .
$$



Figure: Eigenvalue Distribution


Figure: Estimator Performance

## Lattice: Bulk Spectrum

## LEMMA

Let $\lambda_{\bullet}^{\mathbf{L}}$ be an eigenvalue of the Laplacian, $\mathbf{L}$, of the lattice graph in $d$ dimensions with $p=n^{d}$ vertices, chosen uniformly at random. Then

$$
\begin{equation*}
\mathbb{P}\left\{\lambda_{\bullet}^{\mathbf{L}} \leq d\right\} \leq \exp \{-d / 8\} \tag{2}
\end{equation*}
$$



Figure: Lattice Graph

Lattice in d-dimensions:

$$
\begin{gathered}
i=\left(i_{1}, \ldots, i_{d}\right), j=\left(j_{1}, \ldots, j_{d}\right) \in[n]^{d} \\
W_{i, j}=w_{i_{1}, j_{1}} \delta_{i_{2}, j_{2}} \ldots \delta_{i_{d}, j_{d}}+ \\
\ldots \quad+w_{i_{d}, j_{d}} \delta_{i_{1}, j_{1}} \ldots \delta_{i_{d-1}, j_{d-1}}
\end{gathered}
$$

- Tensor product of 1-D lattice
- Hoeffding's on eigenvalues


## Lattice: Consistency Region

## Corollary

If $n$ is a constant, $p=n^{d}$ and $d=8 \gamma \ln p$, for some constant $\gamma \in(0,1)$, then the noise threshold for consistent MSE recovery $\left(R_{B}=o(1)\right)$ is given as:

$$
\sigma^{2}=o\left(p^{\gamma}\right)
$$



Figure: Eigenvalue Distribution


Figure: Estimator Performance

## Erdös-Rényi Graph: Bulk Spectrum

## Lemma

For any $\alpha_{p}$ increasing in $p$,

$$
\begin{equation*}
\mathbb{P}_{G}\left\{\mathbb{P}_{\bullet}\left\{\lambda_{\bullet} \leq p^{\gamma} / 2-p^{\gamma-1}\right\} \geq \alpha_{p} p^{-\gamma}\right\}=\mathcal{O}\left(1 / \alpha_{p}\right) \tag{3}
\end{equation*}
$$



- Probability of edge $=p^{\gamma-1}$
- $\mathbb{P}_{G}$ : random graph measure
- $\mathbb{P}_{\bullet}$ : random eigenvalue index
- $\mathbf{L}=(\bar{d} \mathbf{l}-\mathbf{W})+(\mathbf{D}-\bar{d} \mathbf{l})$ with Wielandt-Hoffman thm.
- $\lambda^{\mathbf{W}}$ semi-circular dist.

Figure: Erdös-Rényi Graph

## Erdös-Rényi Graph: Consistency Region

## Corollary

Define consistent MSE recovery to be $R_{B}=o_{\mathbb{P}_{G}}(1)$,

$$
\sigma^{2}=o\left(p^{\gamma}\right)
$$



Figure: Eigenvalue Distribution


Figure: Estimator Performance

## Real-World Graphs



Figure: Small World Graph


Figure: Eigenvalue Distribution


## Figure: Estimator Performance

- Small world graph: proof similar to ER graph
- Scale-free (power law) graph
[Chung et al '03]

