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Activation Patterns in Networks

1. Localizing router congestion

2. Detecting water contamination
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Normal Means Estimation

x ∈ Rp (or x ∈ {0, 1}p)

y = x + ζ , ζ ∼ N(0, σ2Ip)

Task: reconstruct x from y
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Structured Normal Means Estimation

x ∈ Rp (or x ∈ {0, 1}p )

Graph: G = (V ,E ,W )
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Structured Normal Means Estimation

x ∈ Rp (or x ∈ {0, 1}p ) Graph: G = (V ,E ,W )
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Structured Normal Means Estimation

Noisy observations Noisy observations with structure

Task: reconstruct x from y exploiting dependencies (given by G )
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Statistical Model
The Model

1 Graph: G ∼ Gp with p nodes.
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Statistical Model
The Model

1 Graph: G ∼ Gp with p nodes.

2 Signal: x ∼ fLdν with

fL(x) ∝ e−x
TLx

GGM: ν is Lebesgue (Σ−1 = L)
Ising: ν is Counting
L = D −W
xTLx =

∑
i∼j Wi,j(xi − xj)2
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Statistical Model
The Model

1 Graph: G ∼ Gp with p nodes.

2 Signal: x ∼ fLdν with

fL(x) ∝ e−x
TLx

GGM: ν is Lebesgue (Σ−1 = L)
Ising: ν is Counting
L = D −W
xTLx =

∑
i∼j Wi,j(xi − xj)2

3 Observations: draw iid. noise
ζ ∼ N(0, σ2Ip)

y = x + ζ
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Estimation of Graph-structured patterns

Bayes Optimal Rules:
Mean square error: posterior mean
Hamming distance: posterior centroid

} hard to implement

0/1-loss: posterior max (MAP) implementation via min-cut

Optimal estimator and risk have no closed form - analysis intractable
computing posterior requires knowledge of signal parameters

Graph-based Regularization:

[Smola-Kondor ’03, Belkin-Niyogi ’04, Ando-Zhang ’06]

Mainly justified in the embedded (manifold) setting
results focus on importance of second eigenvalue of Laplacian
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Laplacian Eigenmaps Estimator

Define eigenvalue, eigenvector pairs {λi , ui} of Laplacian,
L, with λi ≤ λi+1

Estimator of x given k ∈ {1, ..., p}:

x̂ = U[k]U
T
[k]y =

k∑
i=1

(uT
i y)ui

1. Easy to analyze asymptotic risk

2. Easy to implement

# 3 lines in R

L = graph.laplacian(g) # igraph package

U = eigen(L)$vectors

Xhat = U[,(p-k):p] %*% t(U[,(p-k):p]) %*% Y
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Laplacian Eigenmaps Estimator

Hierarchical Graph

Lattice Graph

Hierarchical L

Lattice L

Haar Wavelet

Fourier Basis
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Laplacian Eigenmaps Estimator

Network activation pattern: x
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Laplacian Eigenmaps Estimator

Noisy observations: y (σ2 = 1
2 )

Eigenmaps estimator: x̂ (k = 3)
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Laplacian Eigenmaps Estimator

Noisy observations: y (σ2 = 1
2 ) Eigenmaps estimator: x̂ (k = 3)
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Laplacian Eigenmaps Estimator

Large real-world graph (p = 100)
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Laplacian Eigenmaps Estimator

Noisy observations: y (σ2 = 4
5 )

Eigenmaps estimator: x̂ (k = 10)
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Laplacian Eigenmaps Estimator

Noisy observations: y (σ2 = 4
5 ) Eigenmaps estimator: x̂ (k = 10)
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Laplacian Eigenmaps Estimator

Thresholded observations: y > τ Thresholded eigenmaps estimator: x̂ > τ
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Big Picture

Consistent estimation: RB = Ex
1
p ||x̂k − x||2 −→

p→∞
0
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Big Picture

Consistent estimation: RB = Ex
1
p ||x̂k − x||2 −→

p→∞
0

Tolerable noise: σ2 = o(pγ)⇒ consistent estimation
γ depends on the network evolution model
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Main Result

Theorem
Let x be drawn from the Ising with graph Laplacian L.

RB :=
1

p
E[‖x̂k − x‖2] ≤ e−p + min

(
1,

δ

λk+1

)
+

kσ2

p

where 0 < δ < 2 is a constant and λk+1 is the (k + 1)th smallest
eigenvalue of L.

RB ≤ concentration bound + bias + variance
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Main Result

Theorem
Let x be drawn from the Ising with graph Laplacian L.

RB :=
1

p
E[‖x̂k − x‖2] ≤ e−p + min

(
1,

δ

λk+1

)
+

kσ2

p

where 0 < δ < 2 is a constant and λk+1 is the (k + 1)th smallest
eigenvalue of L.

RB ≤ concentration bound + bias + variance

• Tradeoff between quantile of the eigenvalue distribution (λk+1) and
which quantile it is ( k

p ).
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Eigenmaps Geometry

x̂ = U[k]U
T
[k]y = U[k]U

T
[k]x + U[k]U

T
[k]ζ

RB ≤ e−p + min

(
1,

δ

λk+1

)
+

kσ2

p

• Chernoff type bound ⇒
concentration of prior
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Eigenmaps Geometry

x̂ = U[k]U
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[k]x + U[k]U

T
[k]ζ
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Eigenmaps Geometry

x̂ = U[k]U
T
[k]y = U[k]U

T
[k]x + U[k]U

T
[k]ζ

RB ≤ e−p + min

(
1,

δ

λk+1

)
+

kσ2

p

• Chernoff type bound ⇒
concentration of prior

• Projection loss at most δp
λk+1

• Projection reduces isotropic noise, ζ
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Big Picture

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Goal: for simple graph models Gp what is γ?
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Hierarchical Structure: Eigenvalue
Concentration

Lemma (Ogielski & Stein ’85)
For the hierarchical structure with interaction strength, β, and maximum
distance between leaves with interaction, 2`∗,

λ` ≥ 2β`
∗−1 is 2`−1-fold degenerate for ` ≥ log2 p − `∗ + 1

Figure: Hierarchical Graph

Figure: Eigenvalue Histogram
28



Hierarchical Structure: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram 0 200 400 600 800 1000
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Hierarchical Structure: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram

#{λ` < 2β`
∗−1} ≤ 2log2 p−`

∗+1

`∗ = 1 + γ log2 p

Set k = 2log2 p−`
∗+1 = p1−γ

1/λk+1 ≤ 21−β`∗

σ2 = o(pγ)⇒ RB → 0
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Lattice: Eigenvalue Concentration

Lemma
For the lattice graph in d dimensions with p = nd vertices,

#{λLi ≤ d}
p

≤ exp{−d/8}

Figure: Lattice Graph

Figure: Eigenvalue Histogram

31



Lattice: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram

lattice dimension = 3

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Eigen dimension, k

M
S
E

Bias
Var
Risk
Bound

Figure: Bias Var Trade-off
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Lattice: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram

lattice dimension = 4
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Lattice: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram

lattice dimension = 5
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Lattice: Risk Consistency

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

Figure: Eigenvalue Histogram

#{λLi ≤ d} ≤ p exp{−d/8}

d = 8γ ln p

Set k = p exp{−d/8} = p1−γ

1/λk+1 ≤ 1/d

σ2 = o(pγ)⇒ RB → 0
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Erdös-Rényi Graph

Lemma
Let the probability of an edge be pγ−1. For any αp increasing in p, with
probability 1−O(1/αp),

#{λi ≤ pγ/2− pγ−1}
p

≤ αpp−γ (1)

Figure: Erdös-Rényi Graph Figure: Eigenvalue Distribution
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Big Picture

Tree Interaction distance: 1 + γ log2 p
Lattice Dimensions: d = 8γ ln p

ER Edge probability: pγ−1
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Estimator Performance: Simulations

Figure: Tree Graph

Figure: Lattice Graph

Figure: Erdös-Rényi Graph Figure: Small World Graph
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Estimator Performance: Simulations

Figure: Tree Graph Figure: Lattice Graph

Figure: Erdös-Rényi Graph Figure: Small World Graph

38



Estimator Performance: Simulations

Figure: Tree Graph Figure: Lattice Graph

Figure: Erdös-Rényi Graph

Figure: Small World Graph
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Estimator Performance: Simulations

Figure: Tree Graph Figure: Lattice Graph

Figure: Erdös-Rényi Graph Figure: Small World Graph 38



Summary

Setup

Signal: x ∼ fLdν with

fL(X ) ∝ e−X
TLX

Observations: y = x + ζ with
ζ ∼ N(0, σ2Ip)

Results
Estimator: x̂k = U[k]U

T
[k]y

• Hierarchical Graph

• Lattice Graph

• Random Graphs 39



Loss and Bayes Rules

What loss do we use?

GGM: Mean Square Error MSE(x̂) = ||x− x̂||2

Ising: Hamming, dH(x̂′, x), applies to binary estimators

note: E[dH(x̂′, x)] = MSE(x̂′) ≤ 4MSE(x̂) for x̂′i = I{x̂i > 1/2}

Can’t we calculate a posterior? (generalized normal)

x|y ∼ GN
(

(2σ2L + I)−1y,
(
2L + σ−2I

)−1
, dν

)

1 Posterior mean for Ising is difficult to calculate

2 No closed form makes asymptotic risk analysis difficult
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Loss and Bayes Rules

What about the MAP estimate?

• MAP minimizes the 0− 1 risk:

X̂MAP = min
X̂

Eδ{X̂=x}

• For the Ising model we can solve MAP efficiently with graph cuts.

GGM: MAP estimate = Posterior mean = Bayes optimal rule under MSE

Ising: MAP estimate 6= Posterior mean

MAP is not sufficient for the Ising model
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The Bulk Spectrum

Recall: RB ≤
2

λk+1
+

kσ2

p
+ e−p

• Choose from {λi} uniformly at random λ•

42



Modeling and Inference

Dynamics OF Networks

Random Graph Models
• Erdös-Rényi graph [Erdös &

Rényi ’60, Bollobas ’01]
• ERGMs [Rinaldo, Fienberg, Zhou

’09, Kolacyzk ’09]
• Real-World Graphs [Watts &

Strogatz ’98, Barabasi & Albert
’99]

Community Detection [Bickel &
Chen ’09, Newman & Girvan ’04]

Evolving networks [Durrett ’06]

Manifold Sampling [Belkin & Niyogi
’08]

Dynamics ON Networks

Graphical Models [Wasserman ’03]
• Ising Model [Ising ’25], Glauber

Dynamics [Martinelli ’97]
• Gaussian Graphical Models

[Koller & Friedman ’09]

Infection Models [Zhou et al ’05,
Boguna ’02]

Signal Estimation
• Estimation [Coifman ’06, Lee at

al ’08]
• Detection [Singh at al ’10,

Arias-Castro at al ’10]
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Graph Laplacian

Graph G = (V ,E ,W ) with Di,i = di =
∑

j Wi,j then

L = D −W

Define eigenvalue, eigenvector pairs {λi , ui} of L with λi ≤ λi+1

Figure: A Random Graph

• xTLx =
∑

i∼j Wi,j(xi − xj)2

• λ0 = 0 and u0 = ~1

•
∑

i λi =
∑

i di

• Spectral clustering: thresholding
first eigenvector [Shi & Malik ’00]

• Dimension reduction: projection to
first few generalized eigenvectors
[Belkin & Niyogi ’02, Ng et al ’01]
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Proof pt. 1: Chernoff Bound

Lemma
Let x be drawn from an Ising model with Laplacian L and p nodes.

P{xTLx > δp} ≤ e−p

for any δ ∈ (1 + log(2), 2]

• strategic use of Markov’s inequality

• essential that L~1 = 0
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Proof pt. 2: Minimax Risk

Lemma
Let {λi}pi=1 be eigenvalues of the Laplacian L, with λi ≤ λi+1. For any
x ∈ Rp such that xTLx < δp,

E
(

1

p
||x̂k − x||2|x

)
≤ min

(
1,

δ

λk+1

)
+

kσ2

p

• Set up primal problem of maximizing ||PU⊥
[p]
x||2 subject to constraints

• Low dimensional projection reduces variance
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Hierarchical Structure: Bulk Spectrum
Lemma (Ogielski & Stein ’85)
For the hierarchical structure with L levels, the `th smallest unique
eigenvalue (` ∈ [L]) is 2`−1-fold degenerate and given as

λ` =
L∑

i=L−`+1

2i−1εi + 2L−`εL−`+1

Figure: Hierarchical Graph Figure: Hierarchical Weight Matrix

See also: Singh at al. Detecting Weak but Hierarchically-Structured
Patterns in Networks, ’10
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Hierarchical Structure: Consistency Region

Corollary
If ε` = 2−`(1−β) ∀` ≤ γ log2 p + 1, for constants γ, β ∈ (0, 1), and ε` = 0
otherwise, then the noise threshold for consistent MSE recovery
(RB = o(1)) is

σ2 = o(pγ).

Figure: Eigenvalue Distribution Figure: Estimator Performance
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Lattice: Bulk Spectrum

Lemma
Let λL• be an eigenvalue of the Laplacian, L, of the lattice graph in d
dimensions with p = nd vertices, chosen uniformly at random. Then

P{λL• ≤ d} ≤ exp{−d/8}. (2)

Figure: Lattice Graph

Lattice in d-dimensions:
i = (i1, ..., id), j = (j1, ..., jd) ∈ [n]d

Wi,j = wi1,j1δi2,j2 ...δid ,jd +

... +wid ,jd δi1,j1 ...δid−1,jd−1

• Tensor product of 1-D lattice

• Hoeffding’s on eigenvalues
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Lattice: Consistency Region

Corollary
If n is a constant, p = nd and d = 8γ ln p, for some constant γ ∈ (0, 1),
then the noise threshold for consistent MSE recovery (RB = o(1)) is
given as:

σ2 = o(pγ)

Figure: Eigenvalue Distribution Figure: Estimator Performance
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Erdös-Rényi Graph: Bulk Spectrum

Lemma
For any αp increasing in p,

PG{P•{λ• ≤ pγ/2− pγ−1} ≥ αpp−γ} = O(1/αp) (3)

Figure: Erdös-Rényi Graph

• Probability of edge = pγ−1

• PG : random graph measure

• P•: random eigenvalue index

• L = (d̄I−W) + (D− d̄I) with
Wielandt-Hoffman thm.

• λW semi-circular dist.
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Erdös-Rényi Graph: Consistency Region

Corollary
Define consistent MSE recovery to be RB = oPG

(1),

σ2 = o(pγ).

Figure: Eigenvalue Distribution Figure: Estimator Performance
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Real-World Graphs

Figure: Small World Graph

Figure: Eigenvalue Distribution

Figure: Estimator Performance

• Small world graph: proof similar to
ER graph

• Scale-free (power law) graph
[Chung et al ’03]
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