IDENTIFYING GRAPH-STRUCTURED ACTIVATION PATTERNS IN NETWORKS

James Sharpnack^{1,2} Aarti Singh¹

¹Machine Learning Dept. CMU, Pittsburgh, PA

²Statistics Dept. CMU, Pittsburgh, PA

8 Dec. 2010

This work was supported in part by AFOSR grant FA9550-10-1-0382.

1

ACTIVATION PATTERNS IN NETWORKS

- $1. \ \ \text{Localizing router congestion}$
- $2. \ \mbox{Detecting water contamination}$

NORMAL MEANS ESTIMATION

NORMAL MEANS ESTIMATION

Task: reconstruct \mathbf{x} from \mathbf{y}

STRUCTURED NORMAL MEANS ESTIMATION

 $\textbf{x} \in \mathbb{R}^{\textit{p}}$ (or $\textbf{x} \in \{0,1\}^{\textit{p}}$)

STRUCTURED NORMAL MEANS ESTIMATION

$$\mathbf{x} \in \mathbb{R}^p$$
 (or $\mathbf{x} \in \{0,1\}^p$)

Graph: G = (V, E, W)

STRUCTURED NORMAL MEANS ESTIMATION

Task: reconstruct **x** from **y** exploiting dependencies (given by G)

STATISTICAL MODEL

The Model

1 Graph: $G \sim \mathcal{G}_p$ with p nodes.

STATISTICAL MODEL

The Model

- 1 Graph: $G \sim \mathcal{G}_p$ with p nodes.
- $2\,$ Signal: ${\bf x} \sim f_{\rm L} d\nu$ with

$$\mathit{f}_{L}(x) \propto e^{-x^{T}Lx}$$

GGM: ν is Lebesgue $(\Sigma^{-1} = L)$ Ising: ν is Counting L = D - W $\mathbf{x}^T L \mathbf{x} = \sum_{i \sim j} W_{i,j} (\mathbf{x}_i - \mathbf{x}_j)^2$

STATISTICAL MODEL

The Model

- 1 Graph: $G \sim \mathcal{G}_p$ with p nodes.
- $2\,$ Signal: ${\bf x} \sim f_{\rm L} d\nu$ with

$$\textit{f}_{L}(x) \propto e^{-x^{T}Lx}$$

- GGM: ν is Lebesgue $(\Sigma^{-1} = L)$ Ising: ν is Counting L = D - W $\mathbf{x}^T L \mathbf{x} = \sum_{i \sim j} W_{i,j} (\mathbf{x}_i - \mathbf{x}_j)^2$
- 3 Observations: draw iid. noise $\zeta \sim N(0, \sigma^2 I_p)$

$$\mathbf{y} = \mathbf{x} + \boldsymbol{\zeta}$$

ESTIMATION OF GRAPH-STRUCTURED PATTERNS

Bayes Optimal Rules: Mean square error: posterior mean Hamming distance: posterior centroid 0/1-loss: posterior max (MAP)

} hard to implement
implementation via min-cut

Optimal estimator and risk have no closed form - analysis intractable computing posterior requires knowledge of signal parameters

ESTIMATION OF GRAPH-STRUCTURED PATTERNS

Bayes Optimal Rules: Mean square error: posterior mean Hamming distance: posterior centroid 0/1-loss: posterior max (MAP)

} hard to implement
implementation via min-cut

Optimal estimator and risk have no closed form - analysis intractable computing posterior requires knowledge of signal parameters

Graph-based Regularization:

[Smola-Kondor '03, Belkin-Niyogi '04, Ando-Zhang '06]

Mainly justified in the embedded (manifold) setting results focus on importance of second eigenvalue of Laplacian

Define eigenvalue, eigenvector pairs $\{\lambda_i, u_i\}$ of Laplacian, L, with $\lambda_i \leq \lambda_{i+1}$

Estimator of **x** given $k \in \{1, ..., p\}$:

$$\hat{\mathbf{x}} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{k} (u_i^{\mathsf{T}}\mathbf{y})u_i$$

- $1. \ \mbox{Easy}$ to analyze asymptotic risk
- 2. Easy to implement

Define eigenvalue, eigenvector pairs $\{\lambda_i, u_i\}$ of Laplacian, L, with $\lambda_i \leq \lambda_{i+1}$

Estimator of **x** given $k \in \{1, ..., p\}$:

$$\hat{\mathbf{x}} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{k} (u_i^{\mathsf{T}}\mathbf{y})u_i$$

- $1. \ \mbox{Easy}$ to analyze asymptotic risk
- 2. Easy to implement

Hierarchical $\boldsymbol{\mathsf{L}}$

Haar Wavelet

Lattice $\boldsymbol{\mathsf{L}}$

Fourier Basis

Network activation pattern: \boldsymbol{x}

Noisy observations: **y** $(\sigma^2 = \frac{1}{2})$

Noisy observations: **y** $(\sigma^2 = \frac{1}{2})$

Eigenmaps estimator: $\hat{\mathbf{x}}$ (k = 3)

Large real-world graph (p = 100)

Noisy observations: **y** $(\sigma^2 = \frac{4}{5})$

Noisy observations: **y** $(\sigma^2 = \frac{4}{5})$

Eigenmaps estimator: $\hat{\mathbf{x}}$ (k = 10)

Thresholded observations: $\mathbf{y} > \tau$

Thresholded eigenmaps estimator: $\hat{\mathbf{x}} > \tau$

BIG PICTURE

BIG PICTURE

Consistent estimation: $R_B = \mathbb{E}_{\mathbf{x}} \frac{1}{p} || \widehat{x}_k - \mathbf{x} ||^2 \underset{p \to \infty}{\longrightarrow} 0$

Tolerable noise: $\sigma^2 = o(p^{\gamma}) \Rightarrow$ consistent estimation γ depends on the network evolution model

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathsf{R}_{\mathsf{B}} := \frac{1}{\mathsf{p}} \, \mathbb{E}[\|\widehat{\mathsf{x}}_k - \mathsf{x}\|^2] \le e^{-\mathsf{p}} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{\mathsf{p}}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathsf{R}_{\mathsf{B}} := \frac{1}{\mathsf{p}} \, \mathbb{E}[\|\widehat{\mathsf{x}}_k - \mathsf{x}\|^2] \le e^{-\mathsf{p}} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{\mathsf{p}}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathsf{R}_{\mathsf{B}} := \frac{1}{\rho} \mathbb{E}[\|\widehat{\mathsf{x}}_k - \mathsf{x}\|^2] \leq \frac{e^{-\rho}}{\rho} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{\rho}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathcal{R}_B := rac{1}{
ho} \ \mathbb{E}[\|\widehat{\mathbf{x}}_k - \mathbf{x}\|^2] \leq e^{-
ho} + \min\left(1, rac{\delta}{\lambda_{k+1}}
ight) + rac{k\sigma^2}{
ho}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathsf{R}_{\mathsf{B}} := \frac{1}{\rho} \mathbb{E}[\|\widehat{\mathsf{x}}_k - \mathsf{x}\|^2] \le e^{-\rho} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{\rho}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

THEOREM Let x be drawn from the Ising with graph Laplacian L.

$$\mathsf{R}_{\mathsf{B}} := \frac{1}{p} \, \mathbb{E}[\|\widehat{\mathsf{x}}_k - \mathsf{x}\|^2] \leq e^{-p} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{p}$$

where $0 < \delta < 2$ is a constant and λ_{k+1} is the $(k+1)^{th}$ smallest eigenvalue of L.

 $R_B \leq \text{concentration bound} + \text{bias} + \text{variance}$

 Tradeoff between quantile of the eigenvalue distribution (λ_{k+1}) and which quantile it is (^k/_p).

EIGENMAPS GEOMETRY

$$\hat{\mathbf{x}} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{y} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{x} + U_{[k]}U_{[k]}^{\mathsf{T}}\zeta$$

$$R_B \leq e^{-p} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{p}$$

• Chernoff type bound \Rightarrow concentration of prior

EIGENMAPS GEOMETRY

$$\hat{\mathbf{x}} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{y} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{x} + U_{[k]}U_{[k]}^{\mathsf{T}}\zeta$$

$$R_B \leq e^{-p} + \min\left(1, rac{\delta}{\lambda_{k+1}}
ight) + rac{k\sigma^2}{p}$$

- Chernoff type bound \Rightarrow concentration of prior
- Projection loss at most $\frac{\delta p}{\lambda_{k+1}}$

EIGENMAPS GEOMETRY

$$\hat{\mathbf{x}} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{y} = U_{[k]}U_{[k]}^{\mathsf{T}}\mathbf{x} + U_{[k]}U_{[k]}^{\mathsf{T}}\zeta$$

$$R_B \leq e^{-p} + \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{p}$$

- Chernoff type bound \Rightarrow concentration of prior
- Projection loss at most $\frac{\delta p}{\lambda_{k+1}}$
- Projection reduces isotropic noise, $\boldsymbol{\zeta}$

BIG PICTURE

Goal: for simple graph models \mathcal{G}_p what is γ ?

HIERARCHICAL STRUCTURE: EIGENVALUE CONCENTRATION

Lemma (Ogielski & Stein '85)

For the hierarchical structure with interaction strength, β , and maximum distance between leaves with interaction, $2\ell^*$,

 $\lambda_{\ell} \geq 2^{\beta \ell^* - 1}$ is $2^{\ell - 1}$ -fold degenerate for $\ell \geq \log_2 p - \ell^* + 1$

FIGURE: Hierarchical Graph

 $FIGURE: \ Eigenvalue \ Histogram$

HIERARCHICAL STRUCTURE: RISK CONSISTENCY

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

FIGURE: Bias Var Trade-off

HIERARCHICAL STRUCTURE: RISK CONSISTENCY

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

 $FIGURE: \ Eigenvalue \ Histogram$

$$\begin{split} \#\{\lambda_{\ell} < 2^{\beta\ell^* - 1}\} &\leq 2^{\log_2 p - \ell^* + 1}\\ \ell^* &= 1 + \gamma \log_2 p\\ \text{Set } k = 2^{\log_2 p - \ell^* + 1} = p^{1 - \gamma}\\ 1/\lambda_{k+1} &\leq 2^{1 - \beta\ell^*}\\ \sigma^2 &= o(p^{\gamma}) \Rightarrow R_B \to 0 \end{split}$$

LATTICE: EIGENVALUE CONCENTRATION

Lemma

For the lattice graph in d dimensions with $p = n^d$ vertices,

$$\frac{\#\{\lambda_i^{\mathsf{L}} \leq d\}}{p} \leq \exp\{-d/8\}$$

 $\mathrm{Figure:}\ Lattice\ Graph$

 $FIGURE: \ Eigenvalue \ Histogram$

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

32

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

FIGURE: Bias Var Trade-off

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

FIGURE: Bias Var Trade-off

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

 $\#\{\lambda_i^{\mathsf{L}} \leq d\} \leq p \exp\{-d/8\}$ $d = 8\gamma \ln p$ Set $k = p \exp\{-d/8\} = p^{1-\gamma}$ $1/\lambda_{k+1} \leq 1/d$ $\sigma^2 = o(p^{\gamma}) \Rightarrow R_B \to 0$

FIGURE: Eigenvalue Histogram

Erdös-Rényi Graph

LEMMA

Let the probability of an edge be $p^{\gamma-1}$. For any α_p increasing in p, with probability $1 - O(1/\alpha_p)$,

$$\frac{\#\{\lambda_i \le p^{\gamma}/2 - p^{\gamma-1}\}}{p} \le \alpha_p p^{-\gamma} \tag{1}$$

FIGURE: Erdös-Rényi Graph

FIGURE: Eigenvalue Distribution

BIG PICTURE

 $\begin{array}{ll} \mbox{Tree} & \mbox{Interaction distance: } 1+\gamma \log_2 p \\ \mbox{Lattice} & \mbox{Dimensions: } d=8\gamma \ln p \\ \mbox{ER} & \mbox{Edge probability: } p^{\gamma-1} \end{array}$

FIGURE: Tree Graph

FIGURE: Tree Graph

FIGURE: Lattice Graph

FIGURE: Tree Graph

FIGURE: Lattice Graph

FIGURE: Erdös-Rényi Graph

FIGURE: Tree Graph

FIGURE: Erdös-Rényi Graph

FIGURE: Lattice Graph

 $\label{eq:Figure: Small World Graph} Figure: Small World Graph$

SUMMARY

Setup

Signal: $\mathbf{x} \sim f_{\mathbf{L}} d\nu$ with

$$f_{\mathsf{L}}(X) \propto e^{-X^{T} \mathsf{L} X}$$

Observations: $\mathbf{y} = \mathbf{x} + \zeta$ with $\zeta \sim N(0, \sigma^2 I_p)$

Results Estimator: $\hat{\mathbf{x}}_k = \mathbf{U}_{[k]}\mathbf{U}_{[k]}^T\mathbf{y}$

- Hierarchical Graph
- Lattice Graph
- Random Graphs

What loss do we use?

What loss do we use?

- $\mathrm{GGM:} \ \ \mathsf{Mean} \ \mathsf{Square} \ \mathsf{Error} \ \mathrm{MSE}(\widehat{\boldsymbol{x}}) = ||\boldsymbol{x} \hat{\boldsymbol{x}}||^2$
- ISING: Hamming, $d_H(\hat{\mathbf{x}}', \mathbf{x})$, applies to binary estimators

note: $\mathbb{E}[d_H(\widehat{\mathbf{x}}', \mathbf{x})] = \mathrm{MSE}(\widehat{\mathbf{x}}') \le 4\mathrm{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}'_i = I\{\widehat{\mathbf{x}}_i > 1/2\}$

What loss do we use?

GGM: Mean Square Error $MSE(\hat{\boldsymbol{x}}) = ||\boldsymbol{x} - \hat{\boldsymbol{x}}||^2$

ISING: Hamming, $d_H(\hat{\mathbf{x}}', \mathbf{x})$, applies to binary estimators

note: $\mathbb{E}[d_H(\widehat{\mathbf{x}}', \mathbf{x})] = \mathrm{MSE}(\widehat{\mathbf{x}}') \le 4\mathrm{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}'_i = I\{\widehat{\mathbf{x}}_i > 1/2\}$

Can't we calculate a posterior?

What loss do we use?

GGM: Mean Square Error $MSE(\hat{\mathbf{x}}) = ||\mathbf{x} - \hat{\mathbf{x}}||^2$ ISING: Hamming, $d_H(\hat{\mathbf{x}}', \mathbf{x})$, applies to binary estimators

note: $\mathbb{E}[d_H(\widehat{\mathbf{x}}', \mathbf{x})] = \mathrm{MSE}(\widehat{\mathbf{x}}') \le 4\mathrm{MSE}(\widehat{\mathbf{x}})$ for $\widehat{\mathbf{x}}'_i = I\{\widehat{\mathbf{x}}_i > 1/2\}$

Can't we calculate a posterior? (generalized normal)

$$\mathbf{x}|\mathbf{y}\sim\mathcal{GN}\left((2\sigma^{2}\mathbf{L}+\mathbf{I})^{-1}\mathbf{y},\left(2\mathbf{L}+\sigma^{-2}\mathbf{I}\right)^{-1},d\nu\right)$$

- $1\,$ Posterior mean for Ising is difficult to calculate
- $2\,$ No closed form makes asymptotic risk analysis difficult

What about the MAP estimate?

What about the MAP estimate?

• MAP minimizes the 0 - 1 risk:

$$\widehat{X_{MAP}} = \min_{\hat{X}} \mathbb{E}\delta_{\{\hat{X} = \mathbf{x}\}}$$

• For the Ising model we can solve MAP efficiently with graph cuts.

What about the MAP estimate?

• MAP minimizes the 0-1 risk:

$$\widehat{X_{MAP}} = \min_{\hat{X}} \mathbb{E}\delta_{\{\hat{X} = \mathbf{x}\}}$$

• For the Ising model we can solve MAP efficiently with graph cuts.

MAP is not sufficient for the Ising model

THE BULK SPECTRUM

Recall:
$$R_B \leq \frac{2}{\lambda_{k+1}} + \frac{k\sigma^2}{p} + e^{-p}$$

• Choose from $\{\lambda_i\}$ uniformly at random λ_{\bullet}

Modeling and Inference

Dynamics OF Networks

Random Graph Models

- Erdös-Rényi graph [Erdös & Rényi '60, Bollobas '01]
- ERGMs [Rinaldo, Fienberg, Zhou '09, Kolacyzk '09]
- Real-World Graphs [Watts & Strogatz '98, Barabasi & Albert '99]

Community Detection [Bickel & Chen '09, Newman & Girvan '04] Evolving networks [Durrett '06] Manifold Sampling [Belkin & Niyogi '08]

Dynamics ON Networks

Graphical Models [Wasserman '03]

- Ising Model [Ising '25], Glauber Dynamics [Martinelli '97]
- Gaussian Graphical Models
 [Koller & Friedman '09]

Infection Models [Zhou et al '05, Boguna '02]

Signal Estimation

- Estimation [Coifman '06, Lee at al '08]
- Detection [Singh at al '10, Arias-Castro at al '10]

GRAPH LAPLACIAN

Graph
$$G = (V, E, W)$$
 with $D_{i,i} = d_i = \sum_j W_{i,j}$ then
 $\mathbf{L} = D - W$

Define eigenvalue, eigenvector pairs $\{\lambda_i, u_i\}$ of **L** with $\lambda_i \leq \lambda_{i+1}$

 ${\rm Figure:}~A~Random~Graph$

• $\mathbf{x}^T L \mathbf{x} = \sum_{i \sim j} W_{i,j} (\mathbf{x}_i - \mathbf{x}_j)^2$

•
$$\lambda_0 = 0$$
 and $u_0 = \vec{1}$

•
$$\sum_i \lambda_i = \sum_i d_i$$

- Spectral clustering: thresholding first eigenvector [Shi & Malik '00]
- Dimension reduction: projection to first few generalized eigenvectors [Belkin & Niyogi '02, Ng et al '01]

PROOF PT. 1: CHERNOFF BOUND

Lemma

Let \mathbf{x} be drawn from an Ising model with Laplacian \mathbf{L} and p nodes.

$$\mathbb{P}\{\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x} > \delta p\} \le e^{-p}$$

for any $\delta \in (1 + \log(2), 2]$

- strategic use of Markov's inequality
- essential that $\boldsymbol{L}\vec{1}=0$

PROOF PT. 2: MINIMAX RISK

LEMMA

Let $\{\lambda_i\}_{i=1}^p$ be eigenvalues of the Laplacian L, with $\lambda_i \leq \lambda_{i+1}$. For any $\mathbf{x} \in \mathbb{R}^p$ such that $\mathbf{x}^T \mathbf{L} \mathbf{x} < \delta p$,

$$\mathbb{E}\left(\frac{1}{p}||\widehat{\mathbf{x}}_k - \mathbf{x}||^2|\mathbf{x}\right) \leq \min\left(1, \frac{\delta}{\lambda_{k+1}}\right) + \frac{k\sigma^2}{p}$$

- Set up primal problem of maximizing $||\mathcal{P}_{U_{ini}^{\perp}}\mathbf{x}||^2$ subject to constraints
- Low dimensional projection reduces variance

HIERARCHICAL STRUCTURE: BULK SPECTRUM LEMMA (OGIELSKI & STEIN '85)

For the hierarchical structure with L levels, the ℓ^{th} smallest unique eigenvalue ($\ell \in [L]$) is $2^{\ell-1}$ -fold degenerate and given as

$$\lambda_{\ell} = \sum_{i=L-\ell+1}^{L} 2^{i-1} \epsilon_i + 2^{L-\ell} \epsilon_{L-\ell+1}$$

FIGURE: Hierarchical Graph

FIGURE: Hierarchical Weight Matrix

See also: Singh at al. *Detecting Weak but Hierarchically-Structured Patterns in Networks*, '10

HIERARCHICAL STRUCTURE: CONSISTENCY REGION

COROLLARY If $\epsilon_{\ell} = 2^{-\ell(1-\beta)} \forall \ell \leq \gamma \log_2 p + 1$, for constants $\gamma, \beta \in (0, 1)$, and $\epsilon_{\ell} = 0$ otherwise, then the noise threshold for consistent MSE recovery ($R_B = o(1)$) is

$$\sigma^2 = o(p^{\gamma}).$$

FIGURE: Eigenvalue Distribution

 $\label{eq:FIGURE: FIGURE: FIGURE: Estimator Performance} FIGURE: FIG$

LATTICE: BULK SPECTRUM

LEMMA

Let $\lambda_{\bullet}^{\mathsf{L}}$ be an eigenvalue of the Laplacian, L , of the lattice graph in d dimensions with $p = n^d$ vertices, chosen uniformly at random. Then

$$\mathbb{P}\{\lambda_{\bullet}^{\mathsf{L}} \le d\} \le \exp\{-d/8\}.$$
 (2)

 $\label{eq:Figure: Lattice Graph} Figure: \ Lattice \ Graph$

Lattice in *d*-dimensions: $i = (i_1, ..., i_d), j = (j_1, ..., j_d) \in [n]^d$

$$\begin{aligned} W_{i,j} &= w_{i_1,j_1} \delta_{i_2,j_2} \dots \delta_{i_d,j_d} + \\ &\dots &+ w_{i_d,j_d} \delta_{i_1,j_1} \dots \delta_{i_{d-1},j_{d-1}} \end{aligned}$$

- Tensor product of 1-D lattice
- Hoeffding's on eigenvalues

LATTICE: CONSISTENCY REGION

COROLLARY

If n is a constant, $p = n^d$ and $d = 8\gamma \ln p$, for some constant $\gamma \in (0, 1)$, then the noise threshold for consistent MSE recovery ($R_B = o(1)$) is given as:

$$\sigma^2 = o(p^\gamma)$$

 $\label{eq:FIGURE: Eigenvalue Distribution} Figure: Eigenvalue Distribution$

FIGURE: Estimator Performance

Erdös-Rényi Graph: Bulk Spectrum

Lemma

For any α_p increasing in p,

$$\mathbb{P}_{\mathcal{G}}\{\mathbb{P}_{\bullet}\{\lambda_{\bullet} \leq p^{\gamma}/2 - p^{\gamma-1}\} \geq \alpha_{p}p^{-\gamma}\} = \mathcal{O}(1/\alpha_{p})$$
(3)

FIGURE: Erdös-Rényi Graph

- Probability of edge $= p^{\gamma-1}$
- \mathbb{P}_G : random graph measure
- \mathbb{P}_{\bullet} : random eigenvalue index
- $\mathbf{L} = (\bar{d}\mathbf{I} \mathbf{W}) + (\mathbf{D} \bar{d}\mathbf{I})$ with Wielandt-Hoffman thm.
- $\lambda^{\mathbf{W}}$ semi-circular dist.

ERDÖS-RÉNYI GRAPH: CONSISTENCY REGION

COROLLARY Define consistent MSE recovery to be $R_B = o_{\mathbb{P}_c}(1)$,

$$\sigma^2 = o(p^{\gamma}).$$

FIGURE: Estimator Performance

Real-World Graphs

FIGURE: Small World Graph

 $\label{eq:FIGURE: FIGURE: FIGURE: Estimator Performance} FIGURE: FIG$

- Small world graph: proof similar to ER graph
- Scale-free (power law) graph [Chung et al '03]