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Inhibitory Control

the ability to inhibit a prepotent response
or modify a planned course of action
according to behavioral context
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Inhibitory Deficits < Patient Populations

e Psychiatric conditions
+ drug abuse (Nigg et al., 2006)
+ attention-deficit hyperactivity disorder (Alderston et al., 2007)
+ obsessive compulsive disorder (Menzies et al., 2007)
* schizophrenia (Enticott et al., 2008)
® Neurological diseases
+ Parkinson’s (Gauggel et al., 2004)
* Alzheimer’s (Amieva et al., 2004)
® Pharmacology

+ ADHD drug (atomoxetine, NE-reuptake inhibitor) improves stopping in
animals, healthy volunteers, ADHD patients (Chamberlain et al., 2008)
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Stop Signal Task: Computational Challenges

Time

O (infrequent) stop signal

g0 stimulus = @ /

BEEP
Hit right ’ O
button @

Irrézgacl)tnpsnreepotent (from Chamberlain et al, 2006)

® Sensory uncertainty
+ go stimulus: left or right?
+ stop signal: present or absent?
® Action uncertainty
+ 1f go trial, would go response be too late?
+ 1f stop trial, would I stop in time?
® Relative costs of action choices
+ stop error penalty versus go response delay

® Learning (prior information)

+ frequency of stop trials, stop signal onset, penalties
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Inhibitory Control: An Everyday Example

Possible actions
* stop

.go

® Sensory uncertainty
+ 1s that a yellow light or a yellow street lamp?
+ how far away 1s the intersection?
® Action uncertainty
+ 1f go, would light turn red before crossing intersection?
+ 1f stop, would the car stop in time?
® Relative costs of action choices
+ cops/tickets versus temporal delay
® Learning (prior information)
+ duration of yellow light, P(cop), $ ticket




Outline

® Model: brain implements rational (optimal) computations
+ Sensory processing <> Bayesian inference

+ Action selection < optimal stochastic control
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Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to go?

Sensory Processing
Bayesian inference

Track beliefs over time about
e oo stimulus 1dentity (L/R)
e stop signal presence (Y/N)

 frequency of stop trials

based on noisy sensory inputs

Action Selection
Stochastic control

Choose action given belief state
e o0 (L/R), or

* wait

® stop = wait, wait, walit...

based on expected consequences




Sensory Processing = Bayesian Inference



Sensory Processing = Bayesian Inference

Target = L/R?
(Bayes’ Rule)

ply o< piy  fa(z?)



Sensory Processing = Bayesian Inference

Target = L/R? Stop signal present?
(Bayes’ Rule) (Bayes’ Rule)

py o< pl Hfalat)  pioc(pr T+ (1—p () f2(y')



Sensory Processing = Bayesian Inference

Target = L/R? Stop signal present?
(Bayes’ Rule) (Bayes’ Rule)

py o< pl Hfalat)  pioc(pr T+ (1—p () f2(y')

Stop trial?
pz = pi + P{stop signal in future}
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Simulation: Belief State Trajectories

Go Trial
R present
0.8} 7‘
Pgo=R)
0.2 PéStOp=Y) _Ed
L OO 10 20 30 40 50 60 absent

Time

e cvidence accumulates for go stimulus 1dentity (p.)
e stop trial probability (ps) rises (prior expectation) then falls
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® stop-success: pa 1 slowly, ps 1 quickly
e stop-error: pqg T quickly, ps T slowly




Simulation: Belief State Trajectories

present

absent

- SR s " /, 60
stop signal 0 o

® stop-success: pa 1 slowly, ps 1 quickly
® stop-error: pg T quickly, ps 1 slowly
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Action Selection = Stochastic Control

What is optimal? Define global cost function

expected . stop error go error go error
lime cost .
cost (non-canceled) (wrong response) (deadline)
)+ csrP(t<Dl|s=1)+ (1—r)P(t<D,0#d|s=0) + (1—r)P(r=D|s=0)
T: response time s: stop trial
0: chosen target d: true target

r: freq(stop trials)  D: deadline

Policy: x1, ..., x: = {left, right, wait}

Objective: minimize expected (average) cost
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Optimal Policy: Compare Go & Wait Costs

Bellman’s Dynamic Programming Principle (Bellman, 1952)

Optimal policy: repeatedly choose best (least costly) action
Vi(b") = min (Q4(b"), @, (b")) b’ = (py, pl)

Cost of Go action = time cost + stop error + go error (wrong response)

Q,(b") = ct + csp; + (1 — py) min(py, 1 — py)

Cost of wait action = expected future cost or deadline penalty

Vitl(ptTl| bt D>t+1
Qo = VR D
ct+1)+(1-py), D=t+1
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Policy: x1, ..., xi = {left, right, wait}
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Simulation: Go Cost vs. Wait Cost

Action Cost

0.4

0.3}

0.2}

Cost

0.1} :
stop signal __ . —Go (SS)

0 o
1o.1
0 10 20 30 407

Time (steps)

® (Q(go) decreases as go stimulus becomes less ambiguous
® (Q(go) increases after stop-signal onset

¢ Q(go) dips below Q(wait) = go response, otherwise wait




Outline

® Model captures a range of behavioral results
<+ (lassical results
<+ Reward/motivation

+ Contextual effects, sequential effects
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Classical Behavioral Results

Data: RT Model: RT
300¢ _ , 30
| BCO B co
© )
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=
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(from Emeric et al., 2007)

¢ non-canceled SE RT shorter than go RT

® Q(go) needs to dip below Q(wait) early enough to elicit response
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Classical Behavioral Results

Data: error vs. SSD Model: error vs. SSD
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® [onger stop signal delay results in more errors

e More likely Q(go) has already dipped below Q(wait)




Reward/Motivation = Stopping Behavior

Data: (from Leott1 & Wager, 2009)
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Reward/Motivation = Stopping Behavior

Data: (from Leott1 & Wager, 2009)
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Reward/Motivation = Stopping Behavior

Data: (from Leott1 & Wager, 2009)
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Stimulus Statistics = Stopping Behavior

(Emeric et al., 2007)
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Stimulus Statistics = Stopping Behavior

(Emeric et al., 2007)

Data: RT dist Data: Inhibition Function
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Stimulus Statistics = Stopping Behavior

(Emeric et al., 2007)

Data: RT dist Data: Inhibition Function
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More stop trials =
+ 1 go RT, | stop errors

+ | stopping latency (SSRT)

(Leotti & Wager, 2009)
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Immediate Context = Stopping Behavior

Data (from Emric et al., 2007)
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Immediate Context = Stopping Behavior

Data (from Emric et al., 2007)

e Data: dependence on trial history [o—EF ——KW —e—JB ——5sN ——EL]
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Immediate Context = Stopping Behavior

Data (from Emric et al., 2007)

e Data: dependence on trial history %[ =—EF —~KW —o—JB —— SN —o—EL]
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Immediate Context = Stopping Behavior

Data (from Emric et al., 2007)
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Immediate Context = Stopping Behavior

Data (from Emric et al., 2007)

e Data: dependence on trial history *O[-o—EF ——KW —e—JB ——sN ——EL]
+ faster RT after go trials | o -
+ slower after stop trials g 250
200

1 2 8+ 1.2 &

Go Trials Stop Trials
® Model: estimating P(stop) Model

+ tracking P(stop) = sequential effects | I*_'°‘” O med o

+ Inter-subject variability due to

memory/learning rate (a)?

1 2 3+ 1 2 34

Go Trials Stop Trials
P(Tk’Sk) X P(Sk’Tk)((l — CV)P(Tk_l‘Sk_l) -+ OzPO(T — k))
(o = volatility = learning rate)
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Time (steps)

Predictions: Go Difficulty Affects Stopping

Go RTs
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Outline

e Neural implementation

+ Race (drift-diffusion) model neurally plausible approximation




Contextual Effects = Stopping Behavior
Race model Approximation to Optimal DM

Race Model
(Logan & Cowan, 1984)
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Contextual Effects = Stopping Behavior
Race model Approximation to Optimal DM

Race Model Diffusion Model Implementation
(Logan & Cowan, 1984)
Go RT distribution threshold

error fraction
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Contextual Effects = Stopping Behavior
Race model Approximation to Optimal DM

Race Model Diffusion Model Implementation
(Logan & Cowan, 1984)
Go RT distribution threshold

error fraction
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Summary
(Poster T7)

¢ Optimality framework for inhibitory control

% Sensory processing < Bayesian inference

+ decision policy < optimal stochastic control

+ race model as (neurally plausible?) approximation
e Model explains wide range of behavioral data

+ classical results
+ reward/motivation
+ contextual/sequential effects of stop trial frequency

+ prediction: go difficulty affects stopping behavior
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NIPS
Yu Lab

+ Pradeep Shenoy

+ Joseph Schilz

% Crane H Huang, Jake Olson, Katherine Naimark, Jeremy Karnowski

Collaborators

+ Chiang-shan L1 & Jaime Ide, Martin Paulus, Veit Stuphorn, Birte
Forstmann (U. Amsterdam)
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Experimental Paradigm: Stop Signal Task

Time

O \ stop signal
go stimulus = @ O e /
ok | S

Irgglrli)cl)tng;epotent (from Chamberlain et al, 2006)

Go trial (no stop signal): error (misidentified)
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® Model: brain implements rational (optimal) computations
+ Sensory processing <> Bayesian inference

+ Action selection < optimal stochastic control

® Model captures a range of behavioral results
+ Classical results
+ Reward/motivation
+ Contextual effects, sequential effects

e Neural implementation

+ Race (drift-diffusion) model as neurally plausible approximation
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Possible actions
® stop

* 90

e speed up!

B ————
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Current & Future Work

¢ Neural implementation/approximation of optimal DM?

+ 1nteractive race model (Boucher et al, 2007):

fixation/movement neurons in FEF & SC

* theory: other (neural) approximation of optimal DM?

+ experiments: fIMRI (L1 & Ide @ Yale), EEG (Makeig (@ UCSD)
e Effects of SSD distribution on stopping behavior

+ temporal expectancies = stopping errors & SSRt

¢ Population with impaired inhibitory control

+ depressives, stimulant users -- differentiate underlying cause
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Coherence Discrimination task

® Stop trials induce slowing of Go RT
e Higher coherence (easier) induces faster Go response

® 100% coherence similar to standard symbol discrimination
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Results: Harder Go Task Reduces S7op Errors

A. Model B. Data »=5
Inhibition Function Inhibition Function
Lp SRR UTRTROREPPRR JERTRTTPTRERPRERO { p fr——
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0.2
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e Later stop signal = more stop errors
e More difficult go task = fewer stop errors

e Consequence of slower go RT
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e Optimal model: difficult go processing lengthens SSRT
e Race model: go & stop indepghdent processes

e SSRT increase = go & stop processes fundamentally inter-related
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Contextual Effects = Stopping Behavior
Race model Approximation to Optimal DM

Race Model Diffusion Model Implementation
(Logan & Cowan, 1984)
Go RT distribution threshold
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Contextual Effects = Stopping Behavior
Race model Approximation to Optimal DM

Race Model Diffusion Model Implementation
(Logan & Cowan, 1984)
Go RT distribution threshold

error fraction

| | ; >
Go Sto 5 time
< <p 5
SSD SSRT

Rate Threshold SSRT Offset

o N B~ OO

0.1 0.34 0.51 0.69 0.1 0.34 051 0.69 8 0.1 0.34 0.51 0.69 0.1 0.34 0.51 0.69
Stop Frac Stop Frac Stop Frac Stop Frac
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SSRT As a Measure of Inhibitory Control

e SSRT slower 1n populations with inhibitory deficits
+ e.g., ADHD, substance abuse, OCD: longer SSRT
e Behavioral SSRT linked closely to neural activity

+ Neural response 1n frontal eye field, superior colliculus (Hanes et
al., 1996, Pare & Hanes, 2003)

* Suggests a neural mechanism underlying stopping behavior
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Race Model: Wherefore the Race?

e Silent on how SSRT arises from or recruits different facets

of cognitive processing
+ sensory processing, attention, decision-making, learning

e Cannot explain ~ow and why SSRT changes with

experimental parameters

+ motivational factors (Leott1 & Wager, 2009)

+ fraction of stop trials, immediate history (Emeric et al, 2007)

+ go response difficulty (Logan et al, JEP:HPP, 1984)

e Single parameter (SSRT) cannot explain full range of data
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Experiment: Vary Go Discrimination Difficulty

30% coh 5% coh

e Race model: go & stop independent processes

e Optimality model: interaction b/t go & stop processing

= difficulty of go processing improves stopping

® Design: random-dot motion task -- coherence controls difficulty
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Race -- Diffusion Model

. Race Model

Go RT distribution

error fraction

Diffusion Model Implementation

threshold

|

I
Go Stop
SSD SSRT

—:

(Logan & Cowan, 1984)

time

SSD  SSRT

(e.g. Verbruggen & Logan, 2007)



Rational Framework for Stop Signal Task

Fundamental decision: when (whether) to go?

Reasons to go fast Reasons to go slow
Sensory Sensory

e 00 discrimination easy e 00 discrimination difficult
prior knowledge prior knowledge

e stop signal rare e stop signal frequent

costs cOsSts

e time cost high e time cost low

e deadline penalty large e deadline penalty small

e stop error penalty small e stop error penalty large




Decision Policy: Go & Wait Regions of Belief State
Simulation Results

Time = 20 steps
GO + SS + SE
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Neural Coding (FEF) of Instantaneous Action Value?
Data Model
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Data Model
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e FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT
between go and successfully stopped trials



Neural Coding (FEF) of Instantaneous Action Value?

Data

1 = Cancelled —
— No Stop Signal

100 A

0 200 400
C Time from target (ms)
SSRT
100 -
R e

0 100 200 300 400
Time (ms)
(Hanes, Patterson & Schall, 1998)

Model
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|
|
|
1
'F |
|
|
|
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|
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Time (ms)

e FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT
between go and successfully stopped trials

® Model: trajectories of stop/go action values mimic neural activity (B,D)



The Race Model of Stopping

® A race between
independent go and stop

processes (Logan &
Cowan, 1984)

e Winner determines trial
outcome

e Stopping latency (SSRT)
not directly observable

e SSRT estimated from go
RT and stopping errors

—

Signal-respond

/ STOP
l |

0 100 200 300

Time from stimulus (ms)
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Rational Agent: Perception

Ex 1: visual illusions & ideal observer

(Adelson, 1995)
depth
lighting
shadow
spatial regularity

sensory input \ /

visual percept
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Race Model

Go RT distribution
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Race Model -- Diffusion Model

Race Model Inhibition Function
Go RT distribution 1.0
' -
error fraction ct>
Q —
a 0.5
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Sensory Processing = Bayesian Inference

Target = L/R? Stop signal present?
(Bayes’ Rule) (Bayes’ Rule)

ph o pl tfa(zt)  ploc(piTt + (L—pi H)R(D)) f2(y")
Stop trial?
p’; = pi + P{stop signal in future}

R present ﬁ
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Ex: 2AFC motion discrimination
(from Roitman & Shadlen, 2002)
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Rational Agent: Perceptual Discrimination

VS. Accuracy

e Slow response = fewer errors, higher opportunity cost

e What 1s optimal tradeoff? What computations involved?
® Are humans/animals optimal?

¢ Neural implementation?




Reward/Motivation = Stopping Behavior
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Reward/Motivation = Stopping Behavior

Race Model Approximation to Rational Decision-Making
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Rational Agent: Perceptual Discrimination

Oorl

& ®® -

s: Oor 1l
Monitoring Process

Incorporate evidence iteratively (Bayes’ Rule):

p($t|8:1)€lt—1
p($t|flj1, R 73375—1)

¢ = P(s=1|z1,...,24) =

Decision Process

m(xy,...,2¢) — {0,1,cont}
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Optimal decision policy (SPRT; Wald & Wolfowitz, 1948)
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Rational Agent: Perceptual Discrimination

Optimal decision policy (SPRT; Wald & Wolfowitz, 1948)
eattime t, wait 1t b < g,<a
e 50 & choose §=1if g,> b, choose S =0 if ¢,< a

* model of both accuracy and RT

P(r) for s =1

Probability
o
(&) |

T —
P(7) for s =0
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Rational DM Explains Behavioral Data

Fast /v
@ | Threshold " (from Smith & Ratcliff, 2004)
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Rational DM Explains Neural Data

Saccade generation

@ Eye movement

(from Smith & Ratcliff, 2004)



Rational DM Explains Neural Data

LIP = neural SPRT integrator?
(Roitman & Shalden, 2002; Gold & Shadlen, 2004)

Saccade generation LIP Response & Coherence

SC4'

@ Eye movement

(from Smith & Ratcliff, 2004)
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Rational Agent: Perceptual Discrimination

Problem: sequential decision-making
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Rational Agent: Perceptual Discrimination

Problem: sequential decision-making
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