A Rational Decision-Making Framework for Inhibitory Control (Poster T7)

Pradeep Shenoy Rajesh Rao Angela J. Yu University of California, San Diego University of Washington

Inhibitory Control

the ability to inhibit a prepotent response or modify a planned course of action according to behavioral context

• Psychiatric conditions

- drug abuse (Nigg et al., 2006)
- attention-deficit hyperactivity disorder (Alderston et al., 2007)
- obsessive compulsive disorder (Menzies et al., 2007)
- schizophrenia (Enticott et al., 2008)

• Psychiatric conditions

- drug abuse (Nigg et al., 2006)
- attention-deficit hyperactivity disorder (Alderston et al., 2007)
- obsessive compulsive disorder (Menzies et al., 2007)
- schizophrenia (Enticott et al., 2008)

• Neurological diseases

- Parkinson's (Gauggel et al., 2004)
- Alzheimer's (Amieva et al., 2004)

• Psychiatric conditions

- drug abuse (Nigg et al., 2006)
- attention-deficit hyperactivity disorder (Alderston et al., 2007)
- obsessive compulsive disorder (Menzies et al., 2007)
- schizophrenia (Enticott et al., 2008)

• Neurological diseases

- Parkinson's (Gauggel et al., 2004)
- Alzheimer's (Amieva et al., 2004)

• Pharmacology

 ADHD drug (atomoxetine, NE-reuptake inhibitor) improves stopping in animals, healthy volunteers, ADHD patients (Chamberlain et al., 2008)

Stop trial: correct (canceled response)

Stop trial: correct (canceled response)

Stop trial: error (non-canceled response)

Stop trial: error (non-canceled response)

Go trial (no stop signal): error (timeout)

Go trial (no stop signal): error (timeout)

• Sensory uncertainty

- * go stimulus: left or right?
- * stop signal: present or absent?

- Sensory uncertainty
- * go stimulus: left or right?
- * stop signal: present or absent?
- Action uncertainty
 - if go trial, would go response be too late?
- * if stop trial, would I stop in time?

- Sensory uncertainty
- * go stimulus: left or right?
- * stop signal: present or absent?
- Action uncertainty
 - if go trial, would go response be too late?
- * if stop trial, would I stop in time?
- Relative costs of action choices
- stop error penalty versus go response delay

- Sensory uncertainty
- * go stimulus: left or right?
- * stop signal: present or absent?
- Action uncertainty
 - if go trial, would go response be too late?
 - * if stop trial, would I stop in time?
- Relative costs of action choices
 - stop error penalty versus go response delay
- Learning (prior information)
- frequency of stop trials, stop signal onset, penalties

Possible actionsstop

• go

Possible actions
stop
go

• Sensory uncertainty

- * is that a yellow light or a yellow street lamp?
- * how far away is the intersection?

Possible actions

• stop

• go

• Sensory uncertainty

- * is that a yellow light or a yellow street lamp?
- * how far away is the intersection?

Action uncertainty

- * if go, would light turn red before crossing intersection?
- * if stop, would the car stop in time?

Possible actions

• stop

• go

• Sensory uncertainty

- * is that a yellow light or a yellow street lamp?
- * how far away is the intersection?

• Action uncertainty

- * if go, would light turn red before crossing intersection?
- * if stop, would the car stop in time?
- Relative costs of action choices
 - cops/tickets versus temporal delay

Possible actions

• stop

• go

• Sensory uncertainty

- * is that a yellow light or a yellow street lamp?
- * how far away is the intersection?

Action uncertainty

- * if go, would light turn red before crossing intersection?
- * if stop, would the car stop in time?
- Relative costs of action choices
 - cops/tickets versus temporal delay
- Learning (prior information)
 - duration of yellow light, P(cop), \$ ticket

Outline

• Model: brain implements rational (optimal) computations

- ★ Sensory processing ⇔ Bayesian inference
- Action selection ⇔ optimal stochastic control
- Model captures a range of behavioral results
 - Classical results
 - Reward/motivation
 - Contextual effects, sequential effects
- Neural implementation
 - Race (drift-diffusion) model as neurally plausible approximation

Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to **go**?

Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to **go**?

Sensory Processing

Bayesian inference

Track beliefs over time about

- go stimulus identity (L/R)
- *stop* signal presence (Y/N)
- frequency of stop trials

based on *noisy sensory inputs*

Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to **go**?

Sensory Processing Bayesian inference

Action Selection Stochastic control

Track beliefs over time about

- go stimulus identity (L/R)
- *stop* signal presence (Y/N)
- frequency of stop trials

based on *noisy sensory inputs*

Choose action given belief state

- *go* (L/R), or
- wait
- *stop* = *wait*, *wait*, *wait*...

based on *expected consequences*

Target = L/R? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t)$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t) = p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$

Stop trial? $p_{s}^{t} = p_{z}^{t} + P\{\text{stop signal in future}\}$

Simulation: Belief State Trajectories

• evidence accumulates for go stimulus identity (p_d)

- evidence accumulates for go stimulus identity (p_d)
- stop trial probability (p_s) rises (prior expectation) then falls

What is optimal? Define global cost function

 $L_{\pi} = c \langle \tau \rangle + c_s r P(\tau < D | s = 1) + (1 - r) P(\tau < D, \delta \neq d | s = 0) + (1 - r) P(\tau = D | s = 0)$

 τ : response times: stop trial δ : chosen targetd: true targetr: freq(stop trials)D: deadline

τ: response time	s: stop trial
δ: chosen target	d: true target
<i>r</i> : freq(stop trials)	D: deadline

τ: response time	s: stop trial
δ: chosen target	d: true target
<i>r</i> : freq(stop trials)	D: deadline

τ: response time	s: stop trial
δ: chosen target	d: true target
<i>r</i> : freq(stop trials)	D: deadline

τ: response time	s: stop trial
δ: chosen target	d: true target
<i>r</i> : freq(stop trials)	D: deadline

τ: response time	s: stop trial
δ: chosen target	d: true target
<i>r</i> : freq(stop trials)	D: deadline

What is optimal? Define global cost function

 τ : response times: stop trial δ : chosen targetd: true targetr: freq(stop trials)D: deadline

Policy: $x_1, ..., x_t \Rightarrow \{left, right, wait\}$

What is optimal? Define global cost function

 τ : response times: stop trial δ : chosen targetd: true targetr: freq(stop trials)D: deadline

Policy: $x_1, ..., x_t \Rightarrow \{left, right, wait\}$

Objective: minimize expected (average) cost

$$\mathbf{b}^t = (p_d^t, p_s^t)$$

Bellman's Dynamic Programming Principle (Bellman, 1952)

Optimal policy: repeatedly choose best (least costly) action

$$V^{t}(\mathbf{b}^{t}) = \min \left(Q_{g}^{t}(\mathbf{b}^{t}), Q_{w}^{t}(\mathbf{b}^{t}) \right) \qquad \mathbf{b}^{t} = \left(p_{d}^{t}, p_{s}^{t} \right)$$

Bellman's Dynamic Programming Principle (Bellman, 1952)

Optimal policy: repeatedly choose best (least costly) action

$$V^{t}(\mathbf{b}^{t}) = \min \left(Q_{g}^{t}(\mathbf{b}^{t}), Q_{w}^{t}(\mathbf{b}^{t})\right) \quad \mathbf{b}^{t} = \left(p_{d}^{t}, p_{s}^{t}\right)$$

Cost of Go action = time cost + stop error + go error (wrong response) $Q_g^t(\mathbf{b}^t) = ct + c_s p_s^t + (1 - p_s^t) \min(p_d^t, 1 - p_d^t)$

Bellman's Dynamic Programming Principle (Bellman, 1952)

Optimal policy: repeatedly choose best (least costly) action

$$V^{t}(\mathbf{b}^{t}) = \min \left(Q_{g}^{t}(\mathbf{b}^{t}), Q_{w}^{t}(\mathbf{b}^{t})\right) \quad \mathbf{b}^{t} = \left(p_{d}^{t}, p_{s}^{t}\right)$$

Cost of Go action = time cost + stop error + go error (wrong response) $Q_g^t(\mathbf{b}^t) = ct + c_s p_s^t + (1 - p_s^t) \min(p_d^t, 1 - p_d^t)$

Cost of wait action = expected future cost or deadline penalty

$$Q_w^t(\mathbf{b}^t) = \begin{cases} \langle V^{t+1}(\mathbf{b}^{t+1}|\mathbf{b}^t), & D > t+1 \\ c(t+1) + (1-p_s^t), & D = t+1 \end{cases}$$

Optimal Policy: Belief State \Rightarrow *Go* & *Wait* **Regions**

Policy: $x_1, ..., x_t \Rightarrow \{left, right, wait\}$

Optimal Policy: Belief State \Rightarrow *Go* & *Wait* **Regions**

Policy: $x_1, ..., x_t \Rightarrow \{left, right, wait\}$

Go & wait regions

Optimal Policy: Belief State \Rightarrow *Go* & *Wait* **Regions**

Policy: $x_1, ..., x_t \Rightarrow \{left, right, wait\}$

Go & wait regions

- Q(go) decreases as go stimulus becomes less ambiguous
- Q(go) increases after stop-signal onset
- Q(go) dips below $Q(wait) \Rightarrow go$ response, otherwise wait

Outline

- Model: brain implements rational (optimal) computations
 - Monitoring process Bayesian inference
 - Decision process optimal stochastic control
- Model captures a range of behavioral results
 - Classical results
 - Reward/motivation
 - Contextual effects, sequential effects
- Neural implementation
 - Race (drift-diffusion) model neurally plausible approximation

- non-canceled SE RT shorter than go RT
- Q(go) needs to dip below Q(wait) early enough to elicit response

- Longer stop signal delay results in more errors
- More likely Q(go) has already dipped below Q(wait)

Reward/Motivation \Rightarrow **Stopping Behavior**

Reward/Motivation \Rightarrow **Stopping Behavior**

Reward/Motivation \Rightarrow **Stopping Behavior**

Race model as approximation to optimal decision-making

Stimulus Statistics \Rightarrow **Stopping Behavior**

Stimulus Statistics \Rightarrow **Stopping Behavior**

Stimulus Statistics ⇒ **Stopping Behavior**

Immediate Context \Rightarrow **Stopping Behavior**

Immediate Context ⇒ **Stopping Behavior**

- Data: dependence on trial history
 - faster RT after go trials
 - slower after stop trials

Immediate Context ⇒ **Stopping Behavior**

- Data: dependence on trial history
 - faster RT after go trials
 - slower after stop trials

• Model: estimating P(stop)

Immediate Context ⇒ **Stopping Behavior**

Immediate Context \Rightarrow **Stopping Behavior**

3+

3+

2

2

- Data (from Emric et al., 2007) **Data: dependence on trial history** 350 ---- EF ----- KW ----- JB ----- SN ----- EL (ms) 250 faster RT after go trials slower after stop trials * 200 3+ 2 Go Trials Stop Trials Model **Model:** estimating P(stop) 36 * tracking $P(stop) \Rightarrow$ sequential effects 34 inter-subject variability due to * memory/learning rate (α)? 26 24 3+2 Stop Trials Go Trials
 - $P(r_k|\mathbf{s}_k) \propto P(s_k|r_k)((1-\alpha)P(r_{k-1}|\mathbf{s}_{k-1}) + \alpha P_0(r-k))$ $(\alpha = volatility = learning rate)$

Prediction: Go Difficulty => Stopping Behavior

Prediction: Go Difficulty => Stopping Behavior

30% coherence

Prediction: Go Difficulty \Rightarrow **Stopping Behavior**

30% coherence

5% coherence

Predictions: Go Difficulty Affects Stopping

- ↓ go RT
- ↑ stop errors
- ↓ **SSRT** (stopping latency)

- Model: brain implements rational (optimal) computations
 - ✤ Monitoring process ⇔ Bayesian inference
 - ◆ Decision process ⇔ optimal stochastic control
- Model captures a range of behavioral results
 - Classical results
 - Reward/motivation
 - Contextual effects, sequential effects
- Neural implementation
 - Race (drift-diffusion) model neurally plausible approximation

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

• Optimality framework for inhibitory control

• Optimality framework for inhibitory control

★ sensory processing ⇔ Bayesian inference

• Optimality framework for inhibitory control

* sensory processing \Leftrightarrow Bayesian inference

* decision policy \Leftrightarrow optimal stochastic control

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation
- Model explains wide range of behavioral data

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation
- Model explains wide range of behavioral data
 - classical results

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation
- Model explains wide range of behavioral data
 - classical results
 - reward/motivation

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation
- Model explains wide range of behavioral data
 - classical results
 - reward/motivation
 - contextual/sequential effects of stop trial frequency

- Optimality framework for inhibitory control
 - ★ sensory processing ⇔ Bayesian inference
 - ★ decision policy ⇔ optimal stochastic control
 - race model as (neurally plausible?) approximation
- Model explains wide range of behavioral data
 - classical results
 - reward/motivation
 - contextual/sequential effects of stop trial frequency
 - prediction: go difficulty affects stopping behavior

- Yu Lab
 - Pradeep Shenoy
 - Joseph Schilz
 - * Crane H Huang, Jake Olson, Katherine Naimark, Jeremy Karnowski

- Yu Lab
 - Pradeep Shenoy
 - Joseph Schilz
 - * Crane H Huang, Jake Olson, Katherine Naimark, Jeremy Karnowski

• Collaborators

 Chiang-shan Li & Jaime Ide, Martin Paulus, Veit Stuphorn, Birte Forstmann (U. Amsterdam)

Experimental Paradigm: Stop Signal Task

Go trial (no stop signal): correct

Experimental Paradigm: Stop Signal Task

Go trial (no stop signal): error (misidentified)

• Model: brain implements rational (optimal) computations

- ★ Sensory processing ⇔ Bayesian inference
- Action selection ⇔ optimal stochastic control

• Model: brain implements rational (optimal) computations

- ★ Sensory processing ⇔ Bayesian inference
- Action selection ⇔ optimal stochastic control
- Model captures a range of behavioral results
 - Classical results
 - Reward/motivation
 - Contextual effects, sequential effects

• Model: brain implements rational (optimal) computations

- ★ Sensory processing ⇔ Bayesian inference
- Action selection ⇔ optimal stochastic control
- Model captures a range of behavioral results
 - Classical results
 - Reward/motivation
 - Contextual effects, sequential effects
- Neural implementation
 - Race (drift-diffusion) model as neurally plausible approximation

Inhibitory Control: An Example

Inhibitory Control: An Example

Possible actions stop

Possible actions stop go

Possible actions

- stop
- go
- speed up!

- Neural implementation/approximation of optimal DM?
 - interactive race model (Boucher et al, 2007):
 fixation/movement neurons in FEF & SC
 - * theory: other (neural) approximation of optimal DM?
 - * experiments: fMRI (Li & Ide @ Yale), EEG (Makeig @ UCSD)

- Neural implementation/approximation of optimal DM?
 - interactive race model (Boucher et al, 2007):
 fixation/movement neurons in FEF & SC
 - * theory: other (neural) approximation of optimal DM?
 - * experiments: fMRI (Li & Ide @ Yale), EEG (Makeig @ UCSD)
- Effects of SSD distribution on stopping behavior
 - ★ temporal expectancies ⇒ stopping errors & SSRt

- Neural implementation/approximation of optimal DM?
 - interactive race model (Boucher et al, 2007):
 fixation/movement neurons in FEF & SC
 - * theory: other (neural) approximation of optimal DM?
 - * experiments: fMRI (Li & Ide @ Yale), EEG (Makeig @ UCSD)
- Effects of SSD distribution on stopping behavior
 - ★ temporal expectancies ⇒ stopping errors & SSRt
- Population with impaired inhibitory control
 - depressives, stimulant users -- differentiate underlying cause

• *Stop* trials induce *slowing* of *Go* RT

- *Stop* trials induce *slowing* of *Go* RT
- Higher coherence (easier) induces faster Go response

- *Stop* trials induce *slowing* of *Go* RT
- Higher coherence (easier) induces faster Go response
- 100% coherence similar to standard symbol discrimination

A. Model

A. Model

A. Model

A. Model

- Later stop signal \Rightarrow more stop errors
- More difficult *go* task \Rightarrow fewer stop errors
- Consequence of slower *go* RT

A. Model

A. Model

• Optimal model: difficult *go* processing lengthens *SSRT*

A. Model

- Optimal model: difficult *go* processing lengthens *SSRT*
- Race model: *go* & *stop* independent processes

A. Model

- Optimal model: difficult *go* processing lengthens *SSRT*
- Race model: *go* & *stop* independent processes
- **SSRT** increase \Rightarrow **go** & **stop** processes fundamentally inter-related

A. Model

- Optimal model: difficult *go* processing lengthens *SSRT*
- Race model: *go* & *stop* independent processes
- **SSRT** increase \Rightarrow **go** & **stop** processes fundamentally inter-related

Race Model

(Logan & Cowan, 1984)

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

Contextual Effects ⇒ **Stopping Behavior** Race model Approximation to Optimal DM

SSRT As a Measure of Inhibitory Control

SSRT As a Measure of Inhibitory Control

- SSRT slower in populations with inhibitory deficits
 - * e.g., ADHD, substance abuse, OCD: longer SSRT

SSRT As a Measure of Inhibitory Control

- SSRT slower in populations with inhibitory deficits
 - * e.g., ADHD, substance abuse, OCD: longer SSRT
- Behavioral SSRT linked closely to neural activity
 - Neural response in frontal eye field, superior colliculus (Hanes et al., 1996, Pare & Hanes, 2003)
 - * Suggests a *neural mechanism* underlying stopping behavior

- Silent on how SSRT arises from or recruits different facets of cognitive processing
 - sensory processing, attention, decision-making, learning

- Silent on how SSRT arises from or recruits different facets of cognitive processing
 - sensory processing, attention, decision-making, learning
- Cannot explain *how* and *why* SSRT changes with experimental parameters
 - motivational factors (Leotti & Wager, 2009)
 - fraction of stop trials, immediate history (Emeric et al, 2007)
 - * go response difficulty (Logan et al, JEP:HPP, 1984)

- Silent on how SSRT arises from or recruits different facets of cognitive processing
 - sensory processing, attention, decision-making, learning
- Cannot explain *how* and *why* SSRT changes with experimental parameters
 - motivational factors (Leotti & Wager, 2009)
 - fraction of stop trials, immediate history (Emeric et al, 2007)
 - * go response difficulty (Logan et al, JEP:HPP, 1984)
- Single parameter (SSRT) cannot explain full range of data

• Race model: *go* & *stop* independent processes

- Race model: *go* & *stop* independent processes
- Optimality model: interaction b/t *go* & *stop* processing
 ⇒ difficulty of *go* processing improves stopping

- Race model: *go* & *stop* independent processes
- Optimality model: interaction b/t *go* & *stop* processing
 ⇒ difficulty of *go* processing improves stopping
- Design: *random-dot motion task* -- coherence controls difficulty
Experiment: Vary Go Discrimination Difficulty


```
30% coh
```


- Race model: *go* & *stop* independent processes
- Optimality model: interaction b/t *go* & *stop* processing
 ⇒ difficulty of *go* processing improves stopping
- Design: *random-dot motion task --* coherence controls difficulty

Race -- Diffusion Model

(Logan & Cowan, 1984)

Race -- Diffusion Model

(Logan & Cowan, 1984)

(e.g. Verbruggen & Logan, 2007)

Rational Framework for Stop Signal Task

Fundamental decision: when (whether) to go?

Reasons to go fast

sensory

• go discrimination easy

prior knowledge

• stop signal rare

costs

- time cost high
- deadline penalty large
- stop error penalty small

Reasons to go slow

sensory

• go discrimination difficult

prior knowledge

• stop signal frequent

costs

- time cost low
- deadline penalty small
- stop error penalty large

Decision Policy: Go & Wait Regions of Belief State **Simulation Results**

20 SS SE GO 15 P(d) counts 10 5 0 0.25 0.5 0.75 P(s)

Time = 20 steps

Neural Coding (FEF) of Instantaneous Action Value?

D

Neural Coding (FEF) of Instantaneous Action Value?

• FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT between go and successfully stopped trials

Neural Coding (FEF) of Instantaneous Action Value?

- FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT between go and successfully stopped trials
- Model: trajectories of stop/go action values mimic neural activity (B,D)

The Race Model of Stopping

- A race between independent *go* and *stop* processes (Logan & Cowan, 1984)
- Winner determines trial outcome
- Stopping latency (SSRT) not directly observable
- SSRT estimated from go RT and stopping errors

Rational Agent: Perception

Ex 1: visual illusions & ideal observer

Rational Agent: Perception

Ex 1: visual illusions & ideal observer

Rational Agent: Perception

Ex 1: visual illusions & ideal observer

visual percept

Target = L/R? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t)$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule)

 $p_d^t \propto p_d^{t-1} f_d(x^t) = p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$

Stop trial? $p_{s}^{t} = p_{z}^{t} + P\{\text{stop signal in future}\}$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$

Stop trial? $p_{s}^{t} = p_{z}^{t} + P\{\text{stop signal in future}\}$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$ **Stop trial?** $p_s^t = p_z^t + P\{\text{stop signal in future}\}$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$ **Stop trial?** $p_s^t = p_z^t + P\{\text{stop signal in future}\}$

R present P(stop)P(go)Time (ms) Time (ms)

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$ **Stop trial?** $p_s^t = p_z^t + P\{\text{stop signal in future}\}$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$ **Stop trial?** $p_{s}^{t} = p_{z}^{t} + P\{\text{stop signal in future}\}$

Target = L/R? (Bayes' Rule)

Stop signal present? (Bayes' Rule) $p_d^t \propto p_d^{t-1} f_d(x^t) \quad p_z^t \propto (p_z^{t-1} + (1 - p_z^{t-1})h(t)) f_z(y^t)$ **Stop trial?** $p_{s}^{t} = p_{z}^{t} + P\{\text{stop signal in future}\}$

Ex: 2AFC motion discrimination

(from Roitman & Shadlen, 2002)

Ex: 2AFC motion discrimination

(from Roitman & Shadlen, 2002)

30% coh

Ex: 2AFC motion discrimination

(from Roitman & Shadlen, 2002)

30% coh

5% coh

Ex: 2AFC motion discrimination

(from Roitman & Shadlen, 2002)

30% coh

5% coh

Speed

VS.

• Slow response \Rightarrow fewer errors, higher opportunity cost

- Slow response \Rightarrow fewer errors, higher opportunity cost
- What is optimal tradeoff? What computations involved?

- Slow response \Rightarrow fewer errors, higher opportunity cost
- What is optimal tradeoff? What computations involved?
- Are humans/animals optimal?

- Slow response \Rightarrow fewer errors, higher opportunity cost
- What is optimal tradeoff? What computations involved?
- Are humans/animals optimal?
- Neural implementation?
Reward/Motivation \Rightarrow **Stopping Behavior**

Reward/Motivation \Rightarrow **Stopping Behavior**

Race Model Approximation to Rational Decision-Making

Monitoring Process

Incorporate evidence iteratively (Bayes' Rule):

$$q_t \triangleq P(s=1|x_1,\ldots,x_t) = \frac{p(x_t|s=1)q_{t-1}}{p(x_t|x_1,\ldots,x_{t-1})}$$

Monitoring Process

Incorporate evidence iteratively (Bayes' Rule):

$$q_t \triangleq P(s=1|x_1,\ldots,x_t) = \frac{p(x_t|s=1)q_{t-1}}{p(x_t|x_1,\ldots,x_{t-1})}$$

Decision Process

$$\pi(x_1,\ldots,x_t)\to\{0,1,\mathrm{cont}\}$$

- at time t, *wait* if $b < q_t < a$
- **go** & choose $\hat{s} = 1$ if $q_t > b$, choose $\hat{s} = 0$ if $q_t < a$

- at time t, *wait* if $b < q_t < a$
- **go** & choose $\hat{s} = 1$ if $q_t > b$, choose $\hat{s} = 0$ if $q_t < a$

- at time t, *wait* if $b < q_t < a$
- **go** & choose $\hat{s} = 1$ if $q_t > b$, choose $\hat{s} = 0$ if $q_t < a$

- at time t, *wait* if $b < q_t < a$
- **go** & choose $\hat{s} = 1$ if $q_t > b$, choose $\hat{s} = 0$ if $q_t < a$
- model of both accuracy and RT

Rational DM Explains Behavioral Data

Rational DM Explains Neural Data

Saccade generation

(from Smith & Ratcliff, 2004)

Rational DM Explains Neural Data

LIP = neural SPRT integrator?

(Roitman & Shalden, 2002; Gold & Shadlen, 2004)

Saccade generation

(from Smith & Ratcliff, 2004)

LIP Response & Coherence

