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What is Inhibitory Control?

Inhibitory Control
the ability to inhibit a prepotent response

or modify a planned course of action
according to behavioral context
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Inhibitory Deficits ⇔ Patient Populations
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• Psychiatric conditions
✤ drug abuse (Nigg et al., 2006)
✤ attention-deficit hyperactivity disorder (Alderston et al., 2007)
✤ obsessive compulsive disorder (Menzies et al., 2007)
✤ schizophrenia (Enticott et al., 2008)
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• Psychiatric conditions
✤ drug abuse (Nigg et al., 2006)
✤ attention-deficit hyperactivity disorder (Alderston et al., 2007)
✤ obsessive compulsive disorder (Menzies et al., 2007)
✤ schizophrenia (Enticott et al., 2008)

• Neurological diseases
✤ Parkinson’s (Gauggel et al., 2004)
✤ Alzheimer’s (Amieva et al., 2004)

• Pharmacology
✤ ADHD drug (atomoxetine, NE-reuptake inhibitor) improves stopping in 

animals, healthy volunteers, ADHD patients (Chamberlain et al., 2008)

Inhibitory Deficits ⇔ Patient Populations
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Experimental Paradigm: Stop Signal Task

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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Experimental Paradigm: Stop Signal Task

Stop trial: error (non-canceled response)

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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Experimental Paradigm: Stop Signal Task

Stop trial: error (non-canceled response)

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time

Monday, December 20, 2010



Experimental Paradigm: Stop Signal Task

Go trial (no stop signal): error (timeout)

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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Experimental Paradigm: Stop Signal Task

Go trial (no stop signal): error (timeout)

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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Stop Signal Task: Computational Challenges

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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• Sensory uncertainty
✤ go stimulus: left or right? 
✤ stop signal: present or absent?

Stop Signal Task: Computational Challenges

(from Chamberlain et al, 2006)
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• Sensory uncertainty
✤ go stimulus: left or right? 
✤ stop signal: present or absent?

• Action uncertainty
✤ if go trial, would go response be too late?
✤ if stop trial, would I stop in time?
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• Sensory uncertainty
✤ go stimulus: left or right? 
✤ stop signal: present or absent?

• Action uncertainty
✤ if go trial, would go response be too late?
✤ if stop trial, would I stop in time?

• Relative costs of action choices
✤ stop error penalty versus go response delay
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• Sensory uncertainty
✤ go stimulus: left or right? 
✤ stop signal: present or absent?

• Action uncertainty
✤ if go trial, would go response be too late?
✤ if stop trial, would I stop in time?

• Relative costs of action choices
✤ stop error penalty versus go response delay

• Learning (prior information)
✤ frequency of stop trials, stop signal onset, penalties

Stop Signal Task: Computational Challenges

(from Chamberlain et al, 2006)

go stimulus

(infrequent) stop signal

Time
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Possible actions
• stop
• go

Inhibitory Control: An Everyday Example
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Possible actions
• stop
• go

• Sensory uncertainty
✤ is that a yellow light or a yellow street lamp?
✤ how far away is the intersection?

Inhibitory Control: An Everyday Example

Monday, December 20, 2010



Possible actions
• stop
• go

• Sensory uncertainty
✤ is that a yellow light or a yellow street lamp?
✤ how far away is the intersection?

• Action uncertainty
✤ if go, would light turn red before crossing intersection?
✤ if stop, would the car stop in time?
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Possible actions
• stop
• go

• Sensory uncertainty
✤ is that a yellow light or a yellow street lamp?
✤ how far away is the intersection?

• Action uncertainty
✤ if go, would light turn red before crossing intersection?
✤ if stop, would the car stop in time?

• Relative costs of action choices
✤ cops/tickets versus temporal delay
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Possible actions
• stop
• go

• Sensory uncertainty
✤ is that a yellow light or a yellow street lamp?
✤ how far away is the intersection?

• Action uncertainty
✤ if go, would light turn red before crossing intersection?
✤ if stop, would the car stop in time?

• Relative costs of action choices
✤ cops/tickets versus temporal delay

• Learning (prior information)
✤ duration of yellow light, P(cop), $ ticket

Inhibitory Control: An Everyday Example
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• Model: brain implements rational (optimal) computations
✤ Sensory processing ⇔ Bayesian inference

✤ Action selection ⇔ optimal stochastic control

• Model captures a range of behavioral results
✤ Classical results

✤ Reward/motivation

✤ Contextual effects, sequential effects

• Neural implementation

✤ Race (drift-diffusion) model as neurally plausible approximation

Outline
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Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to go?
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Sensory Processing
Bayesian inference

Track beliefs over time about

• go stimulus identity (L/R)

• stop signal presence (Y/N)

• frequency of stop trials

based on noisy sensory inputs

Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to go?
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Sensory Processing
Bayesian inference

Track beliefs over time about

• go stimulus identity (L/R)

• stop signal presence (Y/N)

• frequency of stop trials

based on noisy sensory inputs

Rational Behavior in Stop Signal Task

Fundamental decision: when (whether) to go?

Action Selection
Stochastic control

Choose action given belief state

• go (L/R), or

• wait

• stop = wait, wait, wait...

based on expected consequences
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Sensory Processing = Bayesian Inference
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Target = L/R?
(Bayes’ Rule)

pt
d ∝ pt−1

d fd(xt)

Sensory Processing = Bayesian Inference
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pt
z∝(pt−1

z + (1−pt−1
z )h(t))fz(yt)

Target = L/R?
(Bayes’ Rule)

Stop signal present?
(Bayes’ Rule)

pt
d ∝ pt−1

d fd(xt)

Sensory Processing = Bayesian Inference
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pt
z∝(pt−1

z + (1−pt−1
z )h(t))fz(yt)

Target = L/R?
(Bayes’ Rule)

Stop signal present?
(Bayes’ Rule)

Stop trial?
pt

s = pt
z + P{stop signal in future}

pt
d ∝ pt−1

d fd(xt)

Sensory Processing = Bayesian Inference
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• evidence accumulates for go stimulus identity (pd)
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Simulation: Belief State Trajectories
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Simulation: Belief State Trajectories

• stop-success: pd ↑ slowly, ps ↑ quickly

R

L

present

absent

P(stop=Y)

P(go=R)

Stop Trial

Monday, December 20, 2010



Simulation: Belief State Trajectories

• stop-success: pd ↑ slowly, ps ↑ quickly
• stop-error: pd ↑ quickly, ps ↑ slowly

R

L

present

absent

P(stop=Y)

P(go=R)

Stop Trial

Monday, December 20, 2010



Simulation: Belief State Trajectories

• stop-success: pd ↑ slowly, ps ↑ quickly
• stop-error: pd ↑ quickly, ps ↑ slowly

R
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present

absent

P(stop=Y)

P(go=R)

stop signal

Stop Trial
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d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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expected
cost

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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time cost  expected
cost

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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time cost  stop error
(non-canceled)

expected
cost

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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time cost  stop error
(non-canceled)

go error
(wrong response)

expected
cost

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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time cost  stop error
(non-canceled)

go error
(wrong response)

expected
cost

go error
(deadline)

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control
What is optimal? Define global cost function
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time cost  stop error
(non-canceled)

go error
(wrong response)

expected
cost

go error
(deadline)

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control

Policy: x1, …, xt ⇒ {left, right, wait}

What is optimal? Define global cost function
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time cost  stop error
(non-canceled)

go error
(wrong response)

expected
cost

go error
(deadline)

d: true target
s: stop trial

δ: chosen target
τ: response time

D: deadliner: freq(stop trials)

Lπ = c�τ� + csrP (τ <D|s=1) + (1−r)P (τ <D, δ �=d|s=0) + (1−r)P (τ =D|s=0)

Action Selection = Stochastic Control

Policy: x1, …, xt ⇒ {left, right, wait}

Objective: minimize expected (average) cost

What is optimal? Define global cost function
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Optimal Policy: Compare Go & Wait Costs

bt = (pt
d, p

t
s)
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Optimal Policy: Compare Go & Wait Costs

Optimal policy: repeatedly choose best (least costly) action

V t(bt) = min (Qt
g(b

t), Qt
w(bt))

Bellman’s Dynamic Programming Principle (Bellman, 1952)

bt = (pt
d, p

t
s)
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Optimal Policy: Compare Go & Wait Costs

= time cost + stop error + go error (wrong response)  Cost of Go action

Optimal policy: repeatedly choose best (least costly) action

Qt
g(b

t) = ct + csp
t
s + (1− pt

s) min(pt
d, 1− pt

d)

V t(bt) = min (Qt
g(b

t), Qt
w(bt))

Bellman’s Dynamic Programming Principle (Bellman, 1952)

bt = (pt
d, p

t
s)
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Optimal Policy: Compare Go & Wait Costs

= time cost + stop error + go error (wrong response)  Cost of Go action

= expected future cost or deadline penalty

Optimal policy: repeatedly choose best (least costly) action

Cost of wait action

Qt
g(b

t) = ct + csp
t
s + (1− pt

s) min(pt
d, 1− pt

d)

V t(bt) = min (Qt
g(b

t), Qt
w(bt))

Qt
w(bt) =

�
�V t+1(bt+1|bt�, D > t + 1
c(t + 1) + (1 − pt

s), D = t + 1

Bellman’s Dynamic Programming Principle (Bellman, 1952)

bt = (pt
d, p

t
s)
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Simulation: Go Cost vs. Wait Cost

stop signal
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Simulation: Go Cost vs. Wait Cost

• Q(go) decreases as go stimulus becomes less ambiguous
• Q(go) increases after stop-signal onset

• Q(go) dips below Q(wait) ⇒ go response, otherwise wait

stop signal
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• Model: brain implements rational (optimal) computations
✤ Monitoring process - Bayesian inference

✤ Decision process - optimal stochastic control

• Model captures a range of behavioral results
✤ Classical results
✤ Reward/motivation

✤ Contextual effects, sequential effects

• Neural implementation

✤ Race (drift-diffusion) model neurally plausible approximation

Outline
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Data: RT Model: RT

Classical Behavioral Results

(from Emeric et al., 2007)

Monday, December 20, 2010



Data: RT Model: RT

Classical Behavioral Results

(from Emeric et al., 2007)

• non-canceled SE RT shorter than go RT

• Q(go) needs to dip below Q(wait) early enough to elicit response
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Data: error vs. SSD

Classical Behavioral Results

Model: error vs. SSD 

(from Emric et al., 2007)
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•  Longer stop signal delay results in more errors

•  More likely Q(go) has already dipped below Q(wait)

Data: error vs. SSD

Classical Behavioral Results

Model: error vs. SSD 

(from Emric et al., 2007)
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Data: (from Leotti & Wager, 2009)
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Data: (from Leotti & Wager, 2009)
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Data: (from Leotti & Wager, 2009)
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Stimulus Statistics ⇒ Stopping Behavior
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More stop trials ⇒
✤ ↑ go RT, ↓ stop errors
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More stop trials ⇒
✤ ↑ go RT, ↓ stop errors
✤ ↓ stopping latency (SSRT)
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Data
Immediate Context ⇒ Stopping Behavior

(from Emric et al., 2007)
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• Data: dependence on trial history

✤ faster RT after go trials
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• Data: dependence on trial history

✤ faster RT after go trials

✤ slower after stop trials

• Model: estimating P(stop)
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• Data: dependence on trial history

✤ faster RT after go trials

✤ slower after stop trials

• Model: estimating P(stop)

✤ tracking P(stop) ⇒ sequential effects

(α = volatility = learning rate)

Data
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P (rk|sk) ∝ P (sk|rk)((1− α)P (rk−1|sk−1) + αP0(r − k))
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• Data: dependence on trial history

✤ faster RT after go trials

✤ slower after stop trials

• Model: estimating P(stop)

✤ tracking P(stop) ⇒ sequential effects

✤ inter-subject variability due to 
memory/learning rate (α)?

(α = volatility = learning rate)

Data

Model

P (rk|sk) ∝ P (sk|rk)((1− α)P (rk−1|sk−1) + αP0(r − k))

Immediate Context ⇒ Stopping Behavior
(from Emric et al., 2007)
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Prediction: Go Difficulty ⇒ Stopping Behavior
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Prediction: Go Difficulty ⇒ Stopping Behavior
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• Model: brain implements rational (optimal) computations
✤ Monitoring process ⇔ Bayesian inference

✤ Decision process ⇔ optimal stochastic control

• Model captures a range of behavioral results
✤ Classical results

✤ Reward/motivation

✤ Contextual effects, sequential effects

• Neural implementation

✤ Race (drift-diffusion) model neurally plausible approximation

Outline

Monday, December 20, 2010



Contextual Effects ⇒ Stopping Behavior
Race model Approximation to Optimal DM

(Logan & Cowan, 1984)
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• Optimality framework for inhibitory control
✤ sensory processing ⇔ Bayesian inference

✤ decision policy ⇔ optimal stochastic control

✤ race model as (neurally plausible?) approximation

• Model explains wide range of behavioral data
✤ classical results

✤ reward/motivation

✤ contextual/sequential effects of stop trial frequency

✤ prediction: go difficulty affects stopping behavior

Summary
(Poster T7)
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Experimental Paradigm: Stop Signal Task

(from Chamberlain et al, 2006)

go stimulus

stop signal

Time

Go trial (no stop signal): correct
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Experimental Paradigm: Stop Signal Task

(from Chamberlain et al, 2006)

go stimulus

stop signal

Time

Go trial (no stop signal): error (misidentified)
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• Model: brain implements rational (optimal) computations
✤ Sensory processing ⇔ Bayesian inference

✤ Action selection ⇔ optimal stochastic control

Outline
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✤ Sensory processing ⇔ Bayesian inference

✤ Action selection ⇔ optimal stochastic control

• Model captures a range of behavioral results
✤ Classical results

✤ Reward/motivation

✤ Contextual effects, sequential effects

• Neural implementation

✤ Race (drift-diffusion) model as neurally plausible approximation
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Inhibitory Control: An Example
Possible actions
• stop
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Inhibitory Control: An Example
Possible actions
• stop
• go
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Inhibitory Control: An Example
Possible actions
• stop
• go
• speed up!
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Current & Future Work
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• Neural implementation/approximation of optimal DM?
✤ interactive race model (Boucher et al, 2007):

fixation/movement neurons in FEF & SC

✤ theory: other (neural) approximation of optimal DM?

✤ experiments: fMRI (Li & Ide @ Yale), EEG (Makeig @ UCSD)
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• Neural implementation/approximation of optimal DM?
✤ interactive race model (Boucher et al, 2007):

fixation/movement neurons in FEF & SC

✤ theory: other (neural) approximation of optimal DM?

✤ experiments: fMRI (Li & Ide @ Yale), EEG (Makeig @ UCSD)

• Effects of SSD distribution on stopping behavior
✤ temporal expectancies ⇒ stopping errors & SSRt

• Population with impaired inhibitory control 
✤  depressives, stimulant users -- differentiate underlying cause

Current & Future Work
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B. DataA. Model n=5

• Stop trials induce slowing of Go RT

• Higher coherence (easier) induces faster Go response

• 100% coherence similar to standard symbol discrimination

Results: Basic Effects
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Results: Harder Go Task Reduces Stop Errors

• Later stop signal ⇒ more stop errors

• More difficult go task ⇒ fewer stop errors

• Consequence of slower go RT
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(Logan & Cowan, 1984)

Race Model
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Contextual Effects ⇒ Stopping Behavior
Race model Approximation to Optimal DM

(Logan & Cowan, 1984)
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SSRT As a Measure of Inhibitory Control
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• SSRT slower in populations with inhibitory deficits

✤ e.g., ADHD,  substance abuse, OCD: longer SSRT
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• SSRT slower in populations with inhibitory deficits

✤ e.g., ADHD,  substance abuse, OCD: longer SSRT

• Behavioral SSRT linked closely to neural activity

✤ Neural response in frontal eye field, superior colliculus (Hanes et 
al., 1996, Pare & Hanes, 2003)

✤ Suggests a neural mechanism underlying stopping behavior

SSRT As a Measure of Inhibitory Control

Monday, December 20, 2010



Race Model: Wherefore the Race?
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• Silent on how SSRT arises from or recruits different facets 
of cognitive processing
✤ sensory processing, attention, decision-making, learning

• Cannot explain how and why SSRT changes with 
experimental parameters
✤ motivational factors (Leotti & Wager, 2009)

✤ fraction of stop trials, immediate history (Emeric et al, 2007)

✤ go response difficulty (Logan et al, JEP:HPP, 1984)  

• Single parameter (SSRT) cannot explain full range of data

Race Model: Wherefore the Race?
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Experiment: Vary Go Discrimination Difficulty

Monday, December 20, 2010



• Race model: go & stop independent processes
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• Race model: go & stop independent processes

• Optimality model: interaction b/t go & stop processing 
⇒ difficulty of go processing improves stopping

• Design: random-dot motion task -- coherence controls difficulty

30% coh 5% coh

Experiment: Vary Go Discrimination Difficulty
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Race -- Diffusion Model

(Logan & Cowan, 1984)
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Race -- Diffusion Model

(Logan & Cowan, 1984) (e.g. Verbruggen & Logan, 2007)
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Fundamental decision: when (whether) to go?

Reasons to go slow

sensory
• go discrimination difficult
prior knowledge
• stop signal frequent
costs 

• time cost low

• deadline penalty small

• stop error penalty large

Rational Framework for Stop Signal Task

Reasons to go fast

sensory
• go discrimination easy
prior knowledge
• stop signal rare
costs 

• time cost high

• deadline penalty large

• stop error penalty small
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Simulation Results
Decision Policy: Go & Wait Regions of Belief State
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• FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT 
between go and successfully stopped trials
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• FEF: fixation neurons (A) and movement neurons (C) diverge around SSRT 
between go and successfully stopped trials

• Model: trajectories of stop/go action values mimic neural activity (B,D)
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• A race between 
independent go and stop 
processes (Logan & 
Cowan, 1984)

• Winner determines trial 
outcome

• Stopping latency (SSRT) 
not directly observable

• SSRT estimated from go 
RT and stopping errors

The Race Model of Stopping

SSRT
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Rational Agent: Perception
Ex 1: visual illusions & ideal observer

(Adelson, 1995)
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Rational Agent: Perception

(Adelson, 1995)

depth
lighting
shadow

spatial regularity
....

visual percept

sensory input

Ex 1: visual illusions & ideal observer
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Race Model -- Diffusion Model
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Inhibition Function

Race Model -- Diffusion Model
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Sensory Processing = Bayesian Inference
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Target = L/R?
(Bayes’ Rule)
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Rational Agent: Perceptual Discrimination

Ex: 2AFC motion discrimination
(from Roitman & Shadlen, 2002)
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Speed Accuracyvs.

Rational Agent: Perceptual Discrimination
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• Slow response ⇒ fewer errors, higher opportunity cost
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Speed Accuracyvs.

• Slow response ⇒ fewer errors, higher opportunity cost

• What is optimal tradeoff? What computations involved?

• Are humans/animals optimal?

• Neural implementation?

Rational Agent: Perceptual Discrimination
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Race Model Approximation to Rational Decision-Making
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xτ…x1

s

x2 x3

Rational Agent: Perceptual Discrimination
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Monitoring Process

xτ…x1

s

x2 x3

Incorporate evidence iteratively (Bayes’ Rule):

Rational Agent: Perceptual Discrimination
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Monitoring Process

xτ…x1

s

x2 x3

Incorporate evidence iteratively (Bayes’ Rule):

Decision Process

Rational Agent: Perceptual Discrimination
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Optimal decision policy (SPRT; Wald & Wolfowitz, 1948)

Rational Agent: Perceptual Discrimination
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b

a

• at time t, wait if b < qt < a 

• go & choose    = 1 if qt > b, choose    = 0 if qt < a

Optimal decision policy (SPRT; Wald & Wolfowitz, 1948)

Rational Agent: Perceptual Discrimination
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b

a

• at time t, wait if b < qt < a 

• go & choose    = 1 if qt > b, choose    = 0 if qt < a

• model of both accuracy and RT 

Optimal decision policy (SPRT; Wald & Wolfowitz, 1948)

Rational Agent: Perceptual Discrimination
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Time

Accuracy vs. Coherence RT vs. Coherence

(Roitman & Shadlen, 2002)

Rational DM Explains Behavioral Data
(from Smith & Ratcliff, 2004)
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Saccade generation

Rational DM Explains Neural Data

(from Smith & Ratcliff, 2004)
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Saccade generation

LIP = neural SPRT integrator?
(Roitman & Shalden, 2002; Gold & Shadlen, 2004)

LIP Response & Coherence

Rational DM Explains Neural Data

(from Smith & Ratcliff, 2004)
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Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B

wait

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B

wait

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B A B

wait wait

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B A B A B

wait wait

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making

Monday, December 20, 2010



65

A B A B A B

wait wait

+: more info

Rational Agent: Perceptual Discrimination
Problem: sequential decision-making
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Rational Agent: Perceptual Discrimination
Problem: sequential decision-making
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