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Grounding Language Semantics 

in Perception and Action

• Most work in natural language processing 

deals only with text.

• The meaning of words and sentences is usually 

represented only in terms of other words or 

textual symbols.

• Truly understanding the meaning of language 

requires grounding semantics in perception 

and action in the world.
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Sample Circular Definitions

from WordNet
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sleep (v)

“be asleep”

asleep (adj)

“in a state of sleep”
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Historical Roots of

Ideas on Language Grounding 

• Meaning as Use & Language Games: 
Wittgenstein (1953)

• Symbol Grounding: 
Harnad (1990)



Direct Applications 

of Grounded Language

• Linguistic description of images and video

– Content-based retrieval

– Automated captioning for the visually impaired

– Automated surveillance

• Human Robot Interaction

– Obeying natural-language commands

– Interactive dialog
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Supervised Learning and 

Natural Language Processing (NLP)

• Manual software development of robust NLP 

systems was found to be very difficult and 

inefficient.

• Most current state-of-the-art NLP systems are 

constructed by using machine learning methods 

trained on large supervised corpora.

– POS-tagged text

– Treebanks

– Propbanks

– Sense-tagged text
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Syntactic Parsing of Natural Language

• Produce the correct syntactic parse tree for a 

sentence.

• Train and test on Penn Treebank with tens 

of thousands of manually parsed sentences.
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Word Sense Disambiguation (WSD)

• Determine the proper dictionary sense of a 
word from its sentential context.

– Ellen has a strong interestsense1 in computational 
linguistics.

– Ellen pays a large amount of interestsense4 on her 
credit card.

• Train and test on Senseval corpora 
containing hundreds of disambiguated 
instances of each target word.



Limitations of Supervised Learning

• Constructing supervised training data can be 

difficult, expensive, and time consuming.

• For many problems, machine learning has 

simply replaced the burden of knowledge 

and software engineering with the burden of 

supervised data collection.
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Children do not Learn Language 

from Supervised Data
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Children do not  Learn Language 

from Raw Text
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Unsupervised language 

learning is difficult and 

not an adequate solution 

since much of the 

requisite semantic 

information is not in the 

linguistic signal.
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Learning Language 

from Perceptual Context

• The natural way to learn language is to perceive 

language in the context of its use in the physical and 

social world.

• This requires inferring the meaning of utterances from 

their perceptual context. 

That’s a nice

green block you 

have there!



Grounded Language Learning in

Virtual Environments

• Grounding in the real world requires 

sufficiently capable computer vision and 

robotics.

• Grounding in virtual environments is easier 

since perception and action are simulated.

• Given the prevalence of  virtual 

environments (e.g. in games & education), 

linguistic communication with virtual 

agents also has practical applications.
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Learning to Sportscast
(Chen, Kim, & Mooney, JAIR 2010)

• Learn to sportscast simulated 

Robocup soccer games by 

simply observing a person 

textually commentating them.
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• Starts with ability to perceive events in the 

simulator, but no knowledge of the language.

• Learns to sportscast effectively in both 

English and Korean.



Machine Sportscast in English
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Learning to Follow Directions 

in a Virtual Environment

• Learn to interpret navigation instructions in a 
virtual environment by simply observing 
humans giving and following such directions 
(Chen & Mooney, AAAI-11).

• Eventual goal: Virtual agents in video games 
and educational software that automatically 
learn to take and give instructions in natural 
language.
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Sample Virtual Environment
(MacMahon, et al. AAAI-06)

H – Hat Rack

L – Lamp

E – Easel

S – Sofa

B – Barstool

C - Chair
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Sample Navigation Instructions

•Take your first left.  Go all the 

way down until you hit a dead end.

Start 3

H 4
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End



Sample Navigation Instructions

3

H 4

•Take your first left.  Go all the 

way down until you hit a dead end.

Observed primitive actions:
Forward, Left, Forward, Forward
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End



Sample Navigation Instructions

3

H 4

•Take your first left.  Go all the 

way down until you hit a dead end.

• Go towards the coat hanger and 

turn left at it.  Go straight down the 

hallway and the dead end is 

position 4.

•Walk to the hat rack.  Turn left.  

The carpet should have green 

octagons.  Go to the end of this 

alley. This is p-4.

•Walk forward once.  Turn left.   

Walk forward twice.Observed primitive actions:
Forward, Left, Forward, Forward
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End



Observed Training Instance in Chinese



Executing Test Instance in English
(after training in English)



Statistical Learning and Inference

for Grounded Language

• Use standard statistical methods to train a 

probabilistic model and make predictions.

• Construct a generative model that 

probabilistically generates language from 

observed situations.
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George Box (1919-2013) : 

“All models are wrong, 

but some are useful.”



Probabilistic Generative Model 

for Grounded Language
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PCFGs for 

Grounded Language Generation

• Probabilistic Context-Free Grammars (PCFGs) 

can be used as a generative model for both 

content selection and language generation.

– CFG with probabilistic choice of productions

• Initially demonstrated for Robocup

sportscasting (Börschinger, Jones & Johnson, EMNLP-11).

• Later extended to navigation-instruction 

following by using prior semantic-lexicon 

learning (Kim & Mooney, EMNLP-12).
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Generative Model Training 

for Grounded Language
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Statistical Training with Latent Variables

• Expectation Maximization (EM) is the 

standard method for training probabilistic 

models with latent variables.

• EM for PCFGs is call the Inside-Outside 

algorithm (Lari & Young, 1990).
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Randomly initialize model parameters.

Until convergence do:

E Step: Compute the expected values of the latent   

variables given the observed data.

M Step: Re-estimate the model parameters using 

these expected values and observed data.



Probabilistic Inference 

for Grounded Language
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Probabilistic Inference 

for Grounded Language
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Probabilistic Inference with

Grounded PCFGs

• Determining the most probable parse of a 
sentence also determines its most likely latent 
semantic representation.

• An augmented version of the standard CYK 
CFG parsing algorithm can find the most 
probable parse in O(n3) time using dynamic 
programming.

– Analogous to the Viterbi algorithm for a Hidden 
Markov Model (HMM)



Sample Successful Parse

Instruction: “Place your back against the wall of the ‘T’ 
intersection.  Turn left.  Go forward along the pink-
flowered carpet hall two segments to the 
intersection with the brick hall.  This intersection 
contains a hatrack.  Turn left.  Go forward three 
segments to an intersection with a bare concrete 
hall, passing a lamp.  This is Position 5.”

Parse: Turn ( ),    Verify ( back: WALL ),  Turn ( LEFT ),
Travel ( ),   Verify ( side: BRICK HALLWAY ),
Turn ( LEFT ),  Travel ( steps: 3 ),
Verify ( side: CONCRETE HALLWAY )



Navigation-Instruction Following

Evaluation Data

• 3 maps, 6 instructors, 1-15 followers/direction

Paragraph Single-Sentence

#  Instructions 706 3,236

Avg. # sentences 5.0 (±2.8) 1.0 (±0)

Avg. # words 37.6 (±21.1) 7.8 (±5.1)

Avg. # actions 10.4 (±5.7) 2.1 (±2.4)



End-to-End Execution Evaluation

• Test how well the system follows new directions in 

novel environments.

– Leave-one-map-out cross-validation.

• Strict metric: Correct iff the final position exactly 

matches goal location.

• Lower baseline: 

– Simple probabilistic generative model of executed plans 

without language.

• Upper bounds:

– Supervised semantic parser trained on gold-standard plans.

– Human followers.

– Correct execution of instructions. 34



End-to-End Execution Results

English
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End-to-End Execution Results

English vs. Mandarin Chinese
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Grammar & Training Complexity

38

Data
|Grammar|

# Productions
Time 

(hours)
EM

Iterations

English 16,357 8.77 46

Chinese 15,459 8.05 40
Data



Grounding in the Real World

• Move beyond grounding in simulated 

environments.

• Integrate NLP with computer vision and 

robotics to connect language to perception and 

action in the real world.
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Grounded Language in Robotics
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• Deb Roy at MIT has 

worked on grounded 

language for over a decade.

• He has developed a number 

of robots that learn and use 

grounded language.
Toco Robot from 2003



Real Robots You Can Instruct in

Natural Language

• More recently, a group at MIT has developed 

a robotic forklift that obeys English 

commands (Tellex, et al., AAAI-11).

• Training data was collected in simulation 

using crowdsourcing on Amazon Mechanical 

Turk.

• Uses an existing English parser and direct 

semantic supervision to help learn to map 

sentences to formal robot commands.
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Robotic Forklift NL Instruction Demo 

• Telex Video
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http://www.youtube.com/watch?feature=player_embedded&v=OzWTyH4nGIc


Describing Pictures in Natural Language

• Several projects have explored 

automatically generating sentences that 

describe images.

• Typically trained on captioned/tagged 

images collected from the web, or 

crowdsourced human image descriptions.
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(Rashtchian et al., 2010)



Natural Language Generation for Images
(Kuznetsova et al., ACL-12)

• Trained on 1 million photos from Flickr that 

were filtered so that they contain useful captions.

• Extracts features from images using state-of-the-

art object, scene, and “stuff” recognizers from 

computer vision.

• Composes sentences for novel images by using 

Integer Linear Programming to optimally stitch 

together phrases from similar training images.
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Sample Generated Image Descriptions
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Generating English Descriptions for Videos  
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A person is riding a horse. 



Video Description Research

• A few recent projects integrate visual object 

and activity recognition with NL generation 

to describe videos (Barbu et al., UAI-12, Khan & 

Gotoh, 2012).

• See our AAAI-13 talk:

– Generating Natural-Language Video 

Descriptions Using Text-Mined Knowledge

Niveda Krishnamoorthy

Session 32A: NLP Generation and Translation 

11:50am, Thursday, July 18th
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Connecting Word Meaning to Perception

• Word meanings as symbolic perceptual output

• Multimodal distributional semantics
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Vector-Space (Distributional)

Lexical Semantics

• Represent word meanings as points (vectors) in a 

(high-dimensional) Euclidian space.

• Dimensions encode aspects of the context in which 

the word appears (e.g. how often it co-occurs with 

another specific word).

– “You will know a word by the company it keeps” (Firth)

• Semantic similarity defined as distance between 

points in this space.

• Many specific mathematical models for computing 

dimensions, dimensionality reduction, and similarity.

– Latent Semantic Analysis (LSA)
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Sample Lexical Vector Space
(Reduced to Two Dimensions)
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dog

cat

man
woman

bottle
cup

water

rock

computer

robot



Multimodal Distributional Semantics

• Recent methods combine both linguistic and 

visual contextual features (Feng & Lapata, NAACL-10; 

Bruni et al., 2011;  Silberer & Lapata, EMNLP-12) .

• Use corpus of captioned images to compute co-

occurrence statistics between words and visual 

features extracted from images (e.g. color, 

texture, shape, detected objects).

• Multimodal models predict human judgments of 

lexical similarity better.

– “cherry” more similar to “strawberry” than “orange”
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Recent Spate of Workshops

on Grounded Language

• AAAI-2011 Workshop on Language-Action Tools for 

Cognitive Artificial Agents: Integrating Vision, Action and 

Language

• NIPS-2011 Workshop on Integrating Language and Vision

• NAACL-2012 Workshop on Semantic Interpretation in an 

Actionable Context

• AAAI-2012 Workshop on Grounding Language for 

Physical Systems

• NAACL-2013 Workshop on Vision and Language

• CVPR-2013 Workshop on Language for Vision

• UW-MSR 2013 Summer Institute on Understanding 

Situated Language
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Future Research Challenges

• Using linguistic and text-mined knowledge 

to aid computer vision.

• Active/interactive grounded language 

learning.

• Grounded-language dialog.

• Applications:

– Language-enabled virtual agents

– Language-enabled vision systems

– Language-enabled robots
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Conclusions

• Truly understanding language requires 
connecting it to perception and action.

• Learning from easily obtainable data in which 
language naturally co-occurs with perception 
and action improves NLP, vision, and robotics.

• The time is ripe to integrate language, vision, 
and robotics to address the larger AI problem.
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