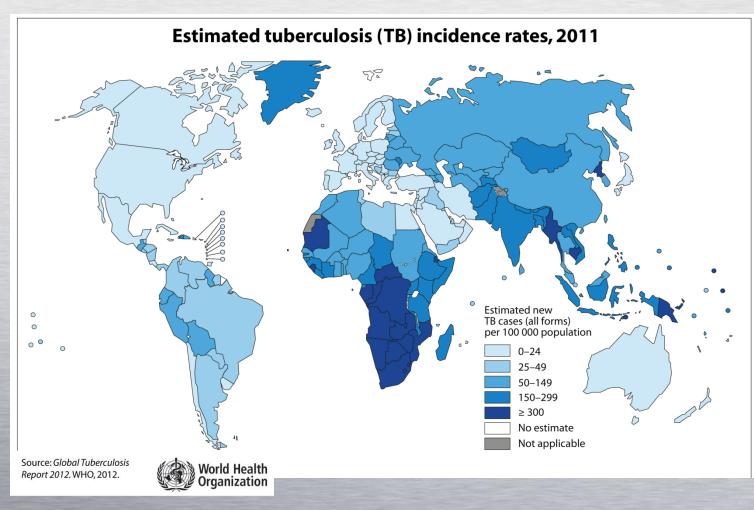
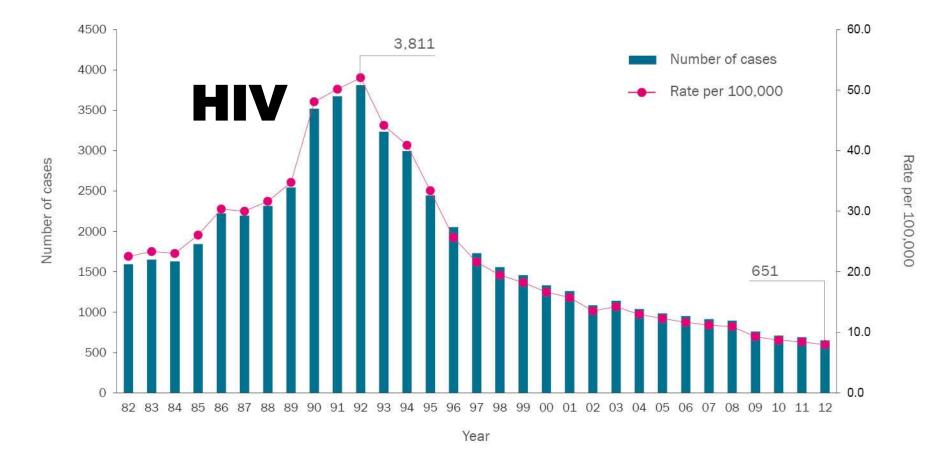
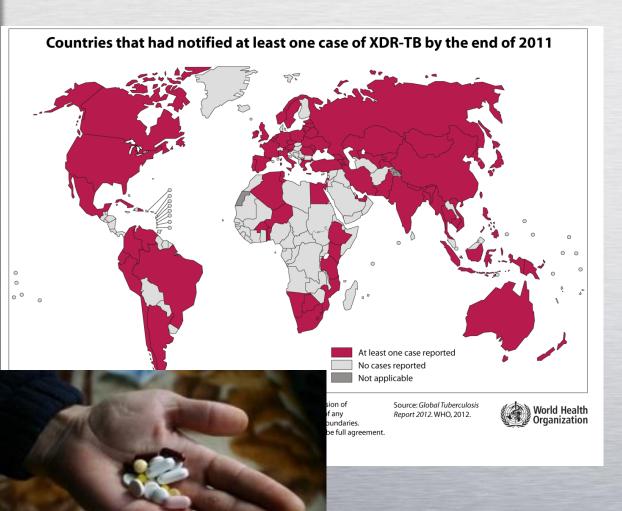

Fighting the Tuberculosis Pandemic using Machine Learning


Kristin P. Bennett Rensselaer Polytechnic Institute TB-Insight Team



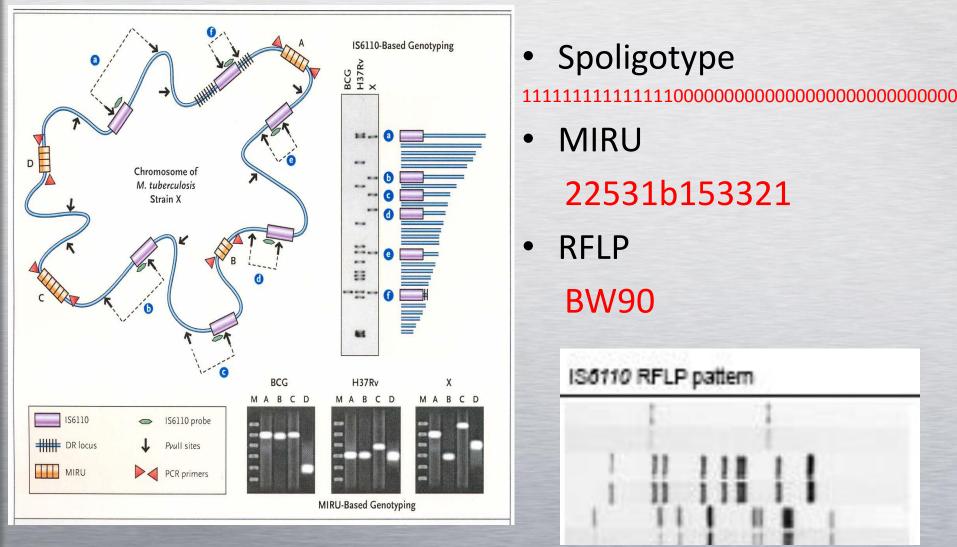
1/3 of World Latently Infected with TB

2.4 Million Deaths per Year

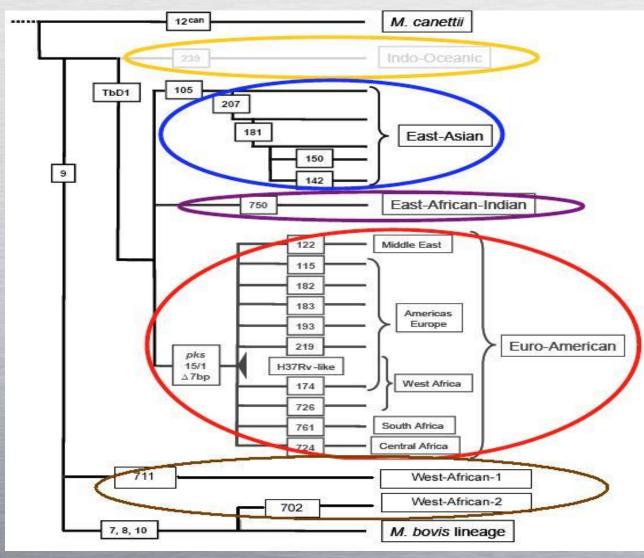

Tuberculosis cases and rates, New York City, 1982-2012

Number of TB Cases in U.S.-born vs. Foreign-born Persons United States, 1993–2011*

Drug Resistance Threat


- Susceptible
- Drug Resistant
- MDR-TB -Multi-Drug Resistant
- XDR-TB -Extremely-Drug Resistant
- TDR-TB?-Totally Drug Resistant

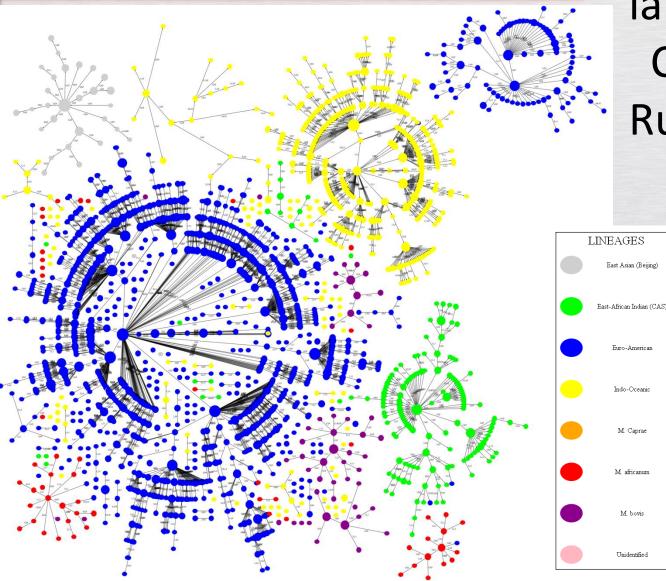
Modern TB Control



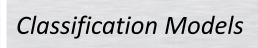
TB Controller: Find source(s) of infection in order to identify people who need treatment and stop future transmission.
 Tools: Contact Investigation DNA Fingerprints of TB bacteria

Two or More DNA fingerprints gathered for every TB Patient in USA

Major Phylogeographic Lineages of the MTBC



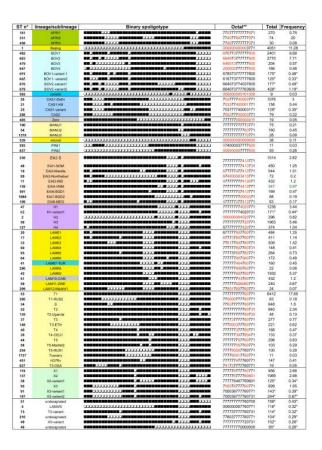
Determined by RD's


Predictable by Spoligotype

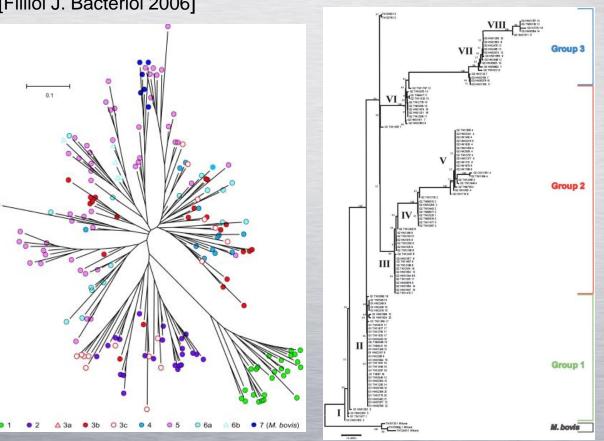
[Gagneux S et al. PNAS 2006]

Spoligotype Genetic Diversity 37K Patients in US – 2004-2008

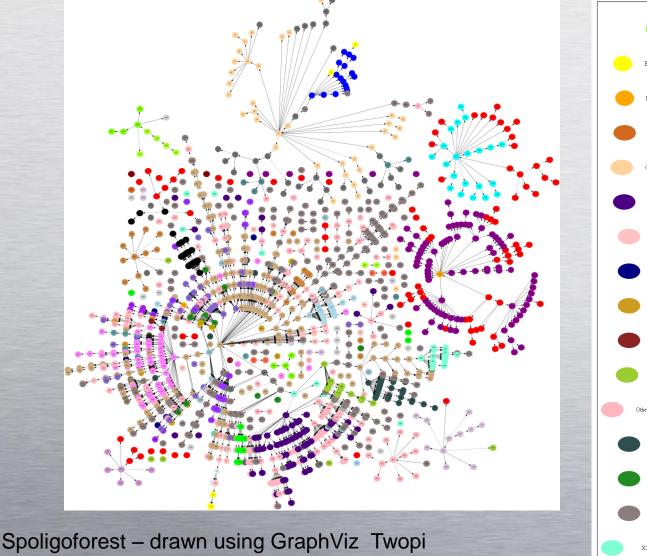
Spoligoforests labeled by CDC Expert Rules



TB-Lineage


- Rule-based model: 2012.
- Bayesian Network: 2010.

Sublineages-varying opinions


62 sublineages based on spoligotype signatures [Brudey et al BMC Microbiol. 2006]

10 groups based on 212 single nucleotide polymorphism (SNP) markers [Filliol J. Bacteriol 2006] 8 groups based on 230 sSNPs [Gutacker Genetics 2002]

What's the story with sublineages?

Data labels - SpolDB4 [Brudey et al 2006]

SPOTCLUST: Hidden-Parent Bayesian Network for Spoligotypes (Vitol et al, 2006) Standard resource for tuberculosis sublineage identification used in over 96 publications.

Strains of *Mycobacterium tuberculosis* from Western Maharashtra, India, Exhibit a High Degree of Diversity and Strain-Specific Associations with Drug Resistance, Cavitary

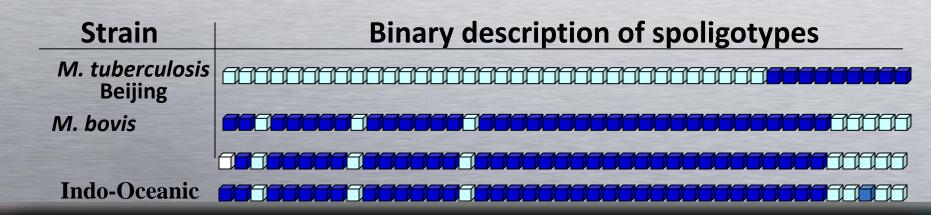
Disease, and Treatment Failure Characterization of multiple and extensively drug resistant *Mycobacterium tuberculosis* isolates with different ofloxacinresistance levels

Distinct clinical and epidemiological features of tuberculosis in New York City caused by the RD^{Rio} Mycobacterium tuberculosis sublineage

 Mycobacterium bovis infection in livestock workers in Ibadan, Nigeria: evidence of occupational exposure

High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening

Whole cell & culture filtrate proteins from prevalent genotypes of *Mycobacterium tuberculosis* provoke better antibody & T cell response than laboratory strain H₃₇Rv

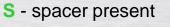

Spoligotyping

Direct repeats (DR) separated by variable spacers

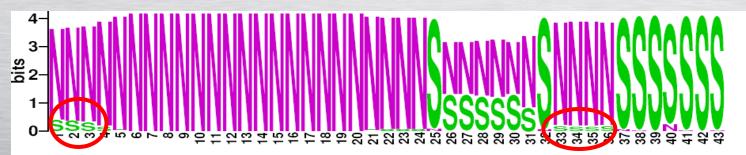
Contiguous on chromosome, order well conserved

- Forty three spacers used
- Presence of a spacer is detected: 1- present (), 0 absent ()

Rule-Based Method: (Sub)Lineage Visual Rules

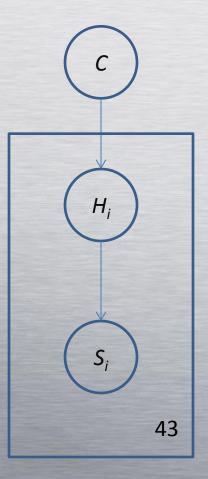

Haarlem 2 approximation approxim

- Determined by human experts.
- Ill-defined.
- Incomplete.
- Frequently ambiguous.
- No precedence.
- May or may not correspond to actual evolutionary groups.


First Try – Naïve Bayes *M. tuberculosis* Haarlem2 Family

Prototype = probabilities

Bernoulli Mixture Model



N - spacer absent

Biology is wrong!!!

Unsupervised Hidden Parent Multivariate Bernoulli Mixture Model

Model child spacer S, given unobserved parent spacer H

With very high probability child matches parent

Children are much more likely to lose spacer than gain

- P(S=1|H=1) = 0.99, P(S=0|H=1) = 0.01
- P(S=0|H=0) = 1-1e-7 P(S=1|H=0) = 1e-7

SPOTCLUST (2006)

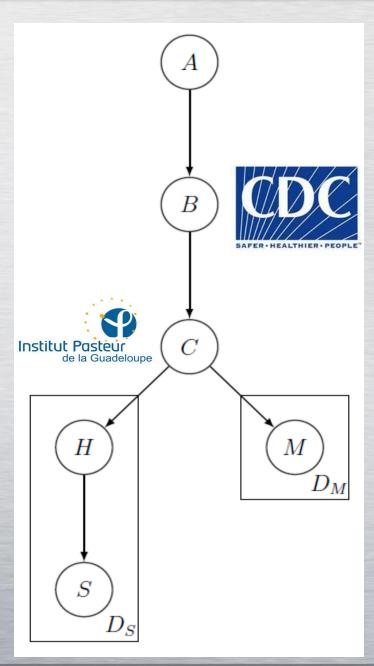
- Unsupervised except
 34 SPOLDB2 Visual Rules
 used to initialize clusters
- Trained using 535 spoligotypes
- Number of sublineages (36) picked by MCCV

Family	Total (n)	Stability	Description	
EAI3	112	0.96		
LAM3	138	0.95		
Haarlem1	236	0.94		
Beijing	985	0.92		
X2	364	0.88		
CAS	283	0.87		
LAM4	146	0.84		
T4	67	0.83		
ХЗ	469	0.81		
EAI5	171	0.80		
M. bovis BCG	109	0.78		
Family34	60	0.76		
Family33	119	0.75		
EAI2	153	0.73		
M. africanum	60	0.71		
Family36	46	0.68		
тз	56	0.67		
LAM9	534	0.67		
LAM8	58	0.63		
Family35	31	0.59		
Haarlem 2	74	0.58		
T1	1084	0.58		
LAM10	73	0.57		
Haarlem3	603	0.50		
H37Rv	122	0.49		
T2	57	0.45		
X1	395	0.41		
LAM7	55	0.40		
EAI1	22	0.40		
EAI4	70	0.34		
s	134	0.27		
LAM1	142	0.24		
LAM2	94	0.16		
LAMS	43	0.15		
M. microti	3	0.08		
LAM6	2	0.02		
	uscit.			· · · 1
	0.9 0	.8 0.7	0.6 0.5 0.4 0.3 (0.2 0.1

New Challenges

- More data: 119,684 isolates from US CDC, NYDOH, NY State DOH, and Institut Pasteur de Guadeloupe, MIRUVNTRPlus
- More types of DNA fingerprints Spoligotypes and MIRU
- More proposed sublineages (70?)
- Putative labels from multiple experts
- Missing Data

Who's Right?



Ctop	Cmid	Csub		
	Bangladesh	EAI6-BGD1		
	Dangiadesii	EAI7-BGD2		
	India	EAI3-IND		
	Manila	EAI2-Manila		
Indo-Oceanic	Mexico	EAI-Mexico		
indo-Oceanic	Nonthaburi	EAI2-nonthaburi		
	Vietnam	EAI4-VNM		
		EAI1-SOM		
	Unknown Mid-level	EAI2		
		EAI8-MDG		
	West African 1	AFRI_2		
$My cobacterium \ a fricanum$	West Antean 1	AFRI_3		
	West African 2	AFRI_1		
		BOV_1		
Mycobacterium bovis	Mycobacterium bovis	BOV_2		
		BOV_3		
Mycobacterium canettii	$My cobacterium \ can ettii$	Canettii		
Mycobacterium caprae	$My cobacterium \ caprae$	Caprae		
Mycobacterium microti	Mycobacterium microti	Microti		
Mycobacterium mungi	My cobacterium mungi	M. mungi		
Maaabaatanium ninninadii	Mucchastonium ninningdii	Pini1		
Mycobacterium pinnipedii	Mycobacterium pinnipedii	Pini2		

Semi-supervised Hierarchical Lineage Model

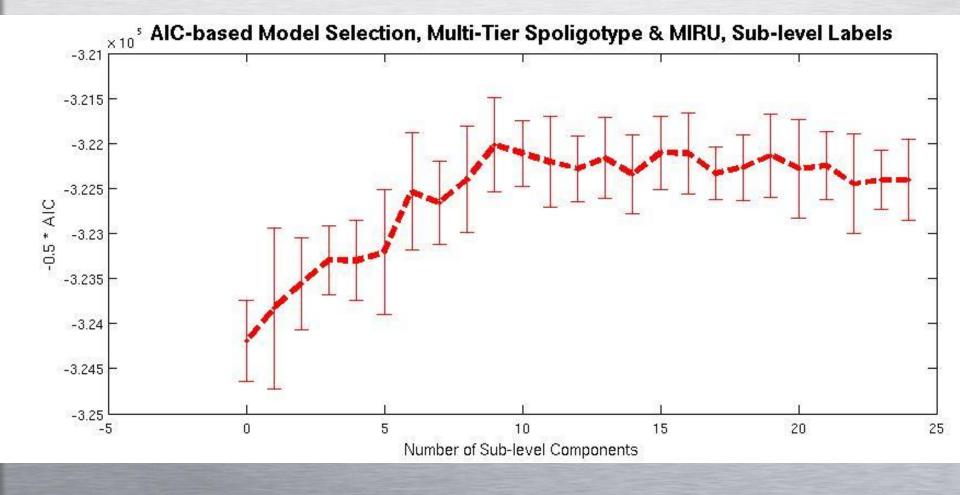
A: 12 Major LineagesB: 22 Mid-level LineagesC: 70 + 9 Sub-lineages

 Estimated 92% Crossvalidated Accuracy

Major Lineage Results

Top Pred. Label	Spoligotype Probabilities
M. africanum	
M. bovis	
M. canettii	
M. caprae	
M. microti	
M. mungi	
M. pinnipedii	
East Asian (Beijing)	
East-African Indian	
Euro-American	
Indo-Oceanic	
Manu	

MIRU Lege

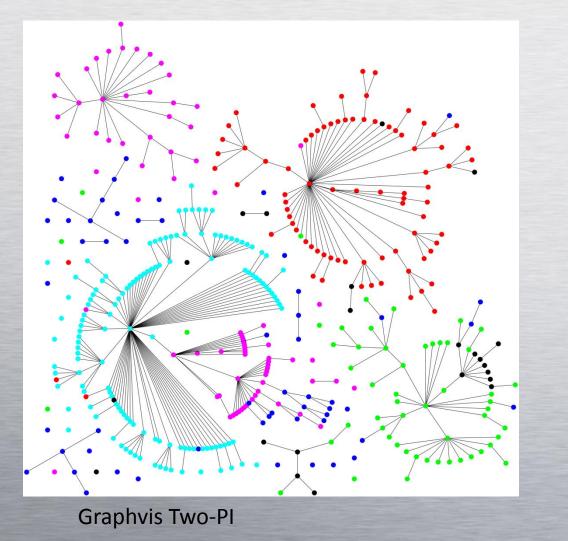

- Balanced
 Classification
 Rate about 98%
- No changes in major lineages
 MANU Modern?

Top Pred. Label	MIRU2	MIRU4	MIRU10	MIRU16	MIRU20	MIRU23	MIRU24	MIRU26	MIRU27	MIRU31	MIRU39	MIRU40
M. africanum												
M. bovis												
M. canettii												
M. caprae												
M. microti												
M. mungi												
M. pinnipedii												
East Asian (Beijing)												
East-African Indian												
Euro-American												
Indo-Oceanic												
Manu												

Sub-level Results

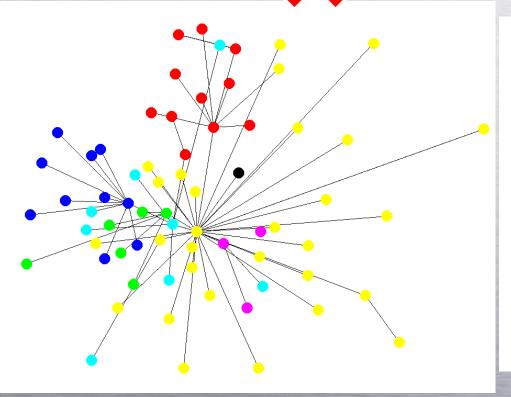
Top Pred. Label	Broh	Mid Pred. Label	Prob.	Sub Pred. Label	Prob.	Size	Spoligotype Probabilities	MIRU2	MIRU4	MIRU10	MIRU16	MIRU20	MIRU23	MIRU24	MIRU26	MIRU27	MIRU31	MIRU39	MIRU40
				AFRI 1	1	1719		MIROZ		MIROIO	MIKOTO	MIROZO	MIROZS	MIRO24	MIRO20	MIRO27	MIROJI	MIROJ	MIKO40
					0.663														
					0.043														
						722													
M. bovis	0.065	M. bovis	1	BOV_1	0.501	4035													
M. bovis	0.065	M. bovis	1			3248													
			1			375													
					0.998														
			1		1	1373													
		M. microti M. mungi	1		0.998														
			1		0.832														
			1		0.165														
		East Asian (Beijing)	1		1	12922													
East-African Indian			1		0.842	4359													
East-African Indian	0.044	East-African Indian	1	CAS2	0.047	286													
East-African Indian			1			552													
	0.617		0.161		0.362														
	0.617		0.161			4282												+	
	0.617		0.161		0.202														
	0.617		0.161			318													
	0.617				0.01	164													
			0.214		0.033														
			0.214		0.522														
			0.214		0.062														
			0.214		0.043														
Euro-American	0.617	Haarlem	0.214	H2	0.056	1086													
					0.018														
	0.617		0.259		0.36	7215													
	0.617		0.259			1048													
	0.617		0.259			313													
	0.617		0.259		0.092	1674 330													
	0.617				0.165	3041													
			0.259		0.018	1050													
	0.617					895													
	0.617					1058													
Euro-American	0.617	LAM	0.259	LAM2	0.084	1585													
	0.617				0.004														
	0.617		0.259			388													
	0.617				0.003														
	0.617				0.003			_											
					0.321														
			0.096		0.184	3620													
	0.617		0.096			14862													
	0.617		0.271		0.091														
	0.617		0.271		0.052														
	0.617		0.271		0.109														
Euro-American	0.617	т	0.271	T-tuscany	0.004	44													
Euro-American	0.617	т	0.271	T3-OSA	0.004	158													
	0.617				0.008														
	0.617		0.271		0.025														
	0.617					224													
	0.617				0.017														
	0.617					454 521												+	
					0.203														
					0.203														
	0.107				0.01	68													
	0.107					113									-				
	0.107					215													
	0.107		0.146	EAI3-IND	0.736	1271													
	0.107					766													
						1036													
						1325													
						287													
						2215													
Manu	0.001	Manu	0.999	OtherSub2	0.989	272													

Model Adds Sublineages but not Mid or Major Lineages



Ten New Putative Sublineages

- Discovers new sublineages and assigns them mid-level lineage
- New lineage characterized by "long" deletions frequently covering "typical" lineage deletions
- Covers many previously unlabeled isolates.


Х	0.161	Xl	0.362	4145	
Х	0.161	X2	0.371	4282	
Х	0.161	Х3	0.202	2574	
Х	0.161	LAM8	0.015	318	
Х	0.161	OtherSub5	0.01	164	
Х	0.161	OtherSub7	0.033	534	

Visualizing X Lineage Spoligoforest

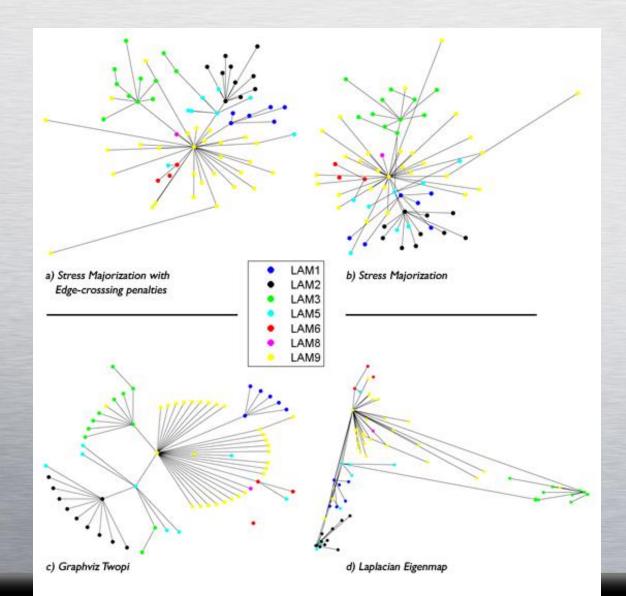
- LAM8
- OtherSub5
- OtherSub7
- X1
- X2
- X3

Multi-Objective Embedding Methods Good visualizations minimize stress and edge crossings

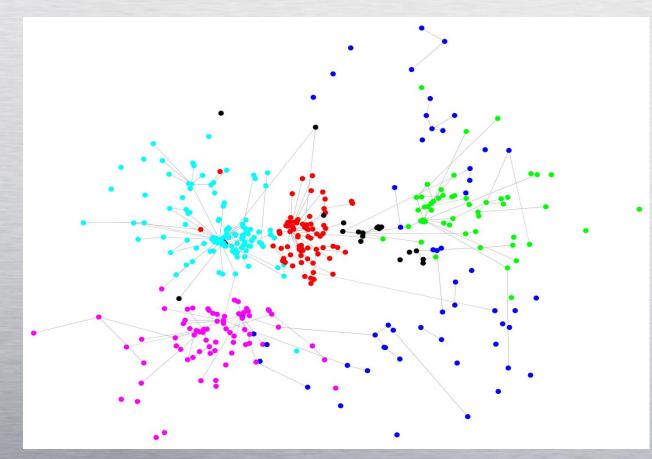
Edge Crossing Constraints as Classification

Multi-Objective Graph Embedding

Add classifier for each potential edge/node crossing parameterized by *U*

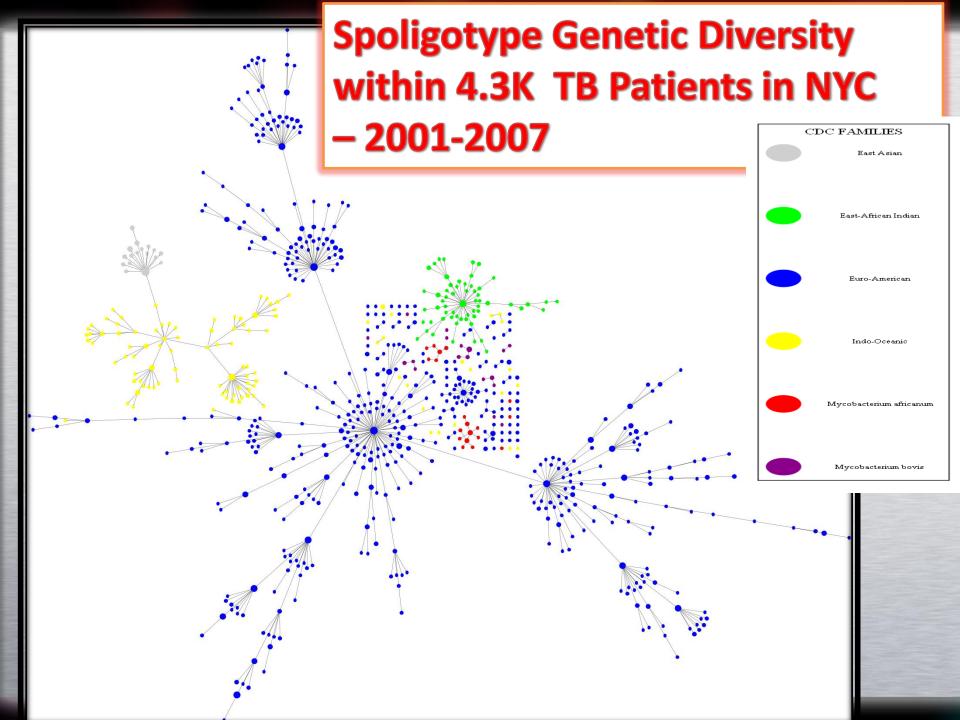

embedding error on X (MDS stress)

+ misclassification error based on U (SVM max margin)


 $\min_{X,u} Stress(X) + \sum_{i=1}^{m} \rho_i [|| (-A_i(X)u_i + 1)_+ ||_1 + || (B_i(X)u_i + 1)_+ ||_1^1]$

Optimize by an alternating algorithm on X, U using scalable classification and embedding algorithms

Comparison: LAM sublineages

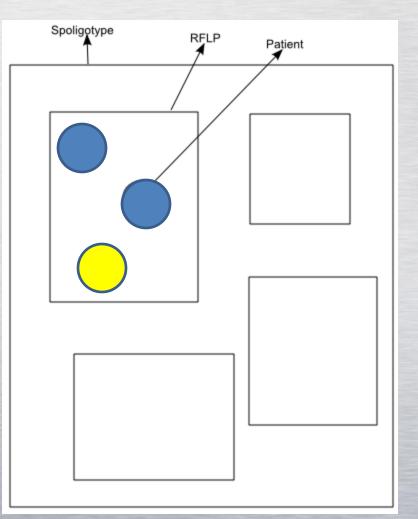

Visualizing X Lineage adding MIRU and Spoligotype distances

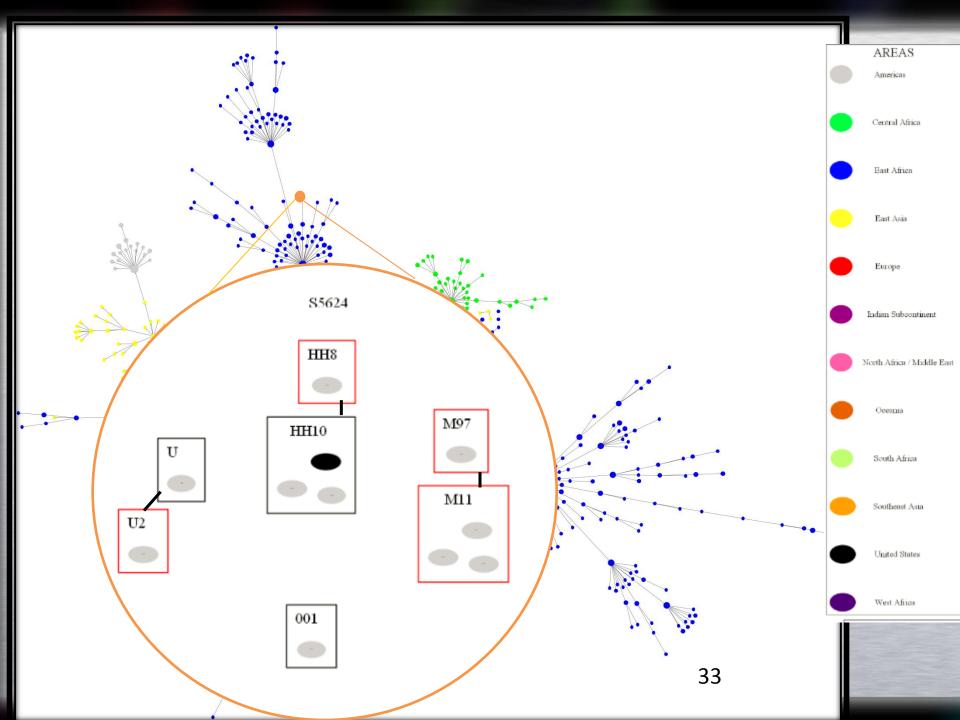
LAM8

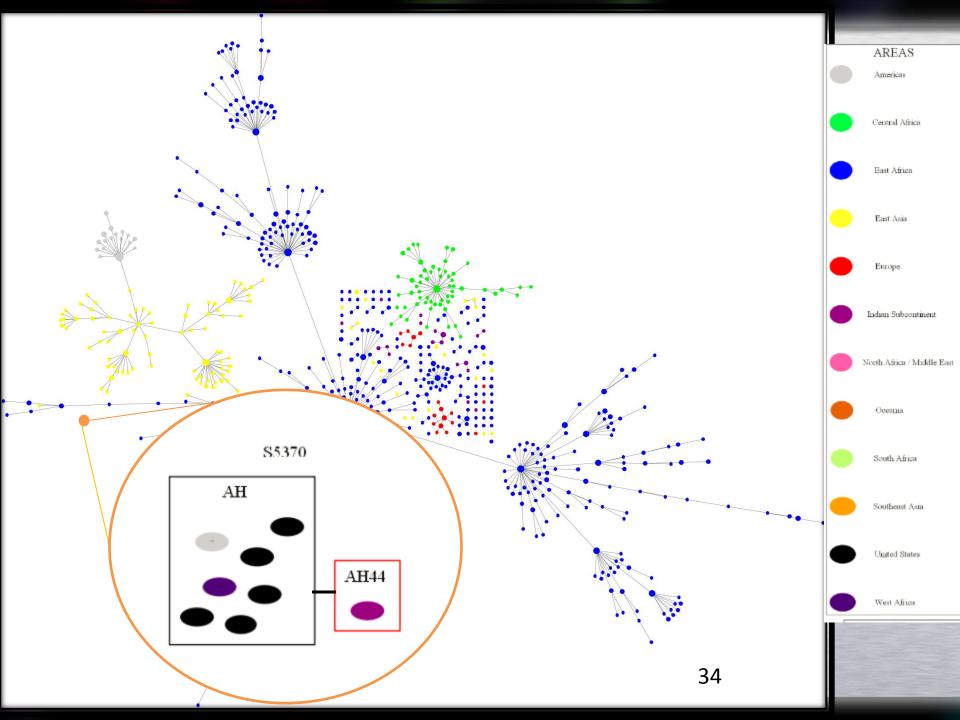
- OtherSub5
- OtherSub7
 - X1
- X2
- X3

Shabbeer et al, 2012 Multiobjective Embedding, MDS +SVM

Host-Pathogen Graphs


Patients = Circles DNA Fingerprint = Box


Boxes nested to indicate multiple DNA fingerprints


- Other box = spoligotypes
- Inner box = RFLP.

Color by Patient property = Region of Birth

Split by lineage

Euro American

NAME OF CONTRACT OF CONTRACT. 544°31 |91 89/244 • \$200317 1982 SRE000 ED20 SRE072 O(1) D(1) D(1) D(1) SRE001 SR мон л Ф 500755 Second Million Million 8002' 423 84270 129 36674 4209 85674 4209 80671 60 ••• 981.82 5.65 9 181.45 7 294 9 80755 7 294 9 80755 7 294 9 500%60 200521 0 3006/0 58483M 1221 AU235 8929 8929 500500
 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

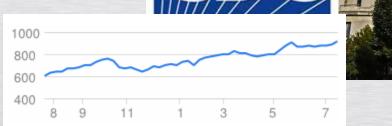
 3844

 3844
 CS385 901256 CCUM 0 906273 AU96 AEM 50114' (01) 50083 (01) (01) 181 • P5 5002 AU AU E44 (AEa) (CEA) (C SH1%
 BB0
 DB
 OV2
 OU

 BB0
 B
 OV2
 OU

 BV03
 B
 B
 B
 B

 BV03
 OV2
 B
 B
 B
 B

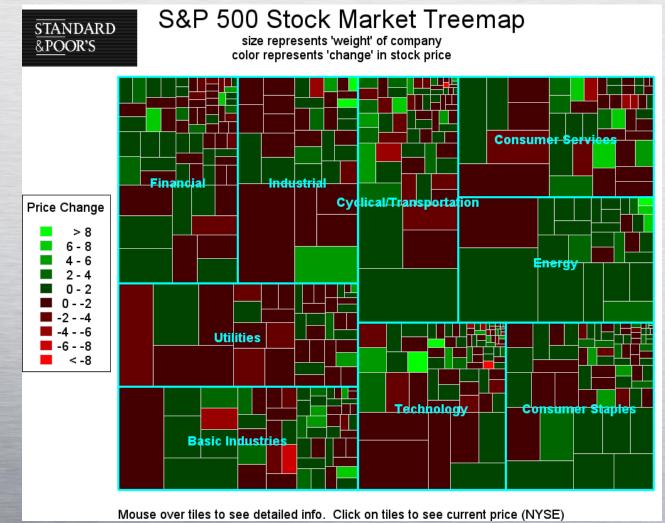

 B
 OV3
 A
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B

LINEAGES

Euro-American
CLUSTER
Named

Disease as Stock Market

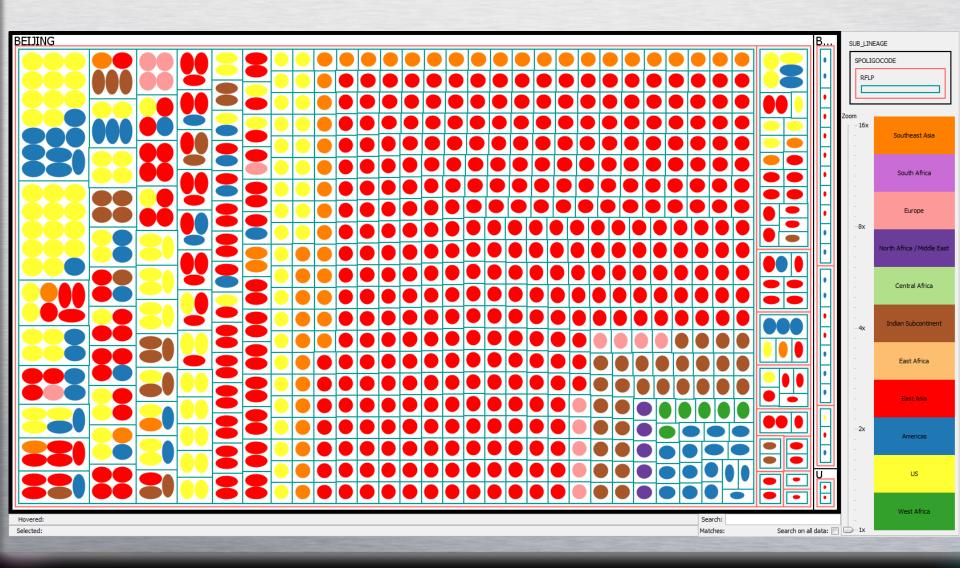
Companies=Bacteria



Buyers = Patients



Stock Market Tree Map



http://robslink.com/SAS/democd9/sp500.htm

Patient	ID	Biomarker 1	Biomarker 2	TB continent
Patient 1	105	S00669	MY8	Indian Subcontinent
Patient 2	2443	S00210	GD139	Indian Subcontinent
Patient 3	2452	S00210	MY44	Indian Subcontinent
Patient 4	2487	S00247	NO12	East Africa

NYC - East Asian

Euro American

NAME OF CONTRACT OF CONTRACT. 544°31 |91 89/244 • \$200317 1982 SRE000 ED20 SRE072 OUT DE45 OUT SRE200 SRE200 SRE200 SRE200 SRE200 мон л Ф 500755 Second Million Million 8002' 423 84270 129 36674 4209 85674 4209 80671 60 ••• 500%60 200521 0 3006/0 58483M 1221 AU235 8929 8929 500500
 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

 3844

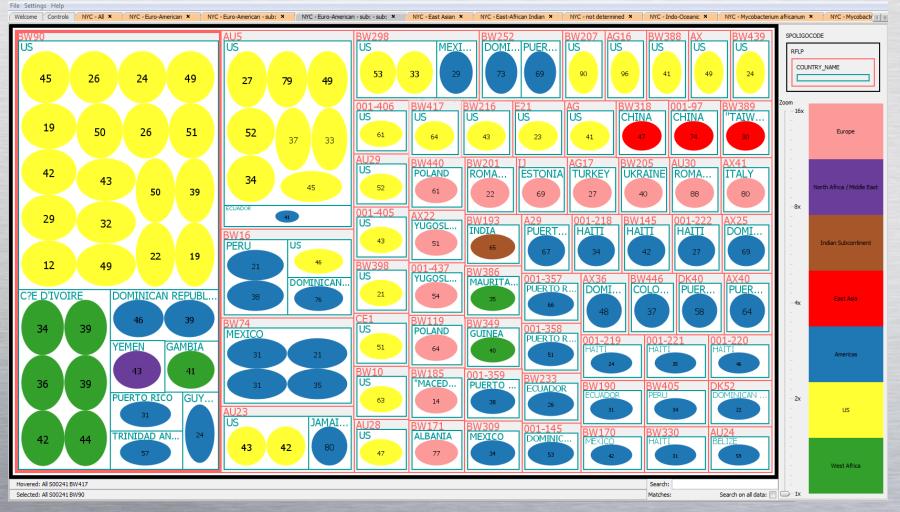
 3844
 CS385 901256 CCUM 0 906273 AU96 AEM 50114' (01) 50083 (01) (01) 181 • P5 5002 AU AU E44 (AEa) (CEA) (C SH1%
 BB0
 DB
 OV2
 OU

 BB0
 B
 OV2
 OU

 BV03
 B
 B
 B
 B

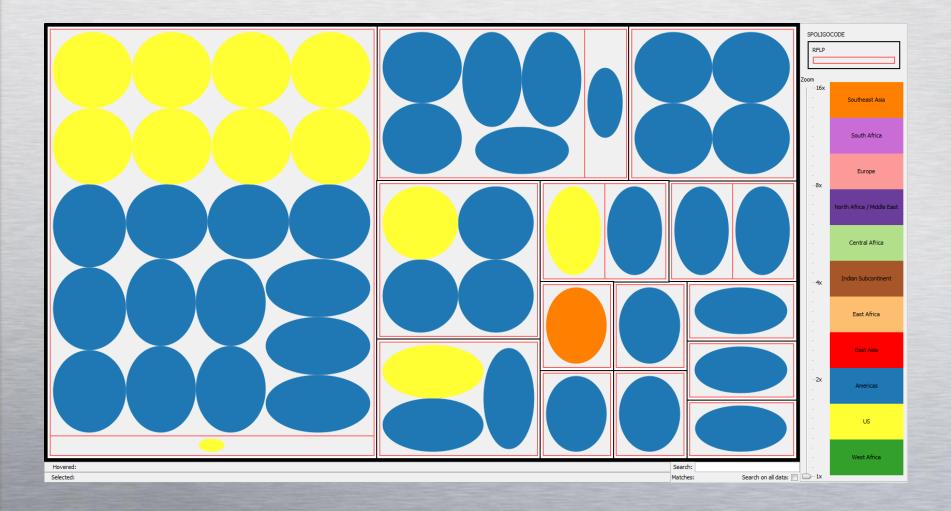
 BV03
 OV2
 B
 B
 B
 B

 OV2
 OV2
 OU
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B</t

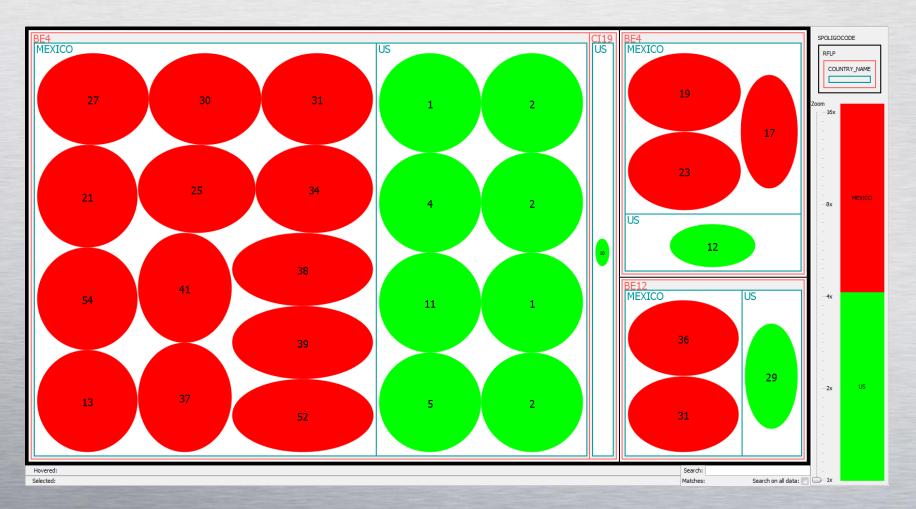

LINEAGES

Euro-American
CLUSTER
Named

NYC - Euro-American

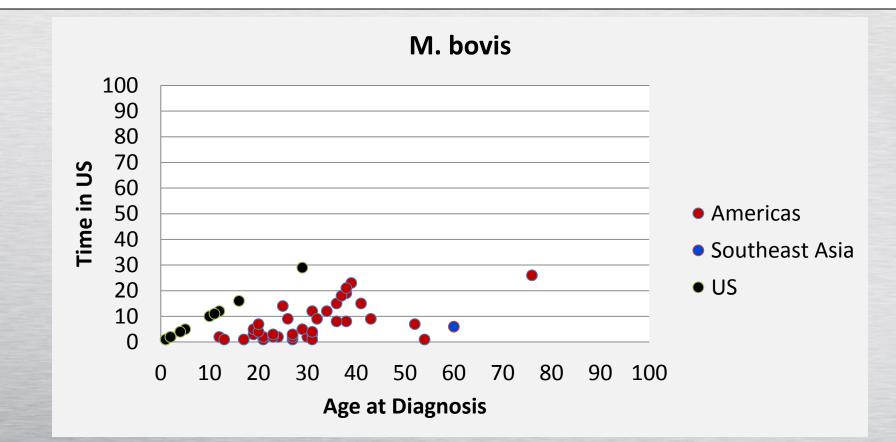


Spoligotype – S00241 BW90 with Patient Age

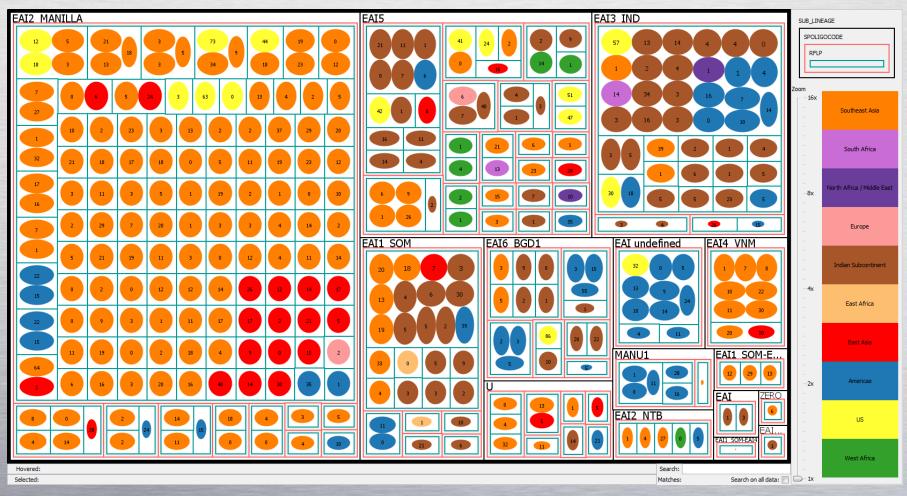


Ongoing transmission in the US that became resistant to INH antibiotic

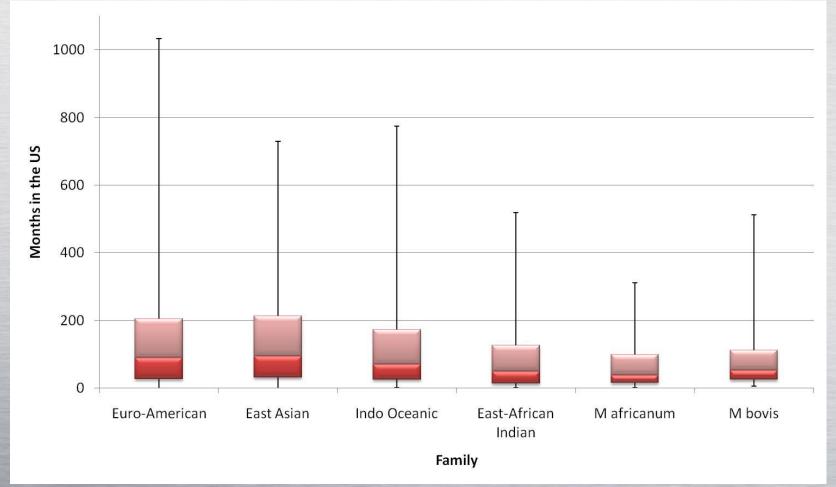
NYC - M. bovis



M. Bovis with Age of Patient/Country

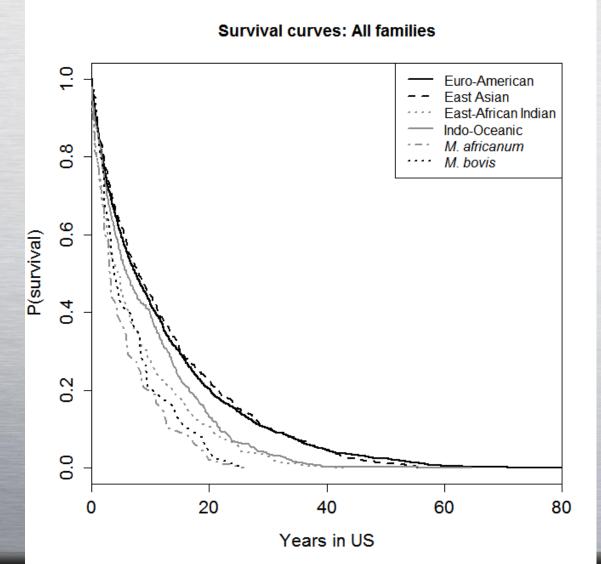

Extremely Young: Outbreak in US-born children of Mexican Parents likely due to unpasteurized cheese.

NYC M. bovis (2001-2007)

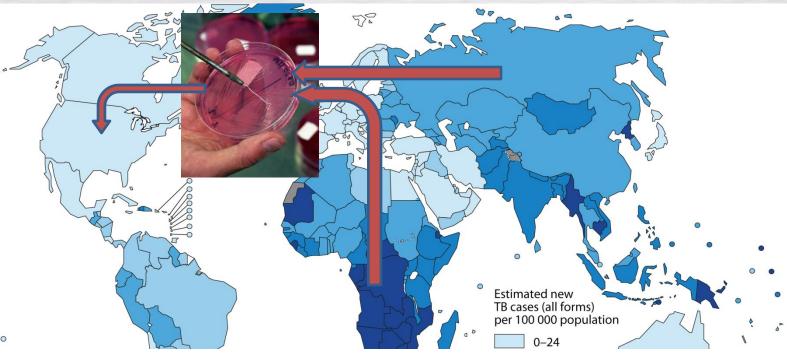

- Extra pulmonary *M. bovis* strikes
 - Mexican Immigrants
 - US-born children of Mexican Immigrants
- Hypothesized caused: Unpasturized cheese

Indo-Oceanic with Time in US

Large clusters with few US patients and no found epi-links.


Indo-Oceanic Anomaly

Hypothesized cause: IO strains have longer latency phenotype


Survival curves for all lineages

Proportion of cases not yet activated

survival curves.ep

Surveillance Data can reveal novel phenotypes and genotypes

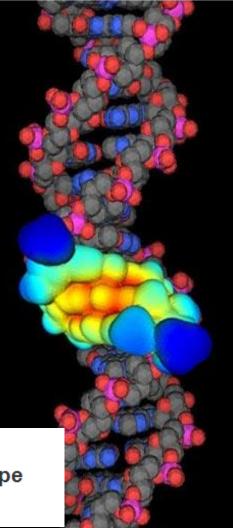
Whole Genome Sequencing versus Traditional Genotyping for Investigation of a *Mycobacterium tuberculosis* Outbreak: A Longitudinal Molecular Epidemiological Study

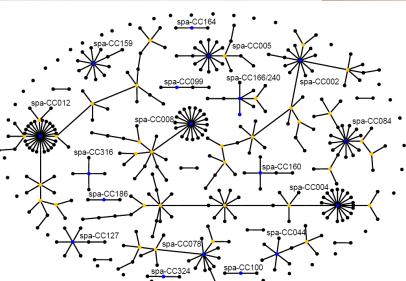
Andreas Roetzer 🗠, Roland Diel 🗠, Thomas A. Kohl 🗠, Christian Rückert, Ulrich Nübel, Jochen Blom, Thierry Wirth, Sebastian Jaenicke, Sieglinde Schuback, Sabine Rüsch-Gerdes, Philip Supply, Jörn Kalinowski, Stefan Niemann 🗠

Challenges of Disease Control using Molecular Epidemiology

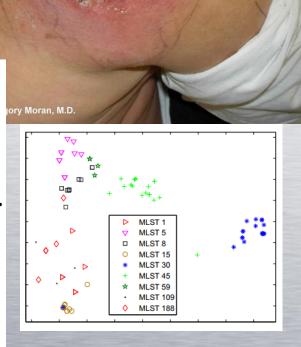
- Coupling human intelligence and analytics to help public health care workers control disease
- Informing local decisions with global data
- Allocating scarce control resources effectively by predicting disease dynamics
- Incorporating rapidly evolving data
 - Contact Investigations
 - New biomarkers for pathogen/host
 - Electronic Medical Records
 - Social media
- Getting the biology right
- Preserving Privacy

Personalized Medicine based on Host and Pathogen DNA




- Discovery of Host/Pathogen Coadaptation
- Control and treatment efforts guided by host and pathogen DNA
- Better models for drug development, etc

Ethnicity and mycobacterial lineage as determinants of tuberculosis disease phenotype


Thorax, 2013

Other Diseases/Pathogens

MRSA

DATA ANALYSIS

DATABASES

- B.burgdorferi
- B.cereus
- B.henselae
- B.pseudomallei
- C.albicans
- C.glabrata
- C.trachomatis
- C.krusei
- C.tropicalis
- C.jejuni
- C.neoformans var grubii
- E.coli
- E.faecalis
- E.faecium
- H.influenzae
- H.pylori
- Leptospira spp.
- M.catarrhalis
- N.meningitidis
- P.acnes
- S.agalactiae
- S.aureus
- S.dysgalactiae
- S.enterica
- S.epidermidis
- S.pneumoniae
- S.pyogenes
- S.suis

Mellmann et al. BMC Microbiology 2007, CDC, Agius et al, IEEE/ACM Trans. on Comp. Bio., 2007.

TB-Insight Project Team Supported by NIH R01-LMN009731

RPI:

- Professors: K. Bennett and B. Yener
- Graduate Research Assistants: Amina Shabbeer, James Blondin, Inna Vitol, Janani Ranganathan, Srivatsan Raghavan, Cagri Ozcaglar, Chris Gatti
- Postdoc: Minoo Aminian

Undergraduate Persoarchars, Eric Dubais Kane Hadley Michael

During this talk approximately 998 people developed active TB 276 people died of TB

Natalia Kurepina, Barry Kreiswirth, Public Health Research Institute Nalin Rastogi, Phillip Supply Institut Pasteur Vincent Escuyer, New York State Department of Health Shama Ahuja, Bianca Perri, Jeanne Sullivan New York City Department of Health

Tuberculosis Tracking and Contro