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Tackling such games

• Domain-independent techniques

• Techniques for complete-info games don’t apply

• Challenges
– Unknown state

– Uncertainty about what other agents and nature will do

– Interpreting signals and avoiding signaling too much

• Definition. A Nash equilibrium is a strategy and 
beliefs for each agent such that no agent benefits 
from using a different strategy
– Beliefs derived from strategies using Bayes’ rule



Most real-world games are like this

• Negotiation

• Multi-stage auctions (FCC ascending, combinatorial)

• Sequential auctions of multiple items

• Political campaigns (TV spending)

• Ownership games (polar regions, moons, planets)

• Military (allocating troops; spending on space vs ocean)

• Next-generation (cyber)security (jamming; OS security)

• Medical treatment [Sandholm 2012]

• …



Poker
Recognized challenge problem in AI since 1992 [Billings, Schaeffer, …]

– Hidden information (other players’ cards)

– Uncertainty about future events

– Deceptive strategies needed in a good player

– Very large game trees

NBC National Heads-Up Poker Championship 2013



Our approach [Gilpin & Sandholm EC-06, J. of the ACM 2007…]

Now used basically by all competitive Texas Hold’em programs

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse model

Foreshadowed by Billings et al. IJCAI-03



Lossless abstraction

[Gilpin & Sandholm EC-06, J. of the ACM 2007]



Information filters

• Observation: We can make games smaller by 

filtering the information a player receives

• Instead of observing a specific signal exactly, a 

player instead observes a filtered set of signals

– E.g. receiving signal {A♠,A♣,A♥,A♦} instead of A♥



Signal tree

• Each edge corresponds to the revelation of some 

signal by nature to at least one player

• Our abstraction algorithm operates on it

– Doesn’t load full game into memory



Isomorphic relation

• Captures the notion of strategic symmetry between nodes

• Defined recursively:

– Two leaves in signal tree are isomorphic if for each action 

history in the game, the payoff vectors (one payoff per player) 

are the same

– Two internal nodes in signal tree are isomorphic if they are 

siblings and their children are isomorphic 

• Challenge: permutations of children

• Solution: custom perfect matching algorithm between children of the two 

nodes such that only isomorphic children are matched



Abstraction transformation

• Merges two isomorphic nodes

• Theorem. If a strategy profile is a Nash equilibrium 

in the abstracted (smaller) game, then its interpretation 

in the original game is a Nash equilibrium



GameShrink algorithm

• Bottom-up pass: Run DP to mark isomorphic pairs of 
nodes in signal tree

• Top-down pass: Starting from top of signal tree, perform 
the transformation where applicable

• Theorem. Conducts all these transformations
– Õ(n2), where n is #nodes in signal tree

– Usually highly sublinear in game tree size



Solved Rhode Island Hold’em poker

• AI challenge problem [Shi & Littman 01]

– 3.1 billion nodes in game tree

• Without abstraction, LP has 91,224,226 rows and 
columns => unsolvable

• GameShrink runs in one second

• After that, LP has 1,237,238 rows and columns

• Solved the LP

– CPLEX barrier method took 8 days & 25 GB RAM

• Exact Nash equilibrium

• Largest incomplete-info game solved  
by then by over 4 orders of magnitude



Lossy abstraction



Texas Hold’em poker

• 2-player Limit has 

~1018 nodes

• 2-player No-Limit 

has ~10165 nodes

• Losslessly abstracted 

game too big to solve 

=> abstract more     

=> lossy

Nature deals 2 cards to each player

Nature deals 3 shared cards

Nature deals 1 shared card

Nature deals 1 shared card

Round of betting

Round of betting

Round of betting

Round of betting



Clustering + integer programming for abstraction

• GameShrink can be made to abstract more => lossy

– Greedy => lopsided abstractions 

• Better approach: Abstraction via clustering + IP

[Gilpin & Sandholm AAMAS-07]



Potential-aware abstraction

• All prior abstraction algorithms had probability of winning 

(assuming no more betting) as the similarity metric

– Doesn’t capture potential

• Potential not only positive or negative, but “multidimensional”

• We developed an abstraction algorithm that captures potential …

[Gilpin, Sandholm & Sørensen AAAI-07, Gilpin & Sandholm AAAI-08]



Bottom-up pass to determine 

abstraction for round 1

In the last round, there is no more potential 

=> use probability of winning as similarity metric

Round r

Round r-1

.3 .2 0 .5



Can combine the abstraction ideas

• Integer programming [Gilpin & Sandholm AAMAS-07]

• Potential-aware [Gilpin, Sandholm & Sørensen AAAI-07, 

Gilpin & Sandholm AAAI-08]

• Imperfect recall [Waugh et al. SARA-09, Johanson et al. 

AAMAS-13]



Strategy-based abstraction 
[Ongoing work in my group]

Abstraction Equilibrium finding



First lossy game abstraction methods with bounds

• Tricky due to abstraction pathology [Waugh et al. AAMAS-09]

• For both action and state abstraction

• For stochastic games

• Theorem. Given a subgame perfect Nash equilibrium in 

an abstract game, no agent can gain more than 

in the real game by deviating to a different strategy

[Sandholm & Singh EC-12]



First lossy game abstraction algorithms with bounds

• Proceed level by level from end of game

– Optimizing all levels simultaneously would be nonlinear

– Proposition. Both algorithms satisfy given bound on regret

• Within level:

1. Greedy polytime algorithm; does action or state abstraction first

2. Integer program

• Does action and state abstraction simultaneously

• Apportions allowed total error within level optimally

– between action and state abstraction, and

– between reward and transition probability error

– Proposition. Abstraction is NP-complete

• One of the first action abstraction algorithms

– Totally different than [Hawkin et al. AAAI-11, 12], which doesn’t have 

bounds



Role in modeling

• All modeling is abstraction

• These are the first results that tie game 

modeling choices to solution quality in the 

actual world!
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Picture credit: Pittsburgh Supercomputing Center



Scalability of (near-)equilibrium finding in 2-player 0-sum games
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Scalability of (near-)equilibrium finding in 2-player 0-sum games…
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Best equilibrium-finding algorithms 

for 2-player 0-sum games

Counterfactual regret (CFR)
• Based on no-regret learning

• Most powerful innovations:

– Each information set has a 

separate no-regret learner 
[Zinkevich et al. NIPS-07]

– Sampling 
[Lanctot et al. NIPS-09, …]

• O(1/ε2) iterations

– Each iteration is fast

• Parallelizes

• Selective superiority

• Can be run on imperfect-recall 

games and with >2 players 

(without guarantee of 

converging to equilibrium) 

Scalable EGT
• Based on Nesterov’s Excessive Gap 

Technique

• Most powerful innovations:
[Hoda, Gilpin, Peña & Sandholm WINE-07, 

Mathematics of Operations Research 2011]

– Smoothing fns for sequential games

– Aggressive decrease of smoothing

– Balanced smoothing

– Available actions don’t depend on 

chance => memory scalability

• O(1/ε) iterations

– Each iteration is slow

• Parallelizes

• New O(log(1/ε)) algorithm
[Gilpin, Peña & Sandholm AAAI-08, 

Mathematical Programming 2012]



Purification and thresholding

• Thresholding: Rounding the probabilities to 0 of those 

actions whose probabilities are less than c 

(and rescaling the other probabilities)

– Purification is thresholding with c = ½ 

• Proposition. Can help or hurt arbitrarily much, when 

played against equilibrium strategy in unabstracted

game

[Ganzfried, Sandholm & Waugh AAMAS-12]



Experiments on purification & thresholding

• No-limit Texas Hold’em: Purification beats threshold 0.15, 

does better than it against all but one 2010 competitor, and 

won bankroll competition

• Limit Texas Hold’em:
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Experiments on purification & thresholding

• No-limit Texas Hold’em: Purification beats threshold 0.15, 

does better than it against all but one 2010 competitor, and 

won bankroll competition

• Limit Texas Hold’em:
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Threshold

Exploitability of our 2010 bot 

(in milli big blinds per hand)

Less randomization

Threshold too high 

=> not enough randomization 

=> signal too much
Threshold too low 

=> strategy overfit to abstraction



Endgame solving

Strategies for entire game computed 

offline in a coarse abstraction

[Gilpin & Sandholm AAAI-06, Ganzfried & Sandholm IJCAI-13]



Endgame solving

Strategies for entire game computed 

offline in a coarse abstraction

Endgame strategies computed 

in real time in finer abstraction

[Gilpin & Sandholm AAAI-06, Ganzfried & Sandholm IJCAI-13]



Benefits of endgame solving

• Finer-grained information and action abstraction (helps in practice)

– Dynamically selecting coarseness of action abstraction

• New information abstraction algorithms that take into account 

relevant distribution of players’ types entering the endgames

• Computing exact (rather than approximate) equilibrium strategies

• Computing equilibrium refinements

• Solving the “off-tree” problem

• …



Limitation of endgame solving

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1



Experiments on No-limit Texas Hold’em

• Solved last betting round in real time using CPLEX LP solver

– Abstraction dynamically chosen so the solve averages 10 seconds
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Computing equilibria by leveraging qualitative models

[Ganzfried & Sandholm AAMAS-10 & newer draft]
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Computing equilibria by leveraging qualitative models

• Theorem. Given F1, F2, and a qualitative model, we have a complete 

mixed-integer linear feasibility program for finding an equilibrium

• Qualitative models can enable proving existence of equilibrium & solve 

games for which algorithms didn’t exist 

[Ganzfried & Sandholm AAMAS-10 & newer draft]
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Action translation

[Ganzfried & Sandholm IJCAI-13]
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Action translation

f(x) ≡ probability we map x to A

[Ganzfried & Sandholm IJCAI-13]
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Action translation

f(x) ≡ probability we map x to A

Desiderata about f

1. f(A) = 1,   f(B) = 0

2. Monotonicity

3. Scale invariance

4. Small change in x doesn’t lead 

to large change in f  

5. Small change in A or B doesn’t 

lead to large change in f

[Ganzfried & Sandholm IJCAI-13]

$A B

x
“Pseudo-harmonic mapping”

• f(x) = [(B-x)(1+A)] / [(B-A)(1+x)]

• Derived from Nash equilibrium of 

a simplified no-limit poker game

• Satisfies the desiderata 

• Much less exploitable than prior 

mappings in simplified domains

• Performs well in practice in no-

limit Texas Hold’em 
• Significantly outperforms 

randomized geometric



OPPONENT EXPLOITATION



Traditionally two approaches

• Game theory approach (abstraction+equilibrium finding)

– Safe in 2-person 0-sum games

– Doesn’t maximally exploit weaknesses in opponent(s)

• Opponent modeling

– Needs prohibitively many repetitions to learn in large games 

(loses too much during learning)

• Crushed by game theory approach in Texas Hold’em

• Same would be true of no-regret learning algorithms

– Get-taught-and-exploited problem [Sandholm AIJ-07]



Let’s hybridize the two approaches

• Start playing based on game theory approach

• As we learn opponent(s) deviate from equilibrium, 

start adjusting our strategy to exploit their weaknesses

– Requires no prior knowledge about the opponent

[Ganzfried & Sandholm AAMAS-11]



Deviation-Based Best Response algorithm
(generalizes to multi-player games)

• Compute an approximate equilibrium

• Maintain counters of opponent’s play throughout the match

• for n = 1 to |public histories|

– Compute posterior action probabilities at n (using a Dirichlet prior)

– Compute posterior bucket probabilities

– Compute model of opponent’s strategy at n

• return best response to the opponent model

Many ways to define opponent’s “best” strategy 

that is consistent with bucket probabilities
• L1 or L2 distance to equilibrium strategy

• Custom weight-shifting algorithm, …



Experiments on opponent exploitation

• Significantly outperforms game-theory-based base strategy in 

2-player limit Texas Hold’em against 

– trivial opponents

– weak opponents from AAAI computer poker competitions
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Experiments on opponent exploitation

• Significantly outperforms game-theory-based base strategy in 

2-player limit Texas Hold’em against 

– trivial opponents

– weak opponents from AAAI computer poker competitions

• Don’t have to turn this on against strong opponents

Opponent: Always fold

Win 

rate

Opponent: Always raise Opponent: GUS2

1,000 3,000
#hands



Other modern approaches to 

opponent exploitation

• ε-safe best response 
[Johanson, Zinkevich & Bowling NIPS-07, Johanson & Bowling AISTATS-09]

• Precompute a small number of strong strategies. 

Use no-regret learning to choose among them
[Bard, Johanson, Burch & Bowling AAMAS-13]



Safe opponent exploitation

• Definition. Safe strategy achieves at least the 

value of the (repeated) game in expectation

• Is safe exploitation possible (beyond selecting 

among equilibrium strategies)?

[Ganzfried & Sandholm EC-12]



When can opponent be exploited safely?

• Opponent played an (iterated weakly) dominated strategy?

• Opponent played a strategy that isn’t in the support of any eq?

• Definition. We received a gift if opponent played a strategy such that we have 

an equilibrium strategy for which the opponent’s strategy isn’t a best response

• Theorem. Safe exploitation is possible iff the game has gifts

• E.g., rock-paper-scissors doesn’t have gifts

R is a gift 

but not iteratively weakly dominated

L M R

U 3 2 10

D 2 3 0

L R

U 0 0

D -2 1

R isn’t in the support of any equilibrium

but is also not a gift
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Exploitation algorithms

1. Risk what you’ve won so far

2. Risk what you’ve won so far in expectation (over nature’s & own 

randomization), i.e., risk the gifts received

– Assuming the opponent plays a nemesis in states where we don’t know

…

• Theorem. A strategy for a 2-player 0-sum game is safe iff it never risks 

more than the gifts received according to #2

• Can be used to make any opponent model / exploitation algorithm safe

• No prior (non-eq) opponent exploitation algorithms are safe

• #2 experimentally better than more conservative safe exploitation algs

• Suffices to lower bound opponent’s mistakes



Bots versus top pros
• 2-player poker

– Rhode Island Hold’em: Bots play optimally 

[Gilpin & Sandholm EC-06, J. of the ACM 2007]

– Limit Texas Hold’em: Bots surpassed pros in 2008 

[U. Alberta Poker Research Group]

– No-Limit Texas Hold’em: Bots surpass pros soon?

• Multiplayer poker: Bots aren’t very strong yet

20082007
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Ground truth

0.03647,  0.39408,  0.0,  

0.43827,  0.0,  0.0,  0.04147, 

…

Picture from Ed Collins’s web page

Learning from bots



First action: 

To fold, “limp”, or raise (the typical 1×pot)?

With 91.1% of hands, our bot randomizes between limp and raise 

(plus with one hand it always limps)

– Probability mix not monotonic in hand strength

– Aggregate limping probability is 8.0%

"Limping is for Losers 

This is the most important fundamental in poker--for every 

game, for every tournament, every stake: If you are the first 

player to voluntarily commit chips to the pot, open for a 

raise. Limping is inevitably a losing play. If you see a 

person at the table limping, you can be fairly sure he is a 

bad player. Bottom line: If your hand is worth playing, it is 

worth raising."

Daniel Cates: “we're going to play 100% of our hands...We will raise ... 

We will be making small adjustments to that strategy depending on how our 

opponent plays ... Against the most aggressive players … it is acceptable to 

fold the very worst hands …, around the bottom 20% of hands. It is probably 

still more profitable to play 100% ..."



“Donk bet”

• A common sequence in 1st betting round: 

– First mover raises, then second mover calls

– The latter has to move first in the second betting 

round.  If he bets, that is a “donk bet”

• Considered a poor move

• Our bot donk bets ~8% of the time



1 or more bet sizes (for a given 

betting sequence and public cards)?

• Using more than 1 risks signaling too much

• Most pros use 1 (some sometimes use 2)

– Typical bet size is 1×pot in the first betting round, and 

between ⅔×pot and ¾×pot in later rounds

• Our bot sometimes randomizes between 6 sizes 

(even with a given hand)

– Both with bluff hands and “value hands” 

– Includes unusually small and large bets (all-in 37×pot) 



Conclusions
• Domain-independent techniques

• Game abstraction
– Automated lossless abstraction - exactly solved game with billions of nodes

– Practical lossy abstraction: integer programming, potential-aware, imperfect recall

– Automated lossy abstraction with bounds

• For action and state abstraction

• Also for modeling

• Equilibrium-finding

– Can solve 2-person 0-sum games with over 1014 nodes to small ε

• O(1/ε2)    ->   O(1/ε)   ->   O(log(1/ε))

– Purification and thresholding help

– Endgame solving helps

– Leveraging qualitative models => existence, computability, speed, insight

• Scalable practical online opponent exploitation algorithm

• Fully characterized safe exploitation & provided algorithms

• New poker knowledge



Current & future research
• Lossy abstraction with bounds

– General sequential games

– With structure

– With generated abstract states and actions

• Equilibrium-finding algorithms for 2-person 0-sum games

– Understanding the selective superiority of CFR and EGT

– Making gradient-based algorithms work with imperfect recall

– Parallel implementations of our O(log(1/ε)) algorithm and understanding how 

#iterations depends on matrix condition number

– Making interior-point methods usable in terms of memory

• Equilibrium-finding algorithms for >2 players [Ganzfried and Sandholm AAMAS-08, IJCAI-09]

• Theory of thresholding, purification, and other strategy restrictions

• Other solution concepts: sequential equilibrium, coalitional deviations, …

• Understanding exploration vs exploitation vs safety

• Applying these techniques to other games



Thank you

Students & collaborators:

– Sam Ganzfried

– Andrew Gilpin

– Noam Brown

– Javier Peña

– Sam Hoda

– Troels Bjerre Sørensen

– Satinder Singh

– Kevin Waugh

– Kevin Su

Sponsors:

– NSF

– Pittsburgh 

Supercomputing Center

– IBM

– Intel

• Comments, figures, etc.: Michael 

Bowling, Michael Johansen, Ariel 

Procaccia, Christina Fong


