Exploration vs Exploitation challenge

Exploration, Exploitation, Evolution

Cédric Hartland, Michele Sebag

Université Paris Sud

The problem

A visitor comes to a website. The site provides options to the visitor who accepts or refuses.

- Representation of the visitor :

- $p_i(t) = 1$ iff the visitor likes the option *i*
- pis are independent and change along time

Goal : build $\hat{p}_i(t)$: decision process : $t \rightarrow i = Max(\hat{p}_i(t))$

Applications : Mind reading machine (Shannon 1949) pleasing a web site visitor

Our hidden motivation

Evolutionary computation (find Argmax(f: $\Omega \rightarrow R$)) :

- Solution population from the search space $\{X_1,...X_p\}{\subset}\,\Omega$
- Stochastic modifications on the population
 - Exploration : ~ random walk
 - Exploitation : ~ hill climbing, gradient

Problem : trade-off exploration exploitation (binary option)

Problem formalisation : Holland 1975 : Multi-armed bandit simulation

BUT : dynamic reward

First step

- Preliminary exploration: experiments with naive models
 - Stick on one option
 - Switch with fixed frequencies
- Partial conclusions : no periodicity (obviously)
- Next step: Collect data to create a good model.

Mixture model

- Structure of expert i:
 - Time window on the past trials : 1..T=60
 - Average preference pi in [0,1] \rightarrow decision di
 - Weight wi (confidence)
- Decision rule : weighted vote of the experts : result d
- Update rule : (over the time window)
 - If $d_i \neq d$: nothing [fading would be appropriate]
 - If di = d :
 - if failure then wi /= Wf
 - if success then wi *=Ws

Results

Results

Results

Success rate + average regret on the testing set :

Algorithm	Success rate	Average Regret
Random provider	0.51	27031.8
Shifting-bandit provider	0.715	8020.3
Expert voting	0.732	6318.6

average theoretical maximal success rate : 0.796

Analysis of the results

Performance decreases if we reduce/increase the window/number of the experts

- Periodicity varies in this range?
- Remark: At each time steps, for most experts picture close to ¹/₂, some experts take the lead.

Limitations:

Fading

Learning on expert patterns

Conclusion - Perspectives

Online learning: weighted voting of experts is a good start

Next steps:

- Additive vs Multiplicative reward
- Recompute pi with less weight on distant time steps.
- Varying reward factors
- Back to evolutionary computation: gain is continuous

