Tree Edit Distance for Recognizing Textual Entailment: Estimating the Cost of Insertion

Milen Kouylekov & Bernardo Magnini

University of Trento,
ITC-irst, Centro per la Ricerca Scientifica e Tecnologica,
Trento, Italy

Venezia, April 10, 2005

Our Goals

- Continue the development of a system based on Tree Edit Distance
 - Investigate the cost of Insertion
- Combining different system settings using learning algorithm

The Textual Entailment Framework

- General Framework proposed Dagan and Glickman (2004) addressing language variability.
 - An Entailment Relation holds between two text fragments (i.e. text T and hypothesis H) when the meaning of H, as interpreted in the context of T, can be inferred from the meaning of T.
 - Entailment Rules (patterns) is directional relation between two parse sub-trees with variables, where the first one entails the second.

Entailment and Tree Edit Distance

- Represent T and H as dependency trees
- The probability of an entailment relation between T and H is related to the mappings between H and T
- Mappings can be described as a sequence of editing operations that transform T into H
- Each edit operation has a **cost** assigned to it
- Entailment holds if the overall **transformation cost** is below a certain threshold, estimated over the training data.

Tree Edit Distance on Dependency Trees

- (Zhang and Shasha, 1990) Tree Edit Distance algorithm has been implemented.
- Edit operations (Insertion, Deletion, Substitution) are allowed on single nodes only
- Parsing is performed with Minipar (Lin 1998)
- Node order is relevant: node are re-arranged according to: *subj--> obj --> mods*
- The original algorithm does not consider labels on edges: relations names are concatenated to node names
 - E.g. eat [subj] John eat --> John#subj

Cost functions

- Insertion: the cost of inserting a node w in T should be proportional to the relevance of w in the context of H.
- Deletion: the cost of deleting a node w in T should be proportional to the relevance of w in the context of T.
- Substitution: the cost of substituting a node w1#rel1 in T with a node w2#rel2 in H is proportional to the strength of the entailment relation between the two nodes and relevant to the context of H and T.

Example

T: The Statue of Liberty is so big it had to be built in 300 sections.

H: The Statue of Liberty was built in the year 300.

Example (2)

T: Mount Olympus towers up from the center of the earth.

H: Mount Olympus is in the center of the earth.

System Settings

- System 1: Insertion as IDF
- System 2: Fixed Insert cost
- System 3: Number of Parents.
- System 4: Number of Children.
- System 5: Number of Children + Number of Parents
- System 6: Combined
 - All previous systems as features of the sequential minimal optimization (SMO) algorithm training a support vector classifier

System Settings - Performance

	development	cross-validation	test
idf	0.581	0.578	0.572
fixed	0.591	0.560	0.570
#parents	0.600	0.590	0.582
#children	0.579	0.579	0.541
#ch + #par	0.598	0.590	0.571
combined	0.637	0.613	0.605

- Combined run is the best performing
- Additional resources for calculating the insertion cost are not needed

System Settings - Performance

		IE	IR	QA	SUM	Total
idf	accuracy	0.5050	0.5500	0.5650	0.6700	0.5725
	precision	0.5095	0.4658	0.4658	0.7067	0.5249
combined	daccuracy	0.5200	0.6000	0.6000	0.7000	0.6050
	precision	0.4978	0.5352	0.5352	0.5240	0.5046

- Our system performs well on the Summarization task
- IE requires a large resource of complex entailment rules.
- Combined run is accurate but less precise.

Thank You!