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Crowd Truth

Annotator disagreement is signal, not 

noise.  

It is indicative of the variation in human 

semantic interpretation of signs, and can 

indicate ambiguity, vagueness, over-

generality, etc.

This paper: cross domain adaptation of metrics & 

spam detectionhttp://www.freefoto.com/preview/01-47-44/Flock-of-Birds



Background: 

Crowd-Watson Framework for Medical Relation 

Extraction

Aroyo, L., Welty, C.: Measuring crowd truth for medical relation extraction. AAAI2013 Fall Symposium on Semantics for Big Data (in print), 2013

Aroyo, L., Welty, C.: Crowd Truth: Harnessing disagreement in crowdsourcing a relation extraction gold standard. WebSci2013. ACM, 2013



Crowd-Watson Adaptation to Newspapers Event 

Extraction

• newspapers corpus

• identify events & role fillers

(e.g. type, location, time, 

participants)

• understand the range of 

disagreements by creating a space 

of possibilities with frequencies & 

similarities

• Crowd-Watson framework
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Role-Filler Taxonomies

• event type: Semafor

• event location type: GeoNames

• event time type: Allen’s time theory, KSL time ontology

• event participant type: based on proper nouns classes



How do we represent & measure disagreement 

in a way that it can be harnessed?



Events 

semantics 

are hard
http://en.wikipedia.org/wiki/File:Jo%C3%A3o_Abel_Manta,_A_Difficult_Problem,_1975,_indian_ink_on_paper,_37_x_62_cm.jpg
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Why do people disagree?

Sign

Referent Observer



Why do people disagree?

Sentence

Ontology Worker



Disagreement 

Analytics

• sentence metrics: sentence clarity

• ontology metrics: (future work)

• worker content-based metrics:

o worker-sentence disagreement

o worker-worker disagreement

o avg number of annotations per sentence

• worker explanation-based metrics:

o valid words in explanation text

o same explanation across contributions

o “[OTHER]” + different type

G. Soberón et al (2013): Crowd truth metrics. CrowdSem13 Workshop

L Aroyo, C. Welty (2013): Measuring crowd truth for medical relation extraction. 

AAAI2013 Fall Symposium on Semantics for Big Data (in print) (2013) http://www.americanprogress.org/wp-content/uploads/2012/12/multiple_measures_onpage.jpg
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Experimental 

Setting

• 2 batches of 35 putative events:              

total of 70 putative events

• 8 experiments: 

2 for each event role filler

• annotations: 

15 per each putative event

• maximum annotations per worker: 10

• workers: native English speakers on CF



Annotation Example
Around 2:30 p.m., as if delivering birthday greetings, several Greenpeace 

demonstrators [ENTERED] the cube clutching helium-filled balloons, which 

were the shape and color of charcoal briquettes.

Overall annotation & granularity distribution:
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Comparative Annotation Distribution
Event Type Distribution Time Type Distribution

The high disagreement for event type across all sentences likely indicates problems with the ontology.  These event 

types are difficult to distinguish between.  The event classes may overlap, be confusable, too vague, etc.
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Comparative Annotation Distribution
Location Type Distribution Participant Type Distribution
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Sentence Clarity

Identifies sentences that are unclear or ambiguous based on the distribution of types



Spam Detection
aims to efficiently remove the spam and low-quality contributors

o filter sentences based on their clarity score in order to avoid 

penalizing workers for contributing on difficult or ambiguous sentences

o apply the worker metrics to analyze worker agreement on a 

specific putative event or across all the putative events that s(he) 

solved

o apply explanation-based filters in order to assess the overall quality 

of each worker rational 



Spam Detection
Worker Metrics Evaluation

Worker Metrics and Evaluation-based Filters Evaluation

the explanation-based filters are able to increase the accuracy of detecting spam and low-quality workers with at least 

5%, which leads to a better interpretation of the crowdsourced data and representation of the events
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What more …

Understand human disagreement on event extraction with focus on ambiguity:

○ Would different classification (ontology) of putative events perform better?

○ Does the overlapping of the types (ontology) influence the results?

○ Identify the right role fillers (per event) for multiple putative events.

○ Would event clustering help with determining the most appropriate 

structure of the event and its role fillers?



Conclusions

● disagreement metrics adaptable across domains - helped us to 

understand a bit more the vagueness and the clarity of a sentence/putative 

event

● clarity or the vagueness of sentences help select the good cases for 

automated training

● micro-task template design was most difficult process as it aimed at 

harnessing diversity and disagreement, while making the task 

understandable and affordable for the crowdsourcers 

● understanding disagreement can help us understand event semantics



http://crowd-watson.nl


