
Or:



Science is a miracle

• Galaxies have millions of stars, a piece of material has 1032 molecules, ...
Yet, we understand their behavior in terms of few relevant variables!

• Will this work for a cell (104 genes), the brain (107 neurons) 
an economy (106 individuals)... ?

• We build airplanes. Can we also cure cancer or avoid the next financial crisis?

• Even if the answer is (likely) no,  what is the best we can do?

• How to find the relevant variables?

The miracle of the appropriateness of the language of mathematics for the 
formulation of the laws of physics is a wonderful gift which we neither 
understand nor deserve. We should be grateful for it and hope it will remain 
valid also in future research and that it will extend, for the better of for the 
worse, to our pleasure, even though perhaps also to our bafflement, to wide 
branches of learning                                                       (E. P. Wigner 1960)



Facts and more questions

• Fact 1:
Data deluge + advanced experimental techniques (e.g. sequencing)
yet problems involve a huge number of variables (e.g. 104 genes)
and prediction is hard (e.g. drug design)

• Fact 2:
We observe “Criticality”, as a statistical regularity,
in a wide variety of different systems as cities, 
the brain, languages, economy/finance, biology.
Why?

• Questions:
Are there overarching organizing principles (e.g. SOC)?
Can we exploit “criticality” (e.g. for model selection)?

P. Bak How Nature Works (1996)
T. Mora & W. Bialek, J.Stat.Phys. (2011)
S. Ki Baek et al. N. J. Physics (2012)
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Fig. 1. (a) Log-log plot of the cumulative distribution of ensembles of the land
prices for each of the four years 1985, 1987, 1991, and 1998.The movement of the
mean values of land prices. (b) The movement of power-law exponent α of land
prices’ ensemble distribution. (c) The movement of coefficient of variation (CV) of
land prices’ ensemble distribution. (d) Log-log plot of the cumulative distribution
of ensembles of the stock prices on January 4, 2000. (e) The movement of power-law
exponent α of stock prices’ ensemble distribution. (f) The movement of coefficient
of variation (CV) on stock prices’ ensemble distribution.
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(land prices in Japan
  Kaizoji & Kaizoji 2006)

rank ~1/size



Criticality: Zipf’s law
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Figure 1 Frequency of word usage in English 
 
Figure 1 shows a plot of frequency of word usage in English plotted against rank. The most 
popular word, at least in polite conversation, is THE which is used about once in every twelve 
words. This has a rank of one. As we move to higher ranks we encounter less well known 
words. QUALITY occurs about once in every thousand words. The curve is remarkable. For 
over three orders of magnitude it follows very closely Zipf’s Law in its currently used form with k 
equal to one.   
 
This, and some of the following examples, are taken from a paper by Scarrott 2. More modern 
examples have recently been generated by the author.  
 

 
Figure 2    Ranking of world cities by population, see table 1 for key. 
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For example, Figure 2 shows the population of cities in several countries in rank order. Table 1 
gives the key.  
 

A  United States  B  China 
C  West Germany  D  Spain 
E  France   F  East Germany  
G  Switzerland   H  United Kingdom  
I  Mexico 

 
Table  1. Key to figure 2 

 
We see that Zipf’s Law is broadly obeyed by all the countries plotted except for the United 
Kingdom and Mexico. However, in both these exceptions the distortion is due to a 
disproportionately large principal city. If the ranking of the first city is ignored, the resulting curve 
has a slope close to -1.  
 

 
 

Figure 3  Ranking of various groups, see table 2 for key 
 

A  Populations of all countries 
B  Number of ships built by all countries 
C  Students at English universities   
D  Building Societies by assets 
E  Populations of World’s religions    
F  US insurance companies by staff  
G  World languages    
H  English public schools by students  

 
Table  2. Key to figure 3 

 
Figure 3 shows a variety of organisations. Here again the curves have a slope close to -1 
except for two cases, G and H.  
 
In this figure the size of groups are normalised to the size of the largest group.   
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(G. Kirby 1985)
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Criticality in economics and the brain
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Fig. 1. (a) Log-log plot of the cumulative distribution of ensembles of the land
prices for each of the four years 1985, 1987, 1991, and 1998.The movement of the
mean values of land prices. (b) The movement of power-law exponent α of land
prices’ ensemble distribution. (c) The movement of coefficient of variation (CV) of
land prices’ ensemble distribution. (d) Log-log plot of the cumulative distribution
of ensembles of the stock prices on January 4, 2000. (e) The movement of power-law
exponent α of stock prices’ ensemble distribution. (f) The movement of coefficient
of variation (CV) on stock prices’ ensemble distribution.
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Figure 1: Personal income in Japan. a. Cumulative probability distribution of
personal income from low to high income range in the year 2000. A data-point
represents the probability (vertical axis) that a person has income equal to or
more than the income of the horizontal value. Three datasets available from the
Japanese National Tax Administration (NTA) were used. (i) Income tax data
(dots) is the exhaustive list of all taxpayers, about 80,000, who paid income
tax of 10 million yen or more. Tax value was converted to income uniformly
by the same proportionality following the previous work[5]. (ii) Income data
(squares), a coarsely tabulated data for all the persons, about 7,273,000, who
filed tax return. (iii) Employment income data, a sample survey for the salaried
workers in private enterprises, about 44,940,000. Under the Japanese taxation,
all persons with income exceeding 20 million yen have obligation to file final
declaration to the NTA in each year. Thus the dataset (ii) includes all the
persons listed in (i), so we have a reliable profile in the high income range (>
20 million yen). For lower income, upper-bound estimate (triangles) was given
by overlapping the datasets (ii) and (iii) which was found relatively good[6].
b. Annual change of Pareto index µ from the year 1987 to 2000. The complete
list of income tax data in each year was used. Excluding top 0.1 percent and
bottom 10 percent, samples equally spaced in logarithm of rank were plotted,
from which slopes were estimated by least-square-fit. Error bars shown are
standard error (90% level) of the estimate µ (dots).

Japan real 
estate price(Fujuwara, et al. 2002)

(Kaizoji, Kaizoji 2006)
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FIG. 3: Non-parametric kernel estimation of the Hawkes ker-
nel in 1998, 2006 and 2009. The power-law form with decay
exponent ε ≈ 0.15 is reproduced in all three years. However
the high frequency cut-off of the kernels are considerably dif-
ferent. The kernel estimates match well with the MLE fits
(solid lines) using the average parameter estimates for each
year as taken from Fig. 1

φ(ε, n, τ0), is indeed a good description of the data, then
the transformed process N(t∗) should be Poisson with
unit intensity. We assess this fit by analysis of the arrival
times between events in the transformed time t∗, which
if unit variance Poisson should be described by the law
P (∆t∗) = exp (−∆t∗).

The results of this analysis for periods in 1998 and 2009
are given in Fig. 4. The PDFs presented are produced
from the inter-arrival times of the residual process for all
points in the given two month periods. The kernel pa-
rameters used in the analysis are extracted from the MLE
results of Fig. 1. The Kolmogorov-Smirnov distance (i.e.
the maximum deviation between the empirical CDF and
the Poisson expectation) is 0.011 in 1998 and 0.031 in
2009.
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FIG. 4: The empirical distribution for the inter-arrival times
of events in the transformed time of Eq. (16). The parameters
for the power-law kernel used are extracted from the MLE
results of Fig. 1

V. THE SHAPE OF THE HAWKES KERNEL AT
LARGE LAGS

The results in the previous section demonstrate that
a Hawkes process described by a power-law kernel with
an exponent ε ≈ 0.15 is indeed a good fit to the data in
the millisecond to 5-minute region. We will now show
that there is a marked regime change in the nature of
the correlations for larger time horizons. To see this, we
use Detrended Fluctuation Analysis (DFA) [31], a com-
monly used tool for detecting long-range correlations in
the presence of trends and non-stationarity. More pre-
cisely, we compute:

F (L) =

√

√

√

√

1

T

T
∑

t=1

(N(t)− fL(t))
2 (17)

where N(t) is the empirical event counting process
formed by concatenating all regular trading hour peri-
ods in 1998-2011. N(t) is discretised into T 0.1 second
bins and fL(t) is a piecewise function formed by the lin-
ear regression to the points N(t) in non-overlapping win-
dows of length L which cover the period studied. If N(t)
behaved as a Brownian motion with uncorrelated fluctu-
ations, as for a simple Poisson process, we would expect
F (L) ∼ LH with a Hurst exponent H = 1

2 . In the pres-
ence of long-ranged correlations induced by a power-law
Hawkes kernel, one finds:

H =
1

2
+ ε, (0 < ε <

1

2
) (18)

Note that this result is not intuitive, since the larger the
value of ε, the faster the decay of the Hawkes kernel, but
the stronger the deviation from the Poisson resultH = 1

2 .
This paradoxical behaviour was in fact already apparent
in the relation α = 1− 2ε derived in Sect. II B above.
Fig. 5 clearly shows two regions. For small time win-

dows (L < 1000s), the Hurst exponent is found to beH ≈
0.63, consistent with the observation of ε ≈ 0.15 in the
previous section. For longer time windows (L > 1000s),
the diffusion of the integrated event rate becomes more
super-diffusive and leads to a stronger Hurst exponent
of H ≈ 0.95. Such a change to a more super-diffusive
regime has been observed before for measures of market
volatility [32, 33]. However these previous studies have
reported the cross-over at the scale of one day, whereas
in our dataset for event rate it is happening much faster
(10 - 20 minutes). We have repeated the same analysis
for absolute value of five-minute returns and confirmed
that the cross-over time is indeed longer in that case, on
the scale of a day. We attribute the difference to the fact
that the distribution of five-minute returns is well known
to have fat-tails, much fatter than the distribution of the
number of price changes over five minutes. The extra
noise brought about by these tails reduce short-time cor-
relations, and therefore bring the value of H closer to
1/2.

Financial markets as critical branching processes
(Hardiman, Bercot, Bouchaud 2013)
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FIG. 2. Divergence of the heat capacity is a classical signature
of criticality. This plot represents the heat capacity versus
temperature for Ising models of retinal activity for increasing
population sizes N [47]. The “N = 20, rand,” and N =
120 curves were obtained by infering Ising models for fictious
networks whose correlations were randomly drawn from real
data. Error bars show the standard deviation when choosing
di↵erent subsets of N neurons among the 40 available.

even clearer demonstration that the system is operating
near a critical point in its parameter space, as shown by
the huge enhancement of the peak in specific heat, shown
in the top curve of Fig. 2.

This diverging heat capacity is further evidence that
the system is near a critical point, but one might be wor-
ried that this is an artifact of the model or of the fitting
procedure. As we have seen in section II, the critical
properties of the distribution P (�) can be also explored
directly, without recourse to the maximum entropy ap-
proximation, by plotting the probability of firing pat-
terns versus their rank. Figure 3, which shows such plots
for increasing network sizes, reveals good agreement with
Zipf’s law, especially for larger N .

Some of the inferred couplings Jij were negative, indi-
cating an e↵ective mutual inhibition between two cells.
We know from spin glass theory [48] that negative cou-
plings can lead to frustration and the emergence of
many locally stable, or metastable, states. Formally,
a metastable state is defined as a state whose energy
is lower than any of its adjacent states, where adja-
cency is defined by single spin flips. Said di↵erently,
metastable states are local “peaks” in the probability
landscape. In the retina responding to natural movies,
up to four metastable states were reported in the popu-
lation (N = 40). These states appeared at precise times
of the repeated movie [20], suggesting that they might
code for specific stimulus features. The synthetic net-
work of N = 120 cells displayed a much larger number
of metastable states, and the distribution over the basins
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FIG. 3. The activity of populations of retinal ganglion cells
obeys Zipf’s law (from the data in Ref [19]). Shown is the
probability of activity patterns (or ‘words’) against their rank
for various population sizes. Error bars show the variabil-
ity across di↵erent choices of subpopulations. Note that the
agreement with Zipf’s law, P (�) / 1/rank, is maximum for
larger N .

corresponding to these states also followed Zipf’s law. At
this point however, the exact relation between the pro-
liferation of metastable states and criticality is still not
well understood.
In summary, these analyses give strong support to the

idea that neural networks might be poised near a critical
state. However, it is still not clear whether the observed
signatures of criticality will hold for larger N , especially
when it is of the order of a correlated patch (⇠ 200). The
next generation of retinal experiments, which will record
from ⇡ 100� 200 cells simultaneously, should be able to
settle that question.

V. ENSEMBLES OF SEQUENCES

The structure and function of proteins is determined
by their amino acid sequence, but we have made rela-
tively little progress in understanding the nature of this
mapping; indeed, to solve this problem completely would
be equivalent to solving the protein folding problem [49–
51]. An oblique way to tackle that question is to remark
that a single function or structure often is realized by
many di↵erent protein sequences. Can we use the statis-
tics of these related proteins to understand how physical
interactions constrain sequences through selection?
To make progress, one first needs to define protein

families. Since only a fraction of known proteins have
a resolved structure or identified function, defining these
families must rely on simplifying assumptions. The stan-

Firing rates of neurons in the retina
T. Mora & W. Bialek, J.Stat.Phys. (2011)



The only things all these phenomena have 
in common is:

They are samples of solutions to the 
same optimization problem



E.g. language: an efficient way to 
say complex things

• The problem our brain solves when speaking is “what is the next 
word?”

• The choice of the next word must depend on all other words 
before and after, depending on what you want to say

• If this choice were restricted to few words, you could not express 
complex concepts

• If the next world could be any possible out of 50000 words, 
speaking would be computationally hard

• The fact that the frequency of words follows Zipf’s law implies that 
we strike a balance between these two extremes

• Note: Words are the relevant variables in language by definition 
(and among words there are more and less relevant ones)



Why do you live where you live?

• I chose to live where I live because my zip code can be 
nicely decomposed in primes: 34151 = 13 x 37 x 71 

• Normal people choose where to live depending on their 
job, marriage, interests, etc

• Typically the zip code is not a relevant variable in this 
choice, whereas the city is.

• The distribution of city sizes contains information about 
how people choose where to live. It is individual choices 
that make the distribution informative

• Yet this choice depends on a host of unobserved 
variables



Complex system
= many degrees of freedom + function

• Complex systems are not random:

• Individuals do not live in random cities 

• We do not choose words at random when speaking 

• Proteins are not random sequences of amino acids 

• ...

• Only part of what they do is accessible to us:
There are known knowns. These are things we know that we know. 
There are known unknowns. 
That is to say, there are things that we know we don’t know. 
But there are also unknown unknowns. 
These are things we don’t know we don’t know.

Donald Rumsfeld



Key issue: 
what variables do we look at?
• If the variables we look at are irrelevant, we just get noise

• Relevant variables are those the system cares about. 

• If the variables that we put in our models are relevant
we can be predictive

• If the variables that we sample are relevant
we can infer what the system is doing

• Relevance of the variables must reflect in the statics of the 
sample’s frequency distribution

• Can we quantify this?

• Can we use this to find what the relevant variables are?



Nature

Observables (knowns)

max

(s,s̄)
U(s, s̄)

max

s
max

s̄
U(s, s̄) ) s⇤

s = (s1, . . . , sn), n = fN

s̄ = (sn+1, . . . , sN )

ps⇤ = P{s0 = s⇤}

Q: How many? How relevant?

Modeling:
(the direct problem)

Model
max

s
Es̄ [U(s, s̄)]

= max

s
us ) s0

P {s⇤ = s} =
1

Z(�)
e�us , Z(�) =

X

s

e�us



Nature

Data M observations

Observables (knowns)

max

(s,s̄)
U(s, s̄)

max

s
max

s̄
U(s, s̄) ) s⇤

Q:  What can I say on us = Es[U(s,s)]? 
     When is M large enough? 
     What do samples (typically) look like when M is small?

Sampling:
(the inverse problem)

ŝ =
⇣
s(1), . . . , s(M)

⌘



Where is the information in 
the sample?

• Problem: what is the optimized function     ?

• Sample of M observations

•                         gives information on 

• The information contained in the sample is H[K]

usKs =
MX

1=1

�s(i),s

us ⇡ c+ ��1
logKs

us

ŝ =
⇣
s(1), . . . , s(M)

⌘



How much information?
E.g. find Mr X in Slovenia

• Slovenia has M people, need log2 M bits to find 
Mr X

• If you knew the size KX of the city where X lives 
then you’d need log2 [KX N(KX)] bits

• If you knew which city sX X lives in, then you’d 
need log2 KX bits

• If all individuals live in the same city KX=M then 
you don’t gain any information either way

• If each individual lives in a different city (KX=1) 
you don’t gain anything if you know KX 
you know everything if you know sX  

• Information gain depends on N(K) and the 
amount of information is given by H[K]

H[K] = �
X

k

kN(k)

M
log2

kN(k)

M

H[s] = �
X

k

kN(k)

M
log2

k

M

H[K] = H[s] = 0

H[K] = 0, H[s] = log2 M

Information gain and entropy

What is the most informative 
N(k) for 0 < H[s] < log2M ?



Maximally informative samples 
(upper bound)

N(k) : max

{N(k)}
H[K]

s.t. H[s] = H0
X

k

kN(k) = M
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Data processing inequality:

N(k) ⇠ k�µ

Zipf: µ = 2
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Applications/examples

• City size distribution

• Best classification of financial stocks

• Keywords in the “Origin of the Species”

• Finding relevant positions in proteins



Subsampling city distribution
(IPUM database http://usa.ipums.org)
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• Time series for M=4000 stocks, 
daily returns (1 Jan 1990 - 30 Apr 1999)

• s(i) = label of stock i in hierarchical data clustering with N clusters

• Which method?

Maximum likelihood
(Marsili, 2003)

Minimal Spanning Tree (MST)
(Bonanno et. al. 2004, Tumminello et al. 2006)

Finding relevant variables 1:
Classifying 4000 NYSE stocks



H[K] can be used to score clustering 
methods
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Finding relevant variables II:
Keywords in text

• Text = (w1,w2, w3, ... , wL) in blocks of B words

• Montemurro, Zanette (2009): relevant words are those whose 
frequency distribution in blocks differs most from the random 
distribution. 

• Ks=number of times w occurs in block s=1,..,L/B

• Words with larger H[K] are the most relevant (those that are 
chosen for specific reasons)



The Origin of the Species
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Finding relevant variables III:
Choosing relevant positions in proteins

• Protein: amino-acid sequence 

• Function (e.g. response regulator receptor) is related to sequence
(e.g. structure/contacts, active sites, etc)

• Data: Families of homologous proteins in PFAM database. 
Same function different organisms, different sequences

• How to find relevant variables?

1. subsequence of n most conserved amino-acids 

2. subsequence that maximizes H[K]

~s(i) =
⇣
s(i), s̄(i)

⌘ ~s(1) . . .~s(M)

~s = (s1, . . . , sN )



Conserved variables are not the only 
relevant relevant ones
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H[
K]

H[s]

Theory
min H[a]

max H[K]
min H[s]-H[K]

most conserved 
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most relevant 
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least conserved 
variables



What experiment would you do?
Which variables would you choose?

u

H[s]
β

logM

N

u”

H[s’’] β≫ 1

u’

H[s’]

β≪1

?

Optimal sampling and 
experiment design:



Summary
• Models may be predictive only when known variables are relevant 

• Relevant variables are those for which samples “look critical”
(i.e. most informative samples in the under-sampling regime are 
power laws)

• Zipf’s law separates the under-sampling from well sampled regimes

• H[K] vs H[s] plot can be useful

• to find relevant variables, keywords

• to score clustering methods

• ...

• Model free method



A numerical recipe

• Compute the number Ks of times you see observation s in 
your data

• Compute the number N(k) of observations that occur k times

• Compute
and plot  

H[K] = �
X

k

kN(k)

M
log

kN(k)

M

H[s] = �
X

k

kN(k)

M
log

k

M



Let’s make this link more precise

• Variables

• Function

• Observable behavior

• Model’s prediction

• Modeling:  When is              ?

• Sampling:  What can I learn from                                 ?             

~s = (s1, . . . , sn, sn+1, . . . , sN ) , si = ±1

s s̄knowns            unknowns

s⇤ = argmax

s

h
us +max

s̄
vs̄|s

i

s0 = argmax

s

⇥
us

⇤

s0 = s⇤

model       unknown function

U(~s) = us + vs̄|s,
⌦
vs̄|s

↵
= 0

, N � 1

ŝ =
⇣
s(1), . . . , s(M)

⌘


