# Latent factor models for relational data 

## Peter Hoff

Statistics, Biostatistics and the CSSS
University of Washington

# Outline 

Introduction

Models based on exchangeability

Homophily and stochastic equivalence

Matrix decomposition models

Multiway data

## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $v_{i} i=$ indicator of a dispute initiated by $i$ with target $j$

Needle-sharing network

- $A=$ IV drug users,
- $y_{i, i}=$ needle-sharing activity between $i$ and $j$

Protein-protein interactions

- $A=$ proteins,
- $v_{i, i}=$ the interaction between $i$ and $j$

Not an example:
Dependence graph

- $\mathrm{A}=$ variables,
- $y_{i, i}=$ presence of a high correlation between $i$ and $j$


## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $y_{i, j}=$ indicator of a dispute initiated by $i$ with target $j$.

Needle-sharing network

- $A=\mathrm{IV}$ drug users,
- $y_{i, j}=$ needle-sharing activity between $i$ and $j$

Protein-protein interactions

- $A=$ proteins,
- $y_{i, j}=$ the interaction between $i$ and $j$

Not an example:
Dependence graph

- $\mathrm{A}=$ variables
- $y_{i, i}=$ presence of a high correlation between $i$ and $j$


## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $y_{i, j}=$ indicator of a dispute initiated by $i$ with target $j$.

Needle-sharing network

- $A=\mathrm{IV}$ drug users,
- $y_{i, j}=$ needle-sharing activity between $i$ and $j$.

Protein-protein interactions

- $A=$ proteins,
- $y_{i, j}=$ the interaction between $i$ and $j$

Not an example:
Dependence graph

- $A=$ variables,
- $y_{i, j}=$ presence of a high correlation between $i$ and $j$


## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $y_{i, j}=$ indicator of a dispute initiated by $i$ with target $j$.

Needle-sharing network

- $A=$ IV drug users,
- $y_{i, j}=$ needle-sharing activity between $i$ and $j$.

Protein-protein interactions

- $A=$ proteins,
- $y_{i, j}=$ the interaction between $i$ and $j$.

Not an example:
Dependence graph

- $A=$ variables,
- $y_{i, j}=$ presence of a high correlation between $i$ and $j$


## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $y_{i, j}=$ indicator of a dispute initiated by $i$ with target $j$.

Needle-sharing network

- $A=$ IV drug users,
- $y_{i, j}=$ needle-sharing activity between $i$ and $j$.

Protein-protein interactions

- $A=$ proteins,
- $y_{i, j}=$ the interaction between $i$ and $j$.

Not an example:
Dependence graph

- $A=$ variables,
- $y_{i, j}=$ presence of a high correlation between $i$ and $j$


## Relational data

Relational data consist of

- a set of units or nodes $A$, and
- a set of measurements $Y \equiv\left\{y_{i, j}\right\}$ specific to pairs of nodes $(i, j) \in A \times A$.


## Examples:

International relations

- $A=$ countries,
- $y_{i, j}=$ indicator of a dispute initiated by $i$ with target $j$.

Needle-sharing network

- $A=$ IV drug users,
- $y_{i, j}=$ needle-sharing activity between $i$ and $j$.

Protein-protein interactions

- $A=$ proteins,
- $y_{i, j}=$ the interaction between $i$ and $j$.

Not an example:
Dependence graph

- $A=$ variables,
- $y_{i, j}=$ presence of a high correlation between $i$ and $j$.


## Descriptive goals



How can we summarize network patterns?

> 1. Are there categories of nodes corresponding to network roles?
2. Are there clusters of nodes with large within-cluster density?

## Descriptive goals



How can we summarize network patterns?

1. Are there categories of nodes corresponding to network roles? (stochastic equivalence)
2. Are there clusters of nodes with large within-cluster density?

## Descriptive goals



How can we summarize network patterns?

1. Are there categories of nodes corresponding to network roles? (stochastic equivalence)
2. Are there clusters of nodes with large within-cluster density? (clustering/homophily/transitivity)

## Descriptive goals



How can we summarize network patterns?

1. Are there categories of nodes corresponding to network roles? (stochastic equivalence)
2. Are there clusters of nodes with large within-cluster density? (clustering/homophily/transitivity)

## Inferential goals in the regression framework

$y_{i, j}$ measures $i \rightarrow j, \quad \mathbf{x}_{i, j}$ is a vector of explanatory variables.

$$
\mathbf{Y}=\left(\begin{array}{cccccc}
y_{1,1} & y_{1,2} & y_{1,3} & \mathrm{NA} & y_{1,5} & \cdots \\
y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} & y_{2,5} & \cdots \\
y_{3,1} & \mathrm{NA} & y_{3,3} & y_{3,4} & \mathrm{NA} & \cdots \\
y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} & y_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cccccc}
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{1,3} & \mathbf{x}_{1,4} & \mathbf{x}_{1,5} & \cdots \\
\mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \mathbf{x}_{2,3} & \mathbf{x}_{2,4} & \mathbf{x}_{2,5} & \cdots \\
\mathbf{x}_{3,1} & \mathbf{x}_{3,2} & \mathbf{x}_{3,3} & \mathbf{x}_{3,4} & \mathbf{x}_{3,5} & \cdots \\
\mathbf{x}_{4,1} & \mathbf{x}_{4,2} & \mathbf{x}_{4,3} & \mathbf{x}_{4,4} & \mathbf{x}_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & &
\end{array}\right)
$$

Consider a basic (generalized) linear model

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+e_{i, j}
$$

A model can provide

- a measure of the association between $X$ and $Y: \hat{\beta}, \operatorname{se}(\hat{\beta})$
- imputations of missing observations:
- a probabilistic description of network features: $g(\tilde{\mathbf{Y}}), \tilde{\mathbf{Y}} \sim p(\tilde{\mathbf{Y}} \mid \mathbf{Y}, \mathbf{X})$


## Inferential goals in the regression framework

$y_{i, j}$ measures $i \rightarrow j, \quad \mathbf{x}_{i, j}$ is a vector of explanatory variables.

$$
\mathbf{Y}=\left(\begin{array}{cccccc}
y_{1,1} & y_{1,2} & y_{1,3} & \mathrm{NA} & y_{1,5} & \cdots \\
y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} & y_{2,5} & \cdots \\
y_{3,1} & \mathrm{NA} & y_{3,3} & y_{3,4} & \mathrm{NA} & \cdots \\
y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} & y_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cccccc}
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{1,3} & \mathbf{x}_{1,4} & \mathbf{x}_{1,5} & \cdots \\
\mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \mathbf{x}_{2,3} & \mathbf{x}_{2,4} & \mathbf{x}_{2,5} & \cdots \\
\mathbf{x}_{3,1} & \mathbf{x}_{3,2} & \mathbf{x}_{3,3} & \mathbf{x}_{3,4} & \mathbf{x}_{3,5} & \cdots \\
\mathbf{x}_{4,1} & \mathbf{x}_{4,2} & \mathbf{x}_{4,3} & \mathbf{x}_{4,4} & \mathbf{x}_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & &
\end{array}\right)
$$

Consider a basic (generalized) linear model

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+e_{i, j}
$$

A model can provide

- a measure of the association between $\mathbf{X}$ and $\mathbf{Y}: \hat{\boldsymbol{\beta}}, \operatorname{se}(\hat{\boldsymbol{\beta}})$
- imputations of missing observations
- a probabilistic description of network features: $g(\tilde{\mathbf{Y}})$,


## Inferential goals in the regression framework

$y_{i, j}$ measures $i \rightarrow j, \quad \mathbf{x}_{i, j}$ is a vector of explanatory variables.

$$
\mathbf{Y}=\left(\begin{array}{cccccc}
y_{1,1} & y_{1,2} & y_{1,3} & \mathrm{NA} & y_{1,5} & \cdots \\
y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} & y_{2,5} & \cdots \\
y_{3,1} & \mathrm{NA} & y_{3,3} & y_{3,4} & \mathrm{NA} & \cdots \\
y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} & y_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cccccc}
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{1,3} & \mathbf{x}_{1,4} & \mathbf{x}_{1,5} & \cdots \\
\mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \mathbf{x}_{2,3} & \mathbf{x}_{2,4} & \mathbf{x}_{2,5} & \cdots \\
\mathbf{x}_{3,1} & \mathbf{x}_{3,2} & \mathbf{x}_{3,3} & \mathbf{x}_{3,4} & \mathbf{x}_{3,5} & \cdots \\
\mathbf{x}_{4,1} & \mathbf{x}_{4,2} & \mathbf{x}_{4,3} & \mathbf{x}_{4,4} & \mathbf{x}_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & &
\end{array}\right)
$$

Consider a basic (generalized) linear model

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+e_{i, j}
$$

A model can provide

- a measure of the association between $\mathbf{X}$ and $\mathbf{Y}: \hat{\boldsymbol{\beta}}, \operatorname{se}(\hat{\boldsymbol{\beta}})$
- imputations of missing observations: $p\left(y_{1,4} \mid \mathbf{Y}, \mathbf{X}\right)$
- a probabilistic description of network features: $g(\tilde{Y}), \tilde{Y} \sim p(\tilde{Y} \mid \mathbf{Y}, \mathbf{X})$


## Inferential goals in the regression framework

$y_{i, j}$ measures $i \rightarrow j, \quad \mathbf{x}_{i, j}$ is a vector of explanatory variables.

$$
\mathbf{Y}=\left(\begin{array}{cccccc}
y_{1,1} & y_{1,2} & y_{1,3} & \mathrm{NA} & y_{1,5} & \cdots \\
y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} & y_{2,5} & \cdots \\
y_{3,1} & \mathrm{NA} & y_{3,3} & y_{3,4} & \mathrm{NA} & \cdots \\
y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} & y_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cccccc}
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{1,3} & \mathbf{x}_{1,4} & \mathbf{x}_{1,5} & \cdots \\
\mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \mathbf{x}_{2,3} & \mathbf{x}_{2,4} & \mathbf{x}_{2,5} & \cdots \\
\mathbf{x}_{3,1} & \mathbf{x}_{3,2} & \mathbf{x}_{3,3} & \mathbf{x}_{3,4} & \mathbf{x}_{3,5} & \cdots \\
\mathbf{x}_{4,1} & \mathbf{x}_{4,2} & \mathbf{x}_{4,3} & \mathbf{x}_{4,4} & \mathbf{x}_{4,5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & & &
\end{array}\right)
$$

Consider a basic (generalized) linear model

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+e_{i, j}
$$

A model can provide

- a measure of the association between $\mathbf{X}$ and $\mathbf{Y}: \hat{\boldsymbol{\beta}}, \operatorname{se}(\hat{\boldsymbol{\beta}})$
- imputations of missing observations: $p\left(y_{1,4} \mid \mathbf{Y}, \mathbf{X}\right)$
- a probabilistic description of network features: $g(\tilde{\mathbf{Y}}), \tilde{\mathbf{Y}} \sim p(\tilde{\mathbf{Y}} \mid \mathbf{Y}, \mathbf{X})$


## Adolescent health social network



Data on 82 12th graders from a single high school:

54 boys, 28 girls
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ same sex $)=0.077$
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ opposite sex $)=0.056$

## Adolescent health social network



Data on 82 12th graders from a single high school:

54 boys, 28 girls
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ same sex $)=0.077$
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ opposite sex $)=0.056$

Model 0: $\left\{y_{i, j}\right\} \sim$ iid binary $(\theta)$

## Adolescent health social network



Data on 82 12th graders from a single high school:

54 boys, 28 girls
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ same sex $)=0.077$
$\hat{\operatorname{Pr}}\left(y_{i, j}=1 \mid\right.$ opposite sex $)=0.056$

Model 0: $\left\{y_{i, j}\right\} \sim$ iid binary $(\theta)$
Model 1: $\left\{y_{i, j}\right\}$ are independent, with

$$
y_{i, j} \sim\left\{\begin{array}{l}
\text { binary }\left(\theta_{A}\right) \text { if } i \text { and } j \text { of same sex } \\
\text { binary }\left(\theta_{B}\right) \text { if } i \text { and } j \text { of opposite sex }
\end{array}\right.
$$

## Model fit

```
glm(formula = y ~ x, family = binomial(link = "logit"))
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | -2.8332 | 0.1123 | -25.24 | $<2 \mathrm{e}-16{ }^{* * *}$ |
| :--- | ---: | ---: | ---: | :--- |
| x | 0.3471 | 0.1428 | 2.43 | $0.0151^{*}$ |

This result says that a model with preferential association is a better description of the data than an i.i.d. binary model.



Nodal heterogeneity and independence assumptions


## Model lack of fit

Neither of these models do well in terms of representing other features of the data - for example, transitivity:

$$
t(\mathbf{Y})=\sum_{i<j<k} y_{i, j} y_{j, k} y_{k, i}
$$




## Random effects models

Deviations from ordinary regression models can be represented as

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

A simple "latent variable" model might include additive node effects:

$$
\gamma_{i, j}=a_{i}+a_{j} \quad \Rightarrow \quad y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+a_{i}+a_{j}
$$

$\left\{a_{1}, \ldots, a_{n}\right\}$ represent nodal heterogeneity, additive on the regressor scale.
Inclusion of these effects in the model can dramatically improve

- within-sample model fit (measured by $R^{2}$, likelihood ratio, BIC, etc.);
- out-of-sample predictive performance (measured by cross-validation).

But this model only captures heterogeneity of outdegree/indegree, and can't represent more complicated structure, such as clustering, transitivity, etc.

## Random effects models

Deviations from ordinary regression models can be represented as

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

A simple "latent variable" model might include additive node effects:

$$
\gamma_{i, j}=a_{i}+a_{j} \quad \Rightarrow \quad y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+a_{i}+a_{j}
$$

$\left\{a_{1}, \ldots, a_{n}\right\}$ represent nodal heterogeneity, additive on the regressor scale.
Inclusion of these effects in the model can dramatically improve

- within-sample model fit (measured by $R^{2}$, likelihood ratio, BIC, etc.);

But this model only captures heterogeneity of outdegree/indegree, and can't
represent more complicated structure, such as clustering, transitivity, etc.

## Random effects models

Deviations from ordinary regression models can be represented as

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

A simple "latent variable" model might include additive node effects:

$$
\gamma_{i, j}=a_{i}+a_{j} \quad \Rightarrow \quad y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+a_{i}+a_{j}
$$

$\left\{a_{1}, \ldots, a_{n}\right\}$ represent nodal heterogeneity, additive on the regressor scale.
Inclusion of these effects in the model can dramatically improve

- within-sample model fit (measured by $R^{2}$, likelihood ratio, BIC, etc.);
- out-of-sample predictive performance (measured by cross-validation).

But this model only captures heterogeneity of outdegree/indegree, and can't
represent more complicated structure, such as clustering, transitivity, etc.

## Random effects models

Deviations from ordinary regression models can be represented as

$$
y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

A simple "latent variable" model might include additive node effects:

$$
\gamma_{i, j}=a_{i}+a_{j} \quad \Rightarrow \quad y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+a_{i}+a_{j}
$$

$\left\{a_{1}, \ldots, a_{n}\right\}$ represent nodal heterogeneity, additive on the regressor scale.
Inclusion of these effects in the model can dramatically improve

- within-sample model fit (measured by $R^{2}$, likelihood ratio, BIC, etc.);
- out-of-sample predictive performance (measured by cross-validation).

But this model only captures heterogeneity of outdegree/indegree, and can't represent more complicated structure, such as clustering, transitivity, etc.

Fit of additive effects model



## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution

Inference

- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters
- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters
- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

## Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution
- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

## Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters

Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution

Inference

- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

## Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters


## Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution

Inference

- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

## Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters


## Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution

Inference

- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building goals

## Descriptions of local network structure

- identification of important nodes
- identification of groups of nodes
- stochastically equivalent groups
- high density clusters


## Descriptions of global network structure

- relationship to explanatory variables
- global measures of density, transitivity, degree distribution

Inference

- prediction and imputation
- confidence intervals for regression effects
- hypothesis testing and model comparison


## Model building principles

- Statistical inference utilizes probability models
- Networks and relational data are represented by matrices and arrays Social network analysis can utilize probability models of matrices and arrays. We will construct social network models based on these tools:

1. Probability: symmetry considerations (exchangeability) will motivate latent variable models generally.
2. Matrix algebra: matrix decomposition methods will motivate latent factor models specifically.

## Model building principles

- Statistical inference utilizes probability models
- Networks and relational data are represented by matrices and arrays Social network analysis can utilize probability models of matrices and arrays.

We will construct social network models based on these tools:

1. Probability: symmetry considerations (exchangeability) will motivate latent variable models generally.
2. Matrix algebra: matrix decomposition methods will motivate latent factor models specifically.

## Model building principles

- Statistical inference utilizes probability models
- Networks and relational data are represented by matrices and arrays

Social network analysis can utilize probability models of matrices and arrays.
We will construct social network models based on these tools:

1. Probability: symmetry considerations (exchangeability) will motivate latent variable models generally.
2. Matrix algebra: matrix decomposition methods will motivate latent factor models specifically.

## Model building principles

- Statistical inference utilizes probability models
- Networks and relational data are represented by matrices and arrays

Social network analysis can utilize probability models of matrices and arrays.
We will construct social network models based on these tools:

1. Probability: symmetry considerations (exchangeability) will motivate latent variable models generally.
2. Matrix algebra: matrix decomposition methods will motivate latent factor models specifically.

A primer on exchangeability and de Finetti's theorem

Let $Y_{1}, \ldots, Y_{n}$ be an exchangeable sequence for all $n$ :

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{\pi_{1}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \forall n
$$

de Finetti's theorem says

- The parameter $\theta$ represents "global features" of the sequence.
- The $\epsilon_{i}$ 's represent "local features", specific to individual $Y_{i}$ 's.
(This theorem justifies the ubiquitous "conditionally i.i.d." assumption of statistical modeling)

A primer on exchangeability and de Finetti's theorem

Let $Y_{1}, \ldots, Y_{n}$ be an exchangeable sequence for all $n$ :

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{\pi_{1}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \forall n
$$

de Finetti's theorem says

$$
\begin{aligned}
Y_{i} & =g\left(\theta, \epsilon_{i}\right), \text { where } \\
\epsilon_{1}, \ldots, \epsilon_{n} & \stackrel{\text { iid }}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents "global features" of the sequence. - The $\epsilon_{i}$ 's represent "local features", specific to individual $Y_{i}$ 's.
(This theorem justifies the ubiquitous "conditionally i.i.d." assumption of statistical modeling)

A primer on exchangeability and de Finetti's theorem

Let $Y_{1}, \ldots, Y_{n}$ be an exchangeable sequence for all $n$ :

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{\pi_{1}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \forall n
$$

de Finetti's theorem says

$$
\begin{aligned}
Y_{i} & =g\left(\theta, \epsilon_{i}\right), \text { where } \\
\epsilon_{1}, \ldots, \epsilon_{n} & \stackrel{\text { iid }}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents "global features" of the sequence.
- The $\epsilon_{i}$ 's represent "local features", specific to individual $Y_{i}$ 's.
(This theorem justifies the ubiquitous "conditionally i.i.d." assumption of statistical modeling)

A primer on exchangeability and de Finetti's theorem

Let $Y_{1}, \ldots, Y_{n}$ be an exchangeable sequence for all $n$ :

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{\pi_{1}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \forall n
$$

de Finetti's theorem says

$$
\begin{aligned}
Y_{i} & =g\left(\theta, \epsilon_{i}\right), \text { where } \\
\epsilon_{1}, \ldots, \epsilon_{n} & \stackrel{\text { iid }}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents "global features" of the sequence.
- The $\epsilon_{i}$ 's represent "local features", specific to individual $Y_{i}$ 's.
(This theorem justifies the ubiquitous "conditionally i.i.d." assumption of statistical modeling)


## A primer on exchangeability and de Finetti's theorem

Let $Y_{1}, \ldots, Y_{n}$ be an exchangeable sequence for all $n$ :

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{\pi_{1}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \forall n
$$

de Finetti's theorem says

$$
\begin{aligned}
Y_{i} & =g\left(\theta, \epsilon_{i}\right), \text { where } \\
\epsilon_{1}, \ldots, \epsilon_{n} & \stackrel{\text { iid }}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents "global features" of the sequence.
- The $\epsilon_{i}$ 's represent "local features", specific to individual $Y_{i}$ 's.
(This theorem justifies the ubiquitous "conditionally i.i.d." assumption of statistical modeling)


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(Y)$ is exchangeable across rows and within rows:


A double application of de Finetti's theorem implies

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's renresents across-groun heterogeneity.
- Heterogeneity in the $\epsilon_{i, j}$ 's represents within-group heterogeneity.


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's represents across-group heterogeneity.
- Heterogeneity in the $\epsilon_{i, j}$ 's represents within-group heterogeneity.


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, \epsilon_{i, j}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, \epsilon_{i, j}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's represents


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, \epsilon_{i, j}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's represents across-group heterogeneity.


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, \epsilon_{i, j}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's represents across-group heterogeneity.
- Heterogeneity in the $\epsilon_{i, j}$ 's represents within-group heterogeneity.


## Exchangeability for nested data

Now consider an $m \times n$ data matrix :

$$
\mathbf{Y}=\left(\begin{array}{cccc}
Y_{1,1} & Y_{1,2} & \cdots & Y_{1, n} \\
Y_{2,1} & Y_{2,2} & \cdots & Y_{2, n} \\
\vdots & \vdots & & \vdots \\
Y_{m, 1} & Y_{m, 2} & \cdots & Y_{m, n}
\end{array}\right)
$$

Suppose $\operatorname{Pr}(\mathbf{Y})$ is exchangeable across rows and within rows:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{1}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{m}\right) & =\operatorname{Pr}\left(\mathbf{Y}_{1}=\mathbf{y}_{\pi_{1}}, \ldots, \mathbf{Y}_{m}=\mathbf{y}_{\pi m}\right) \\
\operatorname{Pr}\left(Y_{i, 1}=y_{i, 1}, \ldots, Y_{i, n}=y_{i, n}\right) & =\operatorname{Pr}\left(Y_{i, 1}=y_{i, \omega_{1}}, \ldots, Y_{i, n}=y_{i, \omega_{n}}\right)
\end{aligned}
$$

A double application of de Finetti's theorem implies

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, \epsilon_{i, j}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the data.
- Heterogeneity in the $a_{i}$ 's represents across-group heterogeneity.
- Heterogeneity in the $\epsilon_{i, j}$ 's represents within-group heterogeneity.


## Exchangeability for symmetric relational matrices

Let $\mathbf{Y}$ be a symmetric binary matrix with no explanatory variables. What properties should a probability model $\operatorname{Pr}(\mathbf{Y}=\mathbf{y})$ have?

$$
\mathbf{y}_{A}=\left(\begin{array}{cccc}
. & 0 & 1 & 1 \\
0 & . & 0 & 1 \\
1 & 0 & . & 0 \\
1 & 1 & 0 & .
\end{array}\right) \quad \mathbf{y}_{B}=\left(\begin{array}{cccc}
. & 1 & 0 & 0 \\
1 & . & 1 & 0 \\
0 & 1 & . & 1 \\
0 & 0 & 1 & \cdot
\end{array}\right)
$$

$y_{B}$ is just $y_{A}$ with the nodes relabeled: $y_{B, i, j}=y_{A, \pi_{i}, \pi_{j}}, \pi=(3,1,4,2)$

$$
\operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{A}\right) \stackrel{?}{=} \operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{B}\right)
$$

RCE model: $\operatorname{Pr}(\cdot)$ is $\operatorname{RCE}$ if $\operatorname{Pr}(\mathbf{Y}=\mathbf{y})=\operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{\pi}\right)$ for all $\mathbf{y}$ and $\pi$.

## Exchangeability for symmetric relational matrices

Let $\mathbf{Y}$ be a symmetric binary matrix with no explanatory variables. What properties should a probability model $\operatorname{Pr}(\mathbf{Y}=\mathbf{y})$ have?

$$
\mathbf{y}_{A}=\left(\begin{array}{cccc}
. & 0 & 1 & 1 \\
0 & . & 0 & 1 \\
1 & 0 & . & 0 \\
1 & 1 & 0 & .
\end{array}\right) \quad \mathbf{y}_{B}=\left(\begin{array}{cccc}
. & 1 & 0 & 0 \\
1 & . & 1 & 0 \\
0 & 1 & . & 1 \\
0 & 0 & 1 & \cdot
\end{array}\right)
$$

$\mathbf{y}_{B}$ is just $\mathbf{y}_{A}$ with the nodes relabeled: $y_{B, i, j}=y_{A, \pi_{i}, \pi_{j}}, \pi=(3,1,4,2)$

$$
\operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{A}\right) \stackrel{?}{=} \operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{B}\right)
$$

## Exchangeability for symmetric relational matrices

Let $\mathbf{Y}$ be a symmetric binary matrix with no explanatory variables. What properties should a probability model $\operatorname{Pr}(\mathbf{Y}=\mathbf{y})$ have?

$$
\mathbf{y}_{A}=\left(\begin{array}{cccc}
. & 0 & 1 & 1 \\
0 & . & 0 & 1 \\
1 & 0 & . & 0 \\
1 & 1 & 0 & .
\end{array}\right) \quad \mathbf{y}_{B}=\left(\begin{array}{cccc}
. & 1 & 0 & 0 \\
1 & . & 1 & 0 \\
0 & 1 & . & 1 \\
0 & 0 & 1 & .
\end{array}\right)
$$

$\mathbf{y}_{B}$ is just $\mathbf{y}_{A}$ with the nodes relabeled: $y_{B, i, j}=y_{A, \pi_{i}, \pi_{j}}, \pi=(3,1,4,2)$

$$
\operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{A}\right) \stackrel{?}{=} \operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{B}\right)
$$

RCE model: $\operatorname{Pr}(\cdot)$ is $\operatorname{RCE}$ if $\operatorname{Pr}(\mathbf{Y}=\mathbf{y})=\operatorname{Pr}\left(\mathbf{Y}=\mathbf{y}_{\pi}\right)$ for all $\mathbf{y}$ and $\pi$.
(Hoover 1982, Aldous 1983)

## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

- The parameter $\theta$ represents global features of the matrix.
- The a.'s represent nodal heteroceneity, ie nodal features.
- The $\epsilon_{i, j}$ represent dyad heterogeneity.


## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, a_{j}, \epsilon_{i, j}\right)=g\left(\theta, a_{j}, a_{i}, \epsilon_{j, i}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal heterogeneity, i.e. nodal features.
- The $\epsilon_{i, j}$ represent dyad heterogeneity.


## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, a_{j}, \epsilon_{i, j}\right)=g\left(\theta, a_{j}, a_{i}, \epsilon_{j, i}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The ai's represent nodal heterogeneity, i.e. nodal features.
- The $\epsilon_{i, j}$ represent dyad heterogeneity.


## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, a_{j}, \epsilon_{i, j}\right)=g\left(\theta, a_{j}, a_{i}, \epsilon_{j, i}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal heterogeneity, i.e. nodal features.
- The $\epsilon_{i, j}$ represent d


## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, a_{j}, \epsilon_{i, j}\right)=g\left(\theta, a_{j}, a_{i}, \epsilon_{j, i}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal heterogeneity, i.e. nodal features.
- The $\epsilon_{i, j}$ represent dyad heterogeneity.


## Exchangeability for symmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, a_{j}, \epsilon_{i, j}\right)=g\left(\theta, a_{j}, a_{i}, \epsilon_{j, i}\right) \\
a_{1}, \ldots, a_{n} & \stackrel{i i d}{\sim} p_{a} \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal heterogeneity, i.e. nodal features.
- The $\epsilon_{i, j}$ represent dyad heterogeneity.


## Exchangeability for asymmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:

$$
\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)
$$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, b_{j}, \epsilon_{i, j}\right) \\
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) & \stackrel{i i d}{\sim} p_{a b} \\
\left\{\left(\epsilon_{i, j}, \epsilon_{j, i}\right)\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $b_{j}$ 's represent nodal receiver features.
- The ( $\epsilon_{i, j, \epsilon_{j, i}}$ )'s represent


## Exchangeability for asymmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:

$$
\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)
$$

Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, b_{j}, \epsilon_{i, j}\right) \\
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) & \stackrel{i i d}{\sim} p_{a b} \\
\left\{\left(\epsilon_{i, j}, \epsilon_{j, i}\right)\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal sender features.
- The $b_{j}$ 's represent $I$
- The $\left(\epsilon_{i, j}, \epsilon_{j, i}\right)$ 's represent


## Exchangeability for asymmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$
Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, b_{j}, \epsilon_{i, j}\right) \\
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) & \stackrel{i i d}{\sim} p_{a b} \\
\left\{\left(\epsilon_{i, j}, \epsilon_{j, i}\right)\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal sender features.
- The $b_{j}$ 's represent nodal receiver features.
- The ( $\epsilon_{i, j}, \epsilon_{j, i}$ )'s represent heterogeneity among ordered dyads.


## Exchangeability for asymmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$
Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, b_{j}, \epsilon_{i, j}\right) \\
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) & \stackrel{i i d}{\sim} p_{a b} \\
\left\{\left(\epsilon_{i, j}, \epsilon_{j, i}\right)\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal sender features.
- The $b_{j}$ 's represent nodal receiver features.
- The $\left(\epsilon_{i, j}, \epsilon_{j, i}\right)$ 's represent heterogeneity among ordered dyads.


## Exchangeability for asymmetric relational matrices

Suppose our model $\operatorname{Pr}()$ for $\mathbf{Y}=\left\{Y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}$ is RCE:
$\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{i, j}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)=\operatorname{Pr}\left(\mathbf{Y}=\left\{y_{\pi_{i}, \pi_{j}}, i=1, \ldots, n, j=1, \ldots, n\right\}\right)$
Then

$$
\begin{aligned}
Y_{i, j} & =g\left(\theta, a_{i}, b_{j}, \epsilon_{i, j}\right) \\
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) & \stackrel{i i d}{\sim} p_{a b} \\
\left\{\left(\epsilon_{i, j}, \epsilon_{j, i}\right)\right\} & \stackrel{i i d}{\sim} p_{\epsilon}
\end{aligned}
$$

- The parameter $\theta$ represents global features of the matrix.
- The $a_{i}$ 's represent nodal sender features.
- The $b_{j}$ 's represent nodal receiver features.
- The $\left(\epsilon_{i, j}, \epsilon_{j, i}\right)$ 's represent heterogeneity among ordered dyads.

Latent class model: an exchangeable latent variable model (Nowicki and Snijders 2001, Airoldi et al. 2008)

- Each node $i$ is a member of an (unknown) latent class

$$
a_{i} \in\{1, \ldots, K\}
$$

- The probability of a tie between $i$ and $j$ is

$$
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}}
$$

- The classes are unknown but exchangeable a priori
$\square$

Latent class model: an exchangeable latent variable model (Nowicki and Snijders 2001, Airoldi et al. 2008)

- Each node $i$ is a member of an (unknown) latent class

$$
a_{i} \in\{1, \ldots, K\}
$$

- The probability of a tie between $i$ and $j$ is

$$
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}}
$$

- The classes are unknown but exchangeable a priori: $a_{n} \stackrel{\text { iid }}{\sim}$ multinomial( $p_{1}$

Latent class model: an exchangeable latent variable model (Nowicki and Snijders 2001, Airoldi et al. 2008)

- Each node $i$ is a member of an (unknown) latent class

$$
a_{i} \in\{1, \ldots, K\}
$$

- The probability of a tie between $i$ and $j$ is

$$
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}}
$$

- The classes are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i d}{\sim} \text { multinomial }\left(p_{1}, \ldots, p_{K}\right)
$$

Nodes in the same class may have a small or high probability of ties: $\theta_{k, k}$ may be small or large
Nodes in the same class are stochastically equivalent

## Latent class model: an exchangeable latent variable model

(Nowicki and Snijders 2001, Airoldi et al. 2008)

- Each node $i$ is a member of an (unknown) latent class

$$
a_{i} \in\{1, \ldots, K\}
$$

- The probability of a tie between $i$ and $j$ is

$$
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}}
$$

- The classes are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i d}{\sim} \text { multinomial }\left(p_{1}, \ldots, p_{K}\right)
$$

## Model characteristics:

Nodes in the same class may have a small or high probability of ties:

$$
\theta_{k, k} \text { may be small or large }
$$

Nodes in the same class are stochastically equivalent:
$\operatorname{Pr}\left(\left\{Y_{i, 1}, \ldots, Y_{i, n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \mid a_{i}=k\right)=\operatorname{Pr}\left(\left\{Y_{j, 1}, \ldots, Y_{j, n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \mid a_{j}=k\right)$

Latent distance model: an exchangeable latent variable model (Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum 2007)

- Each node $i$ has an (unknown) latent position

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on the distance between them

$$
\text { log odds } \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta-\left|a_{i}-a_{j}\right|
$$

- The positions are unknown but exchangeable a priori

$$
a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(0, \Sigma)
$$

will likely have similar ties to others:

$$
a_{i} \approx a_{j} \Leftrightarrow\left\{\begin{array}{l}
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right) \approx \theta \\
\operatorname{Pr}\left(Y_{i, k}=1 \mid a_{i}, a_{k}\right) \approx \operatorname{Pr}\left(Y_{j, k}=1 \mid a_{j}, a_{k}\right)
\end{array}\right.
$$

Latent distance model: an exchangeable latent variable model (Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum 2007)

- Each node $i$ has an (unknown) latent position

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on the distance between them

$$
\log \operatorname{odds} \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta-\left|a_{i}-a_{j}\right|
$$

- The positions are unknown but exchangeable a priori:


Latent distance model: an exchangeable latent variable model (Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum 2007)

- Each node $i$ has an (unknown) latent position

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on the distance between them

$$
\log \operatorname{odds} \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta-\left|a_{i}-a_{j}\right|
$$

- The positions are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(0, \Sigma)
$$

will likely have similar ties to others:


## Latent distance model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum 2007)

- Each node $i$ has an (unknown) latent position

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on the distance between them

$$
\log \text { odds } \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta-\left|a_{i}-a_{j}\right|
$$

- The positions are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(0, \Sigma)
$$

Model characteristics: Nodes nearby one another are more likely to have a tie, and will likely have similar ties to others:

$$
a_{i} \approx a_{j} \Leftrightarrow\left\{\begin{array}{l}
\operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right) \approx \theta \\
\operatorname{Pr}\left(Y_{i, k}=1 \mid a_{i}, a_{k}\right) \approx \operatorname{Pr}\left(Y_{j, k}=1 \mid a_{j}, a_{k}\right)
\end{array}\right.
$$

## Latent factor model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Hoff 2005, Hoff 2008)

- Each node $i$ has an (unknown) latent factor

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on their latent factors

- The positions are unknown but exchangeable a priori:

$$
a_{1}, \ldots . a_{n} \stackrel{i i d}{m} \operatorname{mvnorm}(\mu, \Sigma)
$$

## Latent factor model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Hoff 2005, Hoff 2008)

- Each node $i$ has an (unknown) latent factor

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on their latent factors

$$
\log \operatorname{odds} \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta+a_{i}^{T} B a_{j}, B=\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{3}
\end{array}\right)
$$

- The positions are unknown but exchangeable a priori: $a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(\mu, \Sigma)$


## Latent factor model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Hoff 2005, Hoff 2008)

- Each node $i$ has an (unknown) latent factor

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on their latent factors

$$
\log \operatorname{odds} \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta+a_{i}^{\top} B a_{j}, B=\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{3}
\end{array}\right)
$$

- The positions are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(\mu, \Sigma)
$$

## Latent factor model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Hoff 2005, Hoff 2008)

- Each node $i$ has an (unknown) latent factor

$$
a_{i} \in \mathbb{R}^{K}
$$

- The probability of a tie from $i$ to $j$ depends on their latent factors

$$
\log \operatorname{odds} \operatorname{Pr}\left(Y_{i, j}=1 \mid a_{i}, a_{j}\right)=\theta+a_{i}^{\top} B a_{j}, B=\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{3}
\end{array}\right)
$$

- The positions are unknown but exchangeable a priori:

$$
a_{1}, \ldots, a_{n} \stackrel{i i d}{\sim} \operatorname{mvnorm}(\mu, \Sigma)
$$

## Model characteristics:

nodes with similar factors may have a large or small probability of a tie nodes with similar factors are approximately stochastically equivalent

## Incorporation into regression modeling

Consider expanding upon the simple LM or GLM:

$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

- The $\left\{\gamma_{i, j}\right\}$ 's represent deviations from the simple regression model - The matrix of deviations is itself a relational (unobserved) data matrix
- The latent variable structure can describe these deviations


## Incorporation into regression modeling

Consider expanding upon the simple LM or GLM:

$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

- The $\left\{\gamma_{i, j}\right\}$ 's represent deviations from the simple regression model
- The matrix of deviations is itself a relational (unobserved) data matrix
- The latent variable structure can describe these deviations


## Incorporation into regression modeling

Consider expanding upon the simple LM or GLM:

$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

- The $\left\{\gamma_{i, j}\right\}$ 's represent deviations from the simple regression model
- The matrix of deviations is itself a relational (unobserved) data matrix
- The latent variable structure can describe these deviations


## Incorporation into regression modeling

Consider expanding upon the simple LM or GLM:

$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j}
$$

- The $\left\{\gamma_{i, j}\right\}$ 's represent deviations from the simple regression model
- The matrix of deviations is itself a relational (unobserved) data matrix
- The latent variable structure can describe these deviations

$$
\begin{aligned}
Y_{i, j} & \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\gamma_{i, j} & & \\
\gamma_{i, j} & =\theta_{a_{i,}, a_{j}} & & \text { (stochastic blockmodel) } \\
\gamma_{i, j} & =-\left|a_{i}-a_{j}\right| & & \text { (distance model) } \\
\gamma_{i, j} & =a_{i}^{T} \mathbf{B}_{a_{j}} & & \text { (factor model) }
\end{aligned}
$$

High school social network: additive effects fit


$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+a_{i}+a_{j}
$$




## High school social network: Latent factor fit

$$
Y_{i, j} \sim \boldsymbol{\beta}^{T} \mathbf{x}_{i, j}+\mathbf{a}_{i}^{T} \mathbf{B} \mathbf{a}_{j}
$$

Parameters in this model can be fit with the eigenmodel package in R:

```
eigenmodel_mcmc(Y,X,R=3)
```




The latent factors are able to represent the network transitivity.

Underlying structure


Missing variables


## Missing variables

The eigenmodel, without having explicit race information, captures a large degree of the racial homophily in friendship:


eigenmodel log-odds ratio

## Model comparisons

How do the different latent variable models compare?
What structures do they represent?

## Two important types of patterns:

Homophily: Similar nodes link to each other

- "similar" may be in terms of unobserved characteristics
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion )



## Model comparisons

How do the different latent variable models compare?
What structures do they represent?

## Two important types of patterns:

Homophily: Similar nodes link to each other

- "similar" may be in terms of unobserved characteristics
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors (See Shalizi and Thomas 2010 for a more careful discussion )

Stochastic equivalence: Similar nodes have similar relational patterns

- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"
- Transitivity (global measure)
- Stochastic equivalence (local measure)


## Model comparisons

How do the different latent variable models compare?
What structures do they represent?

## Two important types of patterns:

Homophily: Similar nodes link to each other

- "similar" may be in terms of unobserved characteristics
- homophily leads to transitive or clustered social networks
- observed transitivity may be due to exogenous or endogenous factors
(See Shalizi and Thomas 2010 for a more careful discussion )
Stochastic equivalence: Similar nodes have similar relational patterns
- similar nodes may or may not link to each other
- equivalent nodes can be thought of as having the same "role"


## Descriptive measures:

- Transitivity (global measure): $\sum_{i, j, k} y_{i, j} y_{j, k} y_{k, i}$
- Stochastic equivalence (local measure): $\rho_{i, j}=\operatorname{cor}\left(\mathbf{y}_{[i,]}, \mathbf{y}_{[j,]}\right)$

Homophily and stochastic equivalence


How well can the distance model represent these networks?
How well can the latent class model represent these networks?

Homophily and stochastic equivalence in real networks


- AddHealth friendships: friendships among 247 12th-graders
- Word neighbors in Genesis: neighboring occurrences among 158 words
- Protein binding interactions: binding patterns among 230 proteins


## Model comparison via cross validation

1. Randomly divide the $\binom{n}{2}$ data values into 5 sets letting $s_{i, j}$ be the set to which pair $\{i, j\}$ is assigned.
```
    2.1 Estimate model parameters with {\mp@subsup{y}{i,j}{}:\mp@subsup{s}{i,j}{}\not=s}\mathrm{ , the data not in set s.}
    2.2 Predict {\mp@subsup{y}{i,j}{}:\mp@subsup{s}{i,j}{}\not=s}\mathrm{ from these estimated parameters}
This generates a sociomatrix }\hat{\mathbf{Y}}\mathrm{ , in which each entry }\mp@subsup{\hat{y}}{i,j}{}\mathrm{ is a predicted value
obtained from using a subset of the data that does not include }\mp@subsup{y}{i,j}{}\mathrm{ .
```


## Model comparison via cross validation

1. Randomly divide the $\binom{n}{2}$ data values into 5 sets letting $s_{i, j}$ be the set to which pair $\{i, j\}$ is assigned.
2. For each $s \in\{1, \ldots, 5\}$ :
2.1 Estimate model parameters with $\left\{y_{i, j}: s_{i, j} \neq s\right\}$, the data not in set $s$.
2.2 Predict $\left\{y_{i, j}: s_{i, j} \neq s\right\}$ from these estimated parameters

This generates a sociomatrix $\hat{\mathbf{Y}}$, in which each entry $\hat{y}_{i, j}$ is a predicted value obtained from using a subset of the data that does not include $y_{i, j}$.

## Model comparison via cross validation

1. Randomly divide the $\binom{n}{2}$ data values into 5 sets letting $s_{i, j}$ be the set to which pair $\{i, j\}$ is assigned.
2. For each $s \in\{1, \ldots, 5\}$ :
2.1 Estimate model parameters with $\left\{y_{i, j}: s_{i, j} \neq s\right\}$, the data not in set $s$.
2.2 Predict $\left\{y_{i, j}: s_{i, j} \neq s\right\}$ from these estimated parameters

This generates a sociomatrix $\hat{\mathbf{Y}}$, in which each entry $\hat{y}_{i, j}$ is a predicted value obtained from using a subset of the data that does not include $y_{i, j}$.

## AddHealth friendships




## Genesis word neighbors




## Protein bindings




## More cross validation results

| $K$ | Add health |  |  | Genesis |  |  |  | Protein interaction |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dist | class | eigen | dist | class | eigen | dist | class | eigen |  |
| 3 | 0.82 | 0.64 | 0.75 | 0.62 | 0.82 | 0.82 | 0.83 | 0.79 | 0.88 |  |
| 5 | 0.81 | 0.70 | 0.78 | 0.66 | 0.82 | 0.82 | 0.84 | 0.84 | 0.90 |  |
| 10 | 0.76 | 0.69 | 0.80 | 0.74 | 0.82 | 0.82 | 0.85 | 0.86 | 0.90 |  |

 can be made more comparable to the distance model if a diffuse prior is used)

## More cross validation results

| $K$ | Add health |  |  | Genesis |  |  |  | Protein interaction |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dist | class | eigen | dist | class | eigen | dist | class | eigen |  |
| 3 | 0.82 | 0.64 | 0.75 | 0.62 | 0.82 | 0.82 | 0.83 | 0.79 | 0.88 |  |
| 5 | 0.81 | 0.70 | 0.78 | 0.66 | 0.82 | 0.82 | 0.84 | 0.84 | 0.90 |  |
| 10 | 0.76 | 0.69 | 0.80 | 0.74 | 0.82 | 0.82 | 0.85 | 0.86 | 0.90 |  |

The eigenmodel is generally as good or better than the others in each case (it can be made more comparable to the distance model if a diffuse prior is used).

## Model flexibility

Probit versions of the three latent variable models all have the following form:

$$
\begin{aligned}
y_{i, j} & =\left\{\begin{array}{cc}
1 & \text { if } z_{i, j}>0 \\
0 & \text { if } z_{i, j} \leq 0
\end{array}\right. \\
z_{i, j} & =\mu+\alpha\left(a_{i}, a_{j}\right)+\epsilon_{i, j}
\end{aligned}, \begin{aligned}
& \sim \text { i.i.d. normal }(0,1)
\end{aligned}
$$

where
Latent class model:


Latent factor model:

## Model flexibility

Probit versions of the three latent variable models all have the following form:

$$
\begin{aligned}
y_{i, j} & =\left\{\begin{array}{cc}
1 & \text { if } z_{i, j}>0 \\
0 & \text { if } z_{i, j} \leq 0
\end{array}\right. \\
z_{i, j} & =\mu+\alpha\left(a_{i}, a_{j}\right)+\epsilon_{i, j}
\end{aligned}, \begin{aligned}
& \sim \text { i.i.d. normal }(0,1)
\end{aligned}
$$

where
Latent class model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}} \\
& a_{i} \in\{1, \ldots, K\}, \quad i \in\{1, \ldots, n\} \\
& \Theta \text { a } K \times K \text { symmetric matrix }
\end{aligned}
$$

Latent factor model:

## Model flexibility

Probit versions of the three latent variable models all have the following form:

$$
\begin{aligned}
y_{i, j} & =\left\{\begin{array}{cc}
1 & \text { if } z_{i, j}>0 \\
0 & \text { if } z_{i, j} \leq 0
\end{array}\right. \\
z_{i, j} & =\mu+\alpha\left(a_{i}, a_{j}\right)+\epsilon_{i, j}
\end{aligned}, \begin{aligned}
& \sim \text { i.i.d. normal }(0,1) \\
\left\{\epsilon_{i, j}: 1 \leq i<j \leq n\right\} & \sim \text { i.i.d. } f(a \mid \psi)
\end{aligned}
$$

where
Latent class model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}} \\
& a_{i} \in\{1, \ldots, K\}, \quad i \in\{1, \ldots, n\} \\
& \Theta \text { a } K \times K \text { symmetric matrix }
\end{aligned}
$$

Latent distance model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=-\left|a_{i}-a_{j}\right| \\
& a_{i} \in \mathbb{R}^{K}, \quad i \in\{1, \ldots, n\}
\end{aligned}
$$

## Model flexibility

Probit versions of the three latent variable models all have the following form:

$$
\begin{aligned}
& y_{i, j}= \begin{cases}1 & \text { if } z_{i, j}>0 \\
0 & \text { if } z_{i, j} \leq 0\end{cases} \\
& z_{i, j}=\mu+\alpha\left(a_{i}, a_{j}\right)+\epsilon_{i, j} \\
& \left\{\epsilon_{i, j}: 1 \leq i<j \leq n\right\} \quad \sim \text { i.i.d. normal }(0,1) \\
& \left\{a_{1}, \ldots, a_{n}\right\} \sim \text { i.i.d. } f(a \mid \psi)
\end{aligned}
$$

where
Latent class model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=\theta_{a_{i}, a_{j}} \\
& a_{i} \in\{1, \ldots, K\}, \quad i \in\{1, \ldots, n\} \\
& \Theta \text { a } K \times K \text { symmetric matrix }
\end{aligned}
$$

Latent distance model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=-\left|a_{i}-a_{j}\right| \\
& a_{i} \in \mathbb{R}^{K}, \quad i \in\{1, \ldots, n\}
\end{aligned}
$$

Latent factor model:

$$
\begin{aligned}
& \alpha\left(a_{i}, a_{j}\right)=a_{i}^{T} \Lambda a_{j} \\
& a_{i} \in \mathbb{R}^{K}, \quad i \in\{1, \ldots, n\} \\
& \Lambda \text { a } K \times K \text { diagonal matrix. }
\end{aligned}
$$

## Model flexibility

Let $\mathcal{S}_{n}$ be the set of symmetric $n \times n$ matrices, and let

$$
\begin{aligned}
\mathcal{C}_{K} & =\left\{C \in \mathcal{S}_{n}: c_{i, j}=\theta_{a_{i}, a_{j}}, a_{i} \in\{1, \ldots, K\}, \Theta \text { a } K \times K \text { symmetric matrix }\right\} ; \\
\mathcal{D}_{K} & =\left\{D \in \mathcal{S}_{n}: d_{i, j}=-\left|a_{i}-a_{j}\right|, a_{i} \in \mathbb{R}^{K}\right\} ; \\
\mathcal{E}_{K} & =\left\{E \in \mathcal{S}_{n}: e_{i, j}=a_{i}^{T} \Lambda a_{j}, a_{i} \in \mathbb{R}^{K}, \Lambda \text { a } K \times K \text { diagonal matrix }\right\} .
\end{aligned}
$$

$\mathcal{C}_{K}, \mathcal{D}_{K}$ and $\mathcal{E}_{K}$ describe the patterns representable by the class, distance and factor models respectively.

- $\mathcal{E}_{K}$ generalizes $\mathcal{C}_{K}$
- EK.. weakly generalizes DK
- $\mathcal{D}_{K}$ does not weakly generalize $\mathcal{E}_{1}$


## Model flexibility

Let $\mathcal{S}_{n}$ be the set of symmetric $n \times n$ matrices, and let

$$
\begin{aligned}
\mathcal{C}_{K} & =\left\{C \in \mathcal{S}_{n}: c_{i, j}=\theta_{a_{i}, a_{j}}, a_{i} \in\{1, \ldots, K\}, \Theta \text { a } K \times K \text { symmetric matrix }\right\} ; \\
\mathcal{D}_{K} & =\left\{D \in \mathcal{S}_{n}: d_{i, j}=-\left|a_{i}-a_{j}\right|, a_{i} \in \mathbb{R}^{K}\right\} ; \\
\mathcal{E}_{K} & =\left\{E \in \mathcal{S}_{n}: e_{i, j}=a_{i}^{T} \Lambda a_{j}, a_{i} \in \mathbb{R}^{K}, \Lambda \text { a } K \times K \text { diagonal matrix }\right\} .
\end{aligned}
$$

$\mathcal{C}_{K}, \mathcal{D}_{K}$ and $\mathcal{E}_{K}$ describe the patterns representable by the class, distance and factor models respectively.

Theoretical results:

- $\mathcal{E}_{K}$ generalizes $\mathcal{C}_{K}$
- $\mathcal{E}_{K+1}$ weakly generalizes $\mathcal{D}_{K}$
- $\mathcal{D}_{K}$ does not weakly generalize $\mathcal{E}_{1}$


## Model flexibility

Let $\mathcal{S}_{n}$ be the set of symmetric $n \times n$ matrices, and let

$$
\begin{aligned}
\mathcal{C}_{K} & =\left\{C \in \mathcal{S}_{n}: c_{i, j}=\theta_{a_{i}, a_{j}}, a_{i} \in\{1, \ldots, K\}, \Theta \text { a } K \times K \text { symmetric matrix }\right\} ; \\
\mathcal{D}_{K} & =\left\{D \in \mathcal{S}_{n}: d_{i, j}=-\left|a_{i}-a_{j}\right|, a_{i} \in \mathbb{R}^{K}\right\} ; \\
\mathcal{E}_{K} & =\left\{E \in \mathcal{S}_{n}: e_{i, j}=a_{i}^{T} \Lambda a_{j}, a_{i} \in \mathbb{R}^{K}, \Lambda \text { a } K \times K \text { diagonal matrix }\right\} .
\end{aligned}
$$

$\mathcal{C}_{K}, \mathcal{D}_{K}$ and $\mathcal{E}_{K}$ describe the patterns representable by the class, distance and factor models respectively.

Theoretical results:

- $\mathcal{E}_{K}$ generalizes $\mathcal{C}_{K}$
- $\mathcal{E}_{K+1}$ weakly generalizes $\mathcal{D}_{K}$
- $\mathcal{D}_{K}$ does not weakly generalize $\mathcal{E}_{1}$


## Model flexibility

Let $\mathcal{S}_{n}$ be the set of symmetric $n \times n$ matrices, and let

$$
\begin{aligned}
\mathcal{C}_{K} & =\left\{C \in \mathcal{S}_{n}: c_{i, j}=\theta_{a_{i}, a_{j}}, a_{i} \in\{1, \ldots, K\}, \Theta \text { a } K \times K \text { symmetric matrix }\right\} ; \\
\mathcal{D}_{K} & =\left\{D \in \mathcal{S}_{n}: d_{i, j}=-\left|a_{i}-a_{j}\right|, a_{i} \in \mathbb{R}^{K}\right\} ; \\
\mathcal{E}_{K} & =\left\{E \in \mathcal{S}_{n}: e_{i, j}=a_{i}^{T} \Lambda a_{j}, a_{i} \in \mathbb{R}^{K}, \Lambda \text { a } K \times K \text { diagonal matrix }\right\} .
\end{aligned}
$$

$\mathcal{C}_{K}, \mathcal{D}_{K}$ and $\mathcal{E}_{K}$ describe the patterns representable by the class, distance and factor models respectively.

## Theoretical results:

- $\mathcal{E}_{K}$ generalizes $\mathcal{C}_{K}$
- $\mathcal{E}_{K+1}$ weakly generalizes $\mathcal{D}_{K}$
- $\mathcal{D}_{K}$ does not weakly generalize $\mathcal{E}_{1}$


## Model flexibility

Let $\mathcal{S}_{n}$ be the set of symmetric $n \times n$ matrices, and let

$$
\begin{aligned}
\mathcal{C}_{K} & =\left\{C \in \mathcal{S}_{n}: c_{i, j}=\theta_{a_{i}, a_{j}}, a_{i} \in\{1, \ldots, K\}, \Theta \text { a } K \times K \text { symmetric matrix }\right\} ; \\
\mathcal{D}_{K} & =\left\{D \in \mathcal{S}_{n}: d_{i, j}=-\left|a_{i}-a_{j}\right|, a_{i} \in \mathbb{R}^{K}\right\} ; \\
\mathcal{E}_{K} & =\left\{E \in \mathcal{S}_{n}: e_{i, j}=a_{i}^{T} \Lambda a_{j}, a_{i} \in \mathbb{R}^{K}, \Lambda \text { a } K \times K \text { diagonal matrix }\right\} .
\end{aligned}
$$

$\mathcal{C}_{K}, \mathcal{D}_{K}$ and $\mathcal{E}_{K}$ describe the patterns representable by the class, distance and factor models respectively.

## Theoretical results:

- $\mathcal{E}_{K}$ generalizes $\mathcal{C}_{K}$
- $\mathcal{E}_{K+1}$ weakly generalizes $\mathcal{D}_{K}$
- $\mathcal{D}_{K}$ does not weakly generalize $\mathcal{E}_{1}$


## Matrix decompositions

Probit version of the latent factor model:

$$
\begin{array}{rlrl}
y_{i, j} & =g\left(z_{i, j}\right), & \text { where } g \text { is a nondecreasing function } \\
z_{i, j} & =\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, & \text { where } \mathbf{u}_{i} \in \mathbb{R}^{K}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \text { normal }(0,1) & &
\end{array}
$$

Writing $\left\{z_{i, j}\right\}$ as a matrix,

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}+\mathbf{E}
$$

- Every $n \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
Z=U \wedge U^{\top}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{U}$ is orthonormal.

- If $\mathbf{U} \wedge \mathbf{U}^{T}$ is the eigendecomposition of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \wedge_{[1: k, 1: k]} \mathbf{U}_{[, 1: k]}^{T}
$$

is the least-squares rank- $k$ approximation to $\mathbf{Z}$.

## Matrix decompositions

Probit version of the latent factor model:

$$
\begin{array}{rlrl}
y_{i, j} & =g\left(z_{i, j}\right), & \text { where } g \text { is a nondecreasing function } \\
z_{i, j} & =\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, & \text { where } \mathbf{u}_{i} \in \mathbb{R}^{K}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1) & &
\end{array}
$$

Writing $\left\{z_{i, j}\right\}$ as a matrix ,

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}+\mathbf{E}
$$

- Every $n \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathrm{Z}=\mathrm{U} \wedge \mathrm{U}^{\top}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{U}$ is orthonormal.

- If $\mathbf{U} \wedge \mathbf{U}^{T}$ is the eigendecomposition of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[1: 1:]} \Lambda_{[1: k, 1: k]} \mathbf{U}_{[, 1: k]}^{T}
$$

is the least-squares rank- $k$ approximation to $\mathbf{Z}$.

## Matrix decompositions

Probit version of the latent factor model:

$$
\begin{array}{rlrl}
y_{i, j} & =g\left(z_{i, j}\right), & \text { where } g \text { is a nondecreasing function } \\
z_{i, j} & =\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, & & \text { where } \mathbf{u}_{i} \in \mathbb{R}^{K}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1) & &
\end{array}
$$

Writing $\left\{z_{i, j}\right\}$ as a matrix ,

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}+\mathbf{E}
$$

Recall from linear algebra:

- Every $n \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{U}$ is orthonormal.

- If $\mathbf{U} \wedge \mathbf{U}^{\top}$ is the eigendecomposition of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \Lambda_{[1: k, 1: k]} \mathbf{U}_{[, 1: k]}^{T}
$$

is the least-squares rank- $k$ approximation to $\mathbf{Z}$.

## Matrix decompositions

Probit version of the latent factor model:

$$
\begin{array}{rlrl}
y_{i, j} & =g\left(z_{i, j}\right), & \text { where } g \text { is a nondecreasing function } \\
z_{i, j} & =\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, & & \text { where } \mathbf{u}_{i} \in \mathbb{R}^{K}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1) & &
\end{array}
$$

Writing $\left\{z_{i, j}\right\}$ as a matrix ,

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}+\mathbf{E}
$$

Recall from linear algebra:

- Every $n \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathbf{Z}=\mathbf{U} \wedge \mathbf{U}^{T}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{U}$ is orthonormal.

- If $\mathbf{U} \wedge \mathbf{U}^{T}$ is the eigendecomposition of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \Lambda_{[1: k, 1: k]} \mathbf{U}_{[, 1: k]}^{T}
$$

is the least-squares rank- $k$ approximation to $\mathbf{Z}$.

## Least squares approximations of increasing rank



## Least squares approximations of increasing rank



Least squares approximations of increasing rank


## Least squares approximations of increasing rank



Least squares approximations of increasing rank


## Least squares approximations of increasing rank



## Estimation and Inference

Data: $\mathbf{Y}=\left\{y_{i, j}, 1 \leq i<j \leq n\right\}$

## Model:

$$
\begin{aligned}
y_{i, j} & =1 \text { if } z_{i, j}>0, \quad 0 \text { else } \\
z_{i, j} & =\mu+\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1)
\end{aligned}
$$

## Posterior inference:



Gibbs sampling: MCMC approximation to $p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda \mid \mathbf{Y})$

1. sample $z_{i, i} \sim p\left(z_{i, j} \mid y_{i, j}, \mu\right)$ for each pair (i,i)
2. sample $\mathbf{u}_{i} \sim p\left(\mathbf{u}_{i} \mid \mathbf{U}_{[-i]}, \mathbf{Z}_{[i,-i]}, \mu, \Lambda\right)$
3. sample $\Lambda \sim p(\Lambda \mid \mathbf{U}, \mathbf{Z}, \mu)$
4. sample $\mu \sim p(\mu \mid \mathbf{Y}, \mathbf{Z}, \mathbf{U}, \Lambda)$

## Estimation and Inference

Data: $\mathbf{Y}=\left\{y_{i, j}, 1 \leq i<j \leq n\right\}$
Model:

$$
\begin{aligned}
y_{i, j} & =1 \text { if } z_{i, j}>0, \quad 0 \text { else } \\
z_{i, j} & =\mu+\mathbf{u}_{i}^{T} \wedge \mathbf{u}_{j}+\epsilon_{i, j}, \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1)
\end{aligned}
$$

Posterior inference:

$$
\begin{aligned}
p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda \mid \mathbf{Y}) & \propto p(\mathbf{Y} \mid \mathbf{Z}, \mu, \mathbf{U}, \Lambda) p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda) \\
& =p(\mathbf{Y} \mid \mathbf{Z}) p(\mathbf{Z} \mid \mu, \mathbf{U}, \Lambda) p(\mu) p(\mathbf{U}) p(\Lambda)
\end{aligned}
$$

Gibbs sampling: MCMC approximation to $p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda \mid \mathbf{Y})$

1. sample $z_{i, j} \sim p\left(z_{i, j} \mid y_{i, j}, \mu\right)$ for each pair $(i, j)$
2. sample $\mathbf{u}_{i} \sim p\left(\mathbf{u}_{i} \mid \mathbf{U}_{[-i]}, \mathbf{Z}_{[i,-i]}, \mu, \Lambda\right)$
3. sample $\wedge \sim p(\Lambda \mid \mathbf{U}, \mathbf{Z}, \mu)$
4. sample $\mu \sim p(\mu \mid \mathbf{Y}, \mathbf{Z}, \mathbf{U}, \Lambda)$

## Estimation and Inference

Data: $\mathbf{Y}=\left\{y_{i, j}, 1 \leq i<j \leq n\right\}$
Model:

$$
\begin{aligned}
y_{i, j} & =1 \text { if } z_{i, j}>0, \quad 0 \text { else } \\
z_{i, j} & =\mu+\mathbf{u}_{i}^{T} \Lambda \mathbf{u}_{j}+\epsilon_{i, j}, \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1)
\end{aligned}
$$

Posterior inference:

$$
\begin{aligned}
p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda \mid \mathbf{Y}) & \propto p(\mathbf{Y} \mid \mathbf{Z}, \mu, \mathbf{U}, \Lambda) p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda) \\
& =p(\mathbf{Y} \mid \mathbf{Z}) p(\mathbf{Z} \mid \mu, \mathbf{U}, \Lambda) p(\mu) p(\mathbf{U}) p(\Lambda)
\end{aligned}
$$

Gibbs sampling: MCMC approximation to $p(\mathbf{Z}, \mu, \mathbf{U}, \Lambda \mid \mathbf{Y})$ :

1. sample $z_{i, j} \sim p\left(z_{i, j} \mid y_{i, j}, \mu\right)$ for each pair $(i, j)$
2. sample $\mathbf{u}_{i} \sim p\left(\mathbf{u}_{i} \mid \mathbf{U}_{[-i]}, \mathbf{Z}_{[i,-i]}, \mu, \Lambda\right)$
3. sample $\Lambda \sim p(\Lambda \mid \mathbf{U}, \mathbf{Z}, \mu)$
4. sample $\mu \sim p(\mu \mid \mathbf{Y}, \mathbf{Z}, \mathbf{U}, \Lambda)$

## R-Package eigenmodel

Description:
Construct approximate samples from the posterior distribution of the parameters and latent variables in an eigenmodel for symmetric relational data.

Usage:
eigenmodel_mcmc $(Y, X=N U L L, R=2, S=1000$, seed $=1$, Nss $=\min (S-$ burn, 1000 $)$, burn $=0)$
Arguments:
$\mathrm{Y}:$ an $\mathrm{n} x \mathrm{n}$ symmetric matrix with missing diagonal entries. Off-diagonal missing values are allowed.

X : an $\mathrm{n} \times \mathrm{n} \times \mathrm{p}$ array of regressors
$R$ : the rank of the approximating factor matrix
S: number of samples from the Markov chain
seed: a random seed

Nss: number of samples to be saved
burn: number of initial scans of the Markov chain to be dropped
Value: a list with the following components:

Z_postmean: posterior mean of the latent variable in the probit specification

ULU_postmean: posterior mean of the reduced-rank approximating matrix

Y_postmean: the original data matrix with missing values replaced by posterior means
L_postsamp: samples of the eigenvalues
b_postsamp: samples of the regression coefficients

## Friendship example

> library(eigenmodel)
> data(YX_Friend)
> fit<-eigenmodel_mcmc (Y=YX_Friend\$Y,X=YX_Friend\$X,R=2,S=100000,burn=5000)


## Protein interaction example

> library(eigenmodel)
> data(Y_Pro)
> fit<-eigenmodel_mcmc(Y=Y_Pro,R=2,S=100000,burn=5000)



## R-Software svdmodel

The same idea, except for asymmetric data...
Recall from linear algebra:

- Every $m \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathbf{Z}=\mathbf{U D V}^{T}
$$

where $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \mathbf{U}$ and $\mathbf{V}$ are orthonormal.

- If UDV ${ }^{T}$ is the svd of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \mathbf{D}_{[1: k, 1: k]} \mathbf{V}_{[, 1: k]}^{\top}
$$

is the least-squares rank- $k$ approximation to $\mathbf{Z}$.

## R-Software svdmodel

The same idea, except for asymmetric data...

## Recall from linear algebra:

- Every $m \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathbf{Z}=\mathbf{U D V}^{T}
$$

where $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \mathbf{U}$ and $\mathbf{V}$ are orthonormal.

- If $\mathbf{U D V}^{T}$ is the svd of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \mathbf{D}_{[1: k, 1: k]} \mathbf{V}_{[, 1: k]}^{T}
$$

is the least-squares rank-k approximation to $\mathbf{Z}$.

## R-Software svdmodel

The same idea, except for asymmetric data...

## Recall from linear algebra:

- Every $m \times n$ symmetric matrix $\mathbf{Z}$ can be written

$$
\mathbf{Z}=\mathbf{U D V}^{T}
$$

where $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \mathbf{U}$ and $\mathbf{V}$ are orthonormal.

- If $\mathbf{U D V}^{T}$ is the svd of $\mathbf{Z}$, then

$$
\hat{\mathbf{Z}}_{k} \equiv \mathbf{U}_{[, 1: k]} \mathbf{D}_{[1: k, 1: k]} \mathbf{V}_{[, 1: k]}^{T}
$$

is the least-squares rank-k approximation to $\mathbf{Z}$.

## Model:

$$
\begin{aligned}
y_{i, j} & =1 \text { if } z_{i, j}>0 \quad, \quad 0 \text { else } \\
z_{i, j} & =\mu+\mathbf{u}_{i}^{T} \mathbf{D} \mathbf{v}_{j}+\epsilon_{i, j}, \\
\left\{\epsilon_{i, j}\right\} & \stackrel{i i d}{\sim} \operatorname{normal}(0,1)
\end{aligned}
$$

## Multiway relational arrays

$y_{i, j, k}=$

- $j$ th measurement on ith subject under condition $k$ (psychometrics)
- type-k relationship between $i$ and $J$ (relational data/network)
- relationship between $i$ and $i$ at time $t$ (longitudinal relational data)



## Multiway relational arrays

$y_{i, j, k}=$

- $j$ th measurement on $i$ th subject under condition $k$ (psychometrics)
- type- $k$ relationship between $i$ and $j$ (relational data/network)
- relationship between $i$ and $j$ at time $t$ (longitudinal relational data)



## Multiway relational arrays

$y_{i, j, k}=$

- $j$ th measurement on $i$ th subject under condition $k$ (psychometrics)
- type- $k$ relationship between $i$ and $j$ (relational data/network)
- relationship between $i$ and $j$ at time $t$ (longitudinal relational data)



## Multiway relational arrays

$y_{i, j, k}=$

- $j$ th measurement on $i$ th subject under condition $k$ (psychometrics)
- type- $k$ relationship between $i$ and $j$ (relational data/network)
- relationship between $i$ and $j$ at time $t$ (longitudinal relational data)



## Longitudinal network example

Cold war cooperation and conflict

- 66 countries
- 8 years $(1950,1955, \ldots, 1980,1985)$
- $y_{i, j, t}=$ relation between $i, j$ in year $t$
- also have data on odp and polity



## Longitudinal network example

Cold war cooperation and conflict

- 66 countries
- 8 years $(1950,1955, \ldots, 1980,1985)$
- also have data on gdp and polity



## Longitudinal network example

Cold war cooperation and conflict

- 66 countries
- 8 years $(1950,1955, \ldots, 1980,1985)$
- $y_{i, j, t}=$ relation between $i, j$ in year $t$
- also have data on gdp and polity



## Longitudinal network example

Cold war cooperation and conflict

- 66 countries
- 8 years $(1950,1955, \ldots, 1980,1985)$
- $y_{i, j, t}=$ relation between $i, j$ in year $t$
- also have data on gdp and polity



## Reduced rank models

## $\mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E}$

- $\Theta$ contains the "main features" we hope to recover,
- $\mathbf{E}$ is "patternless."

Matrix decomposition: If $\Theta$ is a rank- $R$ matrix, then

$$
\theta_{i, j}=\left\langle\mathbf{u}_{i}, \mathbf{v}_{j}\right\rangle=\sum_{r=1}^{R} u_{i, r} v_{j, r} \quad \Theta=\sum_{r=1}^{R} \mathbf{u}_{r} \mathbf{v}_{r}^{T}=\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r}
$$

Array decomposition: If $\Theta$ is a rank- $R$ array, then

$$
\theta_{i, j, k}=\left\langle\mathbf{u}_{i}, \mathbf{v}_{j}, \mathbf{w}_{k}\right\rangle=\sum_{r=1}^{R} u_{i, r} v_{j, r} w_{k, r} \quad \Theta=\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r}
$$

(Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989] )

## Reduced rank models

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

- $\boldsymbol{\Theta}$ contains the "main features" we hope to recover, - E is "patternless.'

Matrix decomposition: If $\Theta$ is a rank- $R$ matrix, then


Array decomposition: If $\Theta$ is a rank- $R$ array, then


## Reduced rank models

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

- $\Theta$ contains the "main features" we hope to recover, - $\mathbf{E}$ is "patternless."

Matrix decomposition: If $\Theta$ is a rank- $R$ matrix, then


Array decomposition: If $\Theta$ is a rank- $R$ array, then


## Reduced rank models

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

- $\Theta$ contains the "main features" we hope to recover,
- $\mathbf{E}$ is "patternless."

Matrix decomposition: If $\Theta$ is a rank- $R$ matrix, then

$$
\theta_{i, j}=\left\langle\mathbf{u}_{i}, \mathbf{v}_{j}\right\rangle=\sum_{r=1}^{R} u_{i, r} v_{j, r} \quad \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r} \mathbf{v}_{r}^{T}=\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r}
$$

Array decomposition: If $\Theta$ is a rank- $R$ array, then

## Reduced rank models

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

- $\boldsymbol{\Theta}$ contains the "main features" we hope to recover,
- $\mathbf{E}$ is "patternless."

Matrix decomposition: If $\Theta$ is a rank- $R$ matrix, then

$$
\theta_{i, j}=\left\langle\mathbf{u}_{i}, \mathbf{v}_{j}\right\rangle=\sum_{r=1}^{R} u_{i, r} v_{j, r} \quad \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r} \mathbf{v}_{r}^{T}=\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r}
$$

Array decomposition: If $\Theta$ is a rank- $R$ array, then

$$
\theta_{i, j, k}=\left\langle\mathbf{u}_{i}, \mathbf{v}_{j}, \mathbf{w}_{k}\right\rangle=\sum_{r=1}^{R} u_{i, r} v_{j, r} w_{k, r} \quad \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r}
$$

(Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989] )

## Some things you should know

1. Computing the rank

- matrix: easy to do
- array: no known algorithm

2. Possible rank

- matrix: $R_{\max }=\min \left(m_{1}, m_{2}\right)$
- array: $\max \left(m_{1}, m_{2}, m_{3}\right) \leq R_{\max } \leq \min \left(m_{1} m_{2}, m_{1} m_{3}, m_{2} m_{3}\right)$

3. Probable rank

- matrix: "almost all" matrices have full rank.
- array: a nonzero fraction (w.r.t. Lebesgue measure) have less than full rank.

4. Least squares approximation

- matrix: SVD of $\mathbf{Y}$ provides the rank $R$ least-squares approximation to $\boldsymbol{\Theta}$.
- array: iterative "least squares" methods, but solution may not exist (de Silva and Lim[2008] )

5. Uniqueness

- matrix: The representation $\boldsymbol{\Theta}=\langle\mathbf{U}, \mathbf{V}\rangle=\mathbf{U} \mathbf{V}^{\top}$ is not unique.
- array: The representation $\boldsymbol{\Theta}=\langle\mathbf{U}, \mathbf{V}, \mathbf{W}\rangle$ is essentially unique.


## A model-based approach

For a $K$-way array $\mathbf{Y}$,

$$
\begin{aligned}
& \mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right), \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

## Some motivation:

- shrinkage: $\Theta$ contains lots of parameters.
- hierarchical: covariance among columns of $\boldsymbol{U}^{(k)}$ is identifiable.
- estimation: $p\left(Y \mid U^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search"
- adaptability: incorporate reduced rank arrays as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## A model-based approach

For a K-way array $\mathbf{Y}$,

$$
\begin{aligned}
& \mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right), \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

Some motivation:

- shrinkage: $\boldsymbol{\Theta}$ contains lots of parameters.
- hierarchical: covariance among columns of $\mathbf{U}^{(k)}$ is identifiable.
- estimation: $p\left(\mathbf{Y} \mid \mathbf{U}^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search"
- adaptability: incorporate reduced rank arravs as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## A model-based approach

For a K-way array $\mathbf{Y}$,

$$
\begin{aligned}
& \mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right), \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

Some motivation:

- shrinkage: $\boldsymbol{\Theta}$ contains lots of parameters.
- hierarchical: covariance among columns of $\mathbf{U}^{(k)}$ is identifiable.
- estimation: $p\left(Y \mid U^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search'
- adaptability: incorporate reduced rank arrays as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## A model-based approach

For a K-way array $\mathbf{Y}$,

$$
\begin{aligned}
& \boldsymbol{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right), \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

Some motivation:

- shrinkage: $\boldsymbol{\Theta}$ contains lots of parameters.
- hierarchical: covariance among columns of $\mathbf{U}^{(k)}$ is identifiable.
- estimation: $p\left(\mathbf{Y} \mid \mathbf{U}^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search"
- adaptability: incorporate reduced rank arrays as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## A model-based approach

For a K-way array Y,

$$
\begin{aligned}
& \boldsymbol{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right) \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

## Some motivation:

- shrinkage: $\boldsymbol{\Theta}$ contains lots of parameters.
- hierarchical: covariance among columns of $\mathbf{U}^{(k)}$ is identifiable.
- estimation: $p\left(\mathbf{Y} \mid \mathbf{U}^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search"
- adaptability: incorporate reduced rank arrays as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## A model-based approach

For a K-way array Y,

$$
\begin{aligned}
& \boldsymbol{Y}=\boldsymbol{\Theta}+\mathbf{E} \\
& \boldsymbol{\Theta}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(K)} \equiv\left\langle\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(K)}\right\rangle \\
& \mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{m_{k}}^{(k)} \stackrel{\text { iid }}{\sim} \text { multivariate normal }\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}\right) \\
& \text { with }\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Psi}_{k}, k=1, \ldots, K\right\} \text { to be estimated. }
\end{aligned}
$$

## Some motivation:

- shrinkage: $\boldsymbol{\Theta}$ contains lots of parameters.
- hierarchical: covariance among columns of $\mathbf{U}^{(k)}$ is identifiable.
- estimation: $p\left(\mathbf{Y} \mid \mathbf{U}^{(1)}, \ldots, v U^{(K)}\right)$ multimodal, MCMC "stochastic search"
- adaptability: incorporate reduced rank arrays as a model component
- multilinear predictor in a GLM
- multilinear effects for regression parameters


## Longitudinal network example

- $y_{i, j, t} \in\{-5,-4, \ldots,+1,+2\}$, the level of military conflict/cooperation

- $x_{i, j, t, 2}=\left(\log g \mathrm{dp}_{i}\right) \times\left(\log g \mathrm{gp}_{j}\right)$, the product of the $\log \mathrm{gdps} ;$
- $x_{i, j, t, 3}=$ polity $_{i} \times$ polity $_{j}$, where polity ${ }_{i} \in\{-1,0,+1\}$;
- $x_{i, j, t, 4}=\left(\right.$ polity $\left._{i}>0\right) \times\left(\right.$ polity $\left._{j}>0\right)$.


## Longitudinal network example

- $y_{i, j, t} \in\{-5,-4, \ldots,+1,+2\}$, the level of military conflict/cooperation
- $x_{i, j, t, 1}=\log g d p_{i}+\log g d p_{j}$, the sum of the $\log g d p s$ of the two countries;
- $x_{i, j, t, 2}=\left(\log g d p_{i}\right) \times\left(\log g d p_{j}\right)$, the product of the $\log g d p s ;$
- $x_{i, j, t, 3}=$ polity $_{i} \times$ polity $_{j}$, where polity ${ }_{i} \in\{-1,0,+1\}$;
- $x_{i, j, t, 4}=\left(\right.$ polity $\left._{i}>0\right) \times\left(\right.$ polity $\left._{j}>0\right)$.


## Model:

$$
\begin{aligned}
y_{i, j, t} & =\max \left\{y: z_{i, j, t}>c_{y}\right\} \\
z_{i, j, t} & =\boldsymbol{\beta}^{T} \mathbf{x}_{i, j, t}+\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}, \boldsymbol{\lambda}_{t}\right\rangle+\epsilon_{i, j, t} \\
\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} & \sim \operatorname{iid} p(\mathbf{u})
\end{aligned}
$$

## Longitudinal network example

- $y_{i, j, t} \in\{-5,-4, \ldots,+1,+2\}$, the level of military conflict/cooperation
- $x_{i, j, t, 1}=\log g d p_{i}+\log g d p_{j}$, the sum of the $\log g d p s$ of the two countries;
- $x_{i, j, t, 2}=\left(\log g d p_{i}\right) \times\left(\log g d p_{j}\right)$, the product of the $\log g d p s ;$
- $x_{i, j, t, 3}=$ polity $_{i} \times$ polity $_{j}$, where polity ${ }_{i} \in\{-1,0,+1\}$;
- $x_{i, j, t, 4}=\left(\right.$ polity $\left._{i}>0\right) \times\left(\right.$ polity $\left._{j}>0\right)$.


## Model:

$$
\begin{aligned}
y_{i, j, t} & \left.=\max \left\{y: z_{i, j, t}\right\rangle c_{y}\right\} \\
z_{i, j, t} & =\boldsymbol{\beta}^{T} \mathbf{x}_{i, j, t}+\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}, \boldsymbol{\lambda}_{t}\right\rangle+\epsilon_{i, j, t} \\
\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} & \sim \operatorname{iid} p(\mathbf{u})
\end{aligned}
$$

"Interpretation":

$$
\mathbf{Z}_{t}=\mathbf{U} \Lambda_{t} \mathbf{U}^{T}+\mathbf{E}_{t}
$$

## Longitudinal network example


$\mathrm{u}_{1}$



## Covariance structure of multiple relational arrays

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \boldsymbol{Y}_{10}\right\}$

$$
\mathbf{Y}_{t}=\mathbf{M}+\mathbf{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\mathbf{F}_{t} \in \mathbb{R}^{30 \times 30 \times 6}$, changing over time

How should the covariance among $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{10}\right\}$ be described?

## Covariance structure of multiple relational arrays

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \boldsymbol{Y}_{10}\right\}$

$$
\mathbf{Y}_{t}=\mathbf{M}+\mathbf{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\mathbb{E} \in \mathbb{R}^{30 \times 30 \times 6}$, changing over time

How should the covariance among $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{10}\right\}$ be described?

## Covariance structure of multiple relational arrays

Yearly change in $\log$ exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{10}\right\}$

$$
\mathrm{Y}_{t}=\mathrm{M}+\mathrm{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\mathbf{F}_{t} \in \mathbb{R}^{30 \times 30 \times 6}$ changing over time

How should the covariance among $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{10}\right\}$ be described?

## Covariance structure of multiple relational arrays

Yearly change in $\log$ exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{10}\right\}$

$$
\mathbf{Y}_{t}=\mathbf{M}+\mathbf{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\boldsymbol{E} \in \mathbb{R}^{30 \times 30 \times 6}$, changing over time

How should the covariance among $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{10}\right\}$ be described?

## Covariance structure of multiple relational arrays

Yearly change in $\log$ exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{10}\right\}$

$$
\mathbf{Y}_{t}=\mathbf{M}+\mathbf{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\mathbf{E}_{t} \in \mathbb{R}^{30 \times 30 \times 6}$, changing over time.


## Covariance structure of multiple relational arrays

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 10}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year
"Replications" over time: $\mathbf{Y}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{10}\right\}$

$$
\mathbf{Y}_{t}=\mathbf{M}+\mathbf{E}_{t}
$$

- $\mathbf{M} \in \mathbb{R}^{30 \times 30 \times 6}$, constant over time;
- $\mathbf{E}_{t} \in \mathbb{R}^{30 \times 30 \times 6}$, changing over time.

How should the covariance among $\left\{\mathbf{E}_{1}, \ldots, \mathbf{E}_{10}\right\}$ be described?

## The Tucker product

$$
\mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

## The Tucker product

$$
\mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

- $\mathbf{Z}$ is the $R \times S \times T$ core array
- $R, S$ and $T$ are the 1-rank, 2-rank and 3 -rank of $\Theta$
- "×" is array-matrix multiplication (De Lathauwer et al., 2000)


## The Tucker product

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

- $\mathbf{Z}$ is the $R \times S \times T$ core array
- A, B, C are $R \times m_{1}, S \times m_{2}, T \times m_{3}$ matrices.
- R,S and $T$ are the 1 -rank, 2-rank and 3 -rank of $\Theta$
- " $\times$ " is array-matrix multiplication (De Lathauwer et al., 2000)


## The Tucker product

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

- $\mathbf{Z}$ is the $R \times S \times T$ core array
- A, B, C are $R \times m_{1}, S \times m_{2}, T \times m_{3}$ matrices.
- $R, S$ and $T$ are the 1 -rank, 2-rank and 3 -rank of $\Theta$
- " $\times$ " is array-matrix multiplication (De Lathauwer et al., 2000)


## The Tucker product

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

- $\mathbf{Z}$ is the $R \times S \times T$ core array
- A, B, C are $R \times m_{1}, S \times m_{2}, T \times m_{3}$ matrices.
- $R, S$ and $T$ are the 1 -rank, 2-rank and 3 -rank of $\boldsymbol{\Theta}$
- " $\times$ " is array-matrix multiplication (De Lathauwer et al., 2000)


## The Tucker product

$$
\mathbf{Y}=\mathbf{\Theta}+\mathbf{E}
$$

Decompose $\boldsymbol{\Theta}$ using the Tucker decomposition (Tucker 1964,1966):

$$
\begin{aligned}
\theta_{i, j, k} & =\sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} z_{r, s, t} a_{i, r} b_{j, r} c_{k, r} \\
\boldsymbol{\Theta} & =\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}
\end{aligned}
$$

- $\mathbf{Z}$ is the $R \times S \times T$ core array
- A, B, C are $R \times m_{1}, S \times m_{2}, T \times m_{3}$ matrices.
- $R, S$ and $T$ are the 1 -rank, 2-rank and 3 -rank of $\boldsymbol{\Theta}$
- " $\times$ " is array-matrix multiplication (De Lathauwer et al., 2000)


## Separable covariance via Tucker products

Multivariate normal model:

$$
\begin{aligned}
\mathbf{z}=\left\{z_{j}: j=1, \ldots, m\right\} & \stackrel{\text { iid }}{\sim} \quad \text { normal }(\mathbf{0}, 1) \\
\mathbf{y}=\boldsymbol{\mu}+\mathbf{A z} & \sim \text { multivariate normal }\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}=\mathbf{A A}^{T}\right)
\end{aligned}
$$

$$
\mathbf{Z}=\left\{z_{i, j}\right\}_{i=1, j=1}^{m_{1}, m_{2}} \stackrel{i i d}{\sim} \operatorname{normal}(\mathbf{0}, 1)
$$

$$
\mathbf{Y}=\mathbf{M}+\mathbf{A Z B} \mathbf{B}^{T} \sim \text { matrix normal }\left(\mathbf{M}, \boldsymbol{\Sigma}_{1}=\mathbf{A A}^{T}, \Sigma_{2}=\mathbf{B B}^{T}\right)
$$

$$
\text { NOTE: } \mathbf{A Z B} \mathbf{B}^{T}=\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}\}
$$

$$
\mathbf{Z}=\left\{z_{i, j, k}\right\}_{i=1, j=1, k=1}^{m_{1}, m_{2}, m_{3}} \stackrel{i i d}{\sim} \operatorname{normal}(\mathbf{0}, 1)
$$

$$
\mathbf{Y}=\mathbf{M}+\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\} \quad \sim \quad \text { array normal}\left(\mathbf{M}, \boldsymbol{\Sigma}_{1}=\mathbf{A A}^{T}, \boldsymbol{\Sigma}_{2}=\mathbf{B B}^{T}, \boldsymbol{\Sigma}_{3}=\mathbf{C C}^{T}\right)
$$

## Separable covariance via Tucker products

Multivariate normal model:

$$
\begin{aligned}
\mathbf{z}=\left\{z_{j}: j=1, \ldots, m\right\} & \stackrel{\text { iid }}{\sim} \quad \text { normal }(\mathbf{0}, 1) \\
\mathbf{y}=\boldsymbol{\mu}+\mathbf{A z} & \sim \text { multivariate normal }\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}=\mathbf{A A}^{T}\right)
\end{aligned}
$$

Matrix normal model:

$$
\begin{aligned}
\mathbf{Z} & =\left\{\boldsymbol{z}_{i, j}\right\}_{i=1, j=1}^{m_{1}, m_{2}} \\
\mathbf{i i d} & \text { normal }(\mathbf{0}, 1) \\
\mathbf{Y} & =\mathbf{M}+\mathbf{A Z B} \mathbf{B}^{T} \quad \sim \operatorname{matrix} \operatorname{normal}\left(\mathbf{M}, \boldsymbol{\Sigma}_{1}=\mathbf{A A}^{T}, \boldsymbol{\Sigma}_{2}=\mathbf{B B}^{T}\right)
\end{aligned}
$$

$$
\text { NOTE: } \mathbf{A Z B}{ }^{T}=\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}\}
$$

## Separable covariance via Tucker products

## Multivariate normal model:

$$
\begin{aligned}
\mathbf{z}=\left\{z_{j}: j=1, \ldots, m\right\} & \stackrel{\text { iid }}{\sim} \text { normal }(\mathbf{0}, 1) \\
\mathbf{y}=\boldsymbol{\mu}+\mathbf{A z} & \sim \text { multivariate normal }\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}=\mathbf{A A}^{T}\right)
\end{aligned}
$$

Matrix normal model:

$$
\begin{aligned}
\mathbf{Z} & =\left\{z_{i, j}\right\}_{i=1, j=1}^{m_{1}, m_{2}} \\
\stackrel{i i d}{\sim} & \text { normal }(\mathbf{0}, 1) \\
\mathbf{Y} & =\mathbf{M}+\mathbf{A Z B} \mathbf{B}^{T} \quad \sim \quad \text { matrix normal }\left(\mathbf{M}, \boldsymbol{\Sigma}_{1}=\mathbf{A A}^{T}, \Sigma_{2}=\mathbf{B B}^{T}\right)
\end{aligned}
$$

$$
\text { NOTE: } \mathbf{A Z B}^{T}=\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}\}
$$

Array normal model:

$$
\begin{aligned}
\mathbf{Z} & =\left\{\boldsymbol{z}_{i, j, k}\right\}_{i=1,1, j=1, k=1}^{m_{1}, m_{2}, m_{3}} \\
\mathbf{i i d} & \operatorname{normal}(\mathbf{0}, 1) \\
\mathbf{Y}=\mathbf{M}+\mathbf{Z} \times\{\mathbf{A}, \mathbf{B}, \mathbf{C}\} & \sim \operatorname{array} \operatorname{normal}\left(\mathbf{M}, \boldsymbol{\Sigma}_{1}=\mathbf{A A}^{T}, \boldsymbol{\Sigma}_{2}=\mathbf{B B}^{T}, \boldsymbol{\Sigma}_{3}=\mathbf{C C}^{T}\right)
\end{aligned}
$$

## Separable covariance structure

For the matrix normal model:

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{Y}] & =\boldsymbol{\Sigma}_{1} \circ \boldsymbol{\Sigma}_{2} \\
\operatorname{Cov}[\operatorname{vec}(\mathbf{Y})] & =\boldsymbol{\Sigma}_{2} \otimes \boldsymbol{\Sigma}_{1} \\
\mathrm{E}\left[\mathbf{Y} \mathbf{Y}^{T}\right] & =\boldsymbol{\Sigma}_{1} \times \operatorname{tr}\left(\boldsymbol{\Sigma}_{2}\right) \\
\mathrm{E}\left[\mathbf{Y}^{T} \mathbf{Y}\right] & =\boldsymbol{\Sigma}_{2} \times \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right)
\end{aligned}
$$

For the array normal model:

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{Y}] & =\boldsymbol{\Sigma}_{1} \circ \boldsymbol{\Sigma}_{2} \circ \boldsymbol{\Sigma}_{3} \\
\operatorname{Cov}[\operatorname{vec}(\mathbf{Y})] & =\boldsymbol{\Sigma}_{k} \otimes \cdots \otimes \boldsymbol{\Sigma}_{1} \\
\mathrm{E}\left[\mathbf{Y}_{(k)} \mathbf{Y}_{(k)}^{T}\right] & =\boldsymbol{\Sigma}_{k} \times \prod_{j \neq k} \operatorname{tr}\left(\boldsymbol{\Sigma}_{j}\right)
\end{aligned}
$$

## International trade example

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 7}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year

Full "cell means" model:

$$
y_{i, j, k, l}=\mu_{i, j, k}+e_{i, j, k, l}
$$

Let $\mathbf{E}=\left\{e_{i, j, k, l}\right\}$

- iid error model:

$$
\mathbf{E} \sim \operatorname{array} \operatorname{normal}\left(0, \mathbf{I}, \mathbf{I}, \mathbf{I}, \sigma^{2} \mathbf{I}\right)
$$

- vector normal error model:
- matrix normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$
- array normal model:


## International trade example

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 7}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year

Full "cell means" model:

$$
y_{i, j, k, l}=\mu_{i, j, k}+e_{i, j, k, l}
$$

Let $\mathbf{E}=\left\{e_{i, j, k, l}\right\}$

- iid error model:

$$
\mathbf{E} \sim \operatorname{array} \operatorname{normal}\left(0, \mathbf{I}, \mathbf{I}, \mathbf{I}, \sigma^{2} \mathbf{I}\right)
$$

- vector normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \mathbf{I}\right)$
- matrix normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$
- array normal model:


## International trade example

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 7}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year

Full "cell means" model:

$$
y_{i, j, k, l}=\mu_{i, j, k}+e_{i, j, k, l}
$$

Let $\mathbf{E}=\left\{e_{i, j, k, l}\right\}$

- iid error model:

$$
\mathbf{E} \sim \operatorname{array} \operatorname{normal}\left(0, \mathbf{I}, \mathbf{I}, \mathbf{I}, \sigma^{2} \mathbf{I}\right)
$$

- vector normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \mathbf{I}\right)$
- matrix normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$
- array normal model: $\quad E \sim \operatorname{array} \operatorname{normal}\left(0, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}\right\}$


## International trade example

Yearly change in log exports (2000 dollars) : $\mathbf{Y}=\left\{y_{i, j, k, l}\right\} \in \mathbb{R}^{30 \times 30 \times 6 \times 7}$

- $i \in\{1, \ldots, 30\}$ indexes exporting nation
- $j \in\{1, \ldots, 30\}$ indexes importing nation
- $k \in\{1, \ldots, 6\}$ indexes commodity
- $I \in\{1, \ldots, 10\}$ indexes year

Full "cell means" model:

$$
y_{i, j, k, l}=\mu_{i, j, k}+e_{i, j, k, l}
$$

Let $\mathbf{E}=\left\{e_{i, j, k, l}\right\}$

- iid error model:

$$
\mathbf{E} \sim \operatorname{array} \operatorname{normal}\left(0, \mathbf{I}, \mathbf{I}, \mathbf{I}, \sigma^{2} \mathbf{I}\right)
$$

- vector normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \mathbf{I}\right)$
- matrix normal error model: $\mathbf{E} \sim$ array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$
- array normal model:
$\mathbf{E} \sim$ array normal $\left(\mathbf{0}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right\}$


## International trade example

Model comparison:
reduced: array normal $\left(0, \mathbf{I}, \mathbf{I}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$
full: array normal $\left(0, \boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}, \boldsymbol{\Sigma}_{3}, \boldsymbol{\Sigma}_{4}\right)$




## International trade example








## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodologica!: Rank selection, regularization

MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization

MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.

## Summary

- Exchangeability implies a latent variable representation
- Matrix and array decompositions provide latent variable representations
- Lots of work to be done

1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.
