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Relational data
Relational data consist of

• a set of units or nodes A, and

• a set of measurements Y ≡ {yi,j} specific to pairs of nodes (i , j) ∈ A× A.

Examples:

International relations

• A = countries,
• yi,j = indicator of a dispute initiated by i with target j .

Needle-sharing network

• A = IV drug users,
• yi,j = needle-sharing activity between i and j .

Protein-protein interactions

• A = proteins,
• yi,j = the interaction between i and j .

Not an example:

Dependence graph

• A = variables,
• yi,j = presence of a high correlation between i and j .
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Descriptive goals
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How can we summarize network patterns?

1. Are there categories of nodes corresponding to network roles?
(stochastic equivalence)

2. Are there clusters of nodes with large within-cluster density?
(clustering/homophily/transitivity)
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Inferential goals in the regression framework

yi,j measures i → j , xi,j is a vector of explanatory variables.

Y =


y1,1 y1,2 y1,3 NA y1,5 · · ·
y2,1 y2,2 y2,3 y2,4 y2,5 · · ·
y3,1 NA y3,3 y3,4 NA · · ·
y4,1 y4,2 y4,3 y4,4 y4,5 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

 X =


x1,1 x1,2 x1,3 x1,4 x1,5 · · ·
x2,1 x2,2 x2,3 x2,4 x2,5 · · ·
x3,1 x3,2 x3,3 x3,4 x3,5 · · ·
x4,1 x4,2 x4,3 x4,4 x4,5 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.


Consider a basic (generalized) linear model

yi,j ∼ βTxi,j + ei,j

A model can provide

• a measure of the association between X and Y: β̂, se(β̂)

• imputations of missing observations: p(y1,4|Y,X)

• a probabilistic description of network features: g(Ỹ), Ỹ ∼ p(Ỹ|Y,X)
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Adolescent health social network
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Data on 82 12th graders from a
single high school:

54 boys, 28 girls

P̂r(yi,j = 1|same sex) = 0.077

P̂r(yi,j = 1|opposite sex) = 0.056

Model 0: {yi,j} ∼ iid binary(θ)

Model 1: {yi,j} are independent, with

yi,j ∼
{

binary (θA) if i and j of same sex
binary (θB) if i and j of opposite sex
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Adolescent health social network
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Model fit

glm(formula = y ~ x, family = binomial(link = "logit"))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8332 0.1123 -25.24 <2e-16 ***
x 0.3471 0.1428 2.43 0.0151 *

This result says that a model with preferential association is a better
description of the data than an i.i.d. binary model.

log−odds ratio
−1.0 −0.5 0.0 0.5 1.0
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0
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0
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0

log−odds ratio
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Nodal heterogeneity and independence assumptions
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Model lack of fit

Neither of these models do well in terms of representing other features of the
data - for example, transitivity:

t(Y) =
∑

i<j<k

yi,jyj,kyk,i

transitive triples
0 100 300 500

0.
00

0
0.

01
0

0.
02

0

transitive triples
0 100 300 500
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00
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Random effects models

Deviations from ordinary regression models can be represented as

yi,j ∼ βTxi,j + γi,j

A simple “latent variable” model might include additive node effects:

γi,j = ai + aj ⇒ yi,j ∼ βTxi,j + ai + aj

{a1, . . . , an} represent nodal heterogeneity, additive on the regressor scale.

Inclusion of these effects in the model can dramatically improve

• within-sample model fit (measured by R2, likelihood ratio, BIC, etc.);

• out-of-sample predictive performance (measured by cross-validation).

But this model only captures heterogeneity of outdegree/indegree, and can’t
represent more complicated structure, such as clustering, transitivity, etc.
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Model building goals

Descriptions of local network structure

• identification of important nodes

• identification of groups of nodes
• stochastically equivalent groups
• high density clusters

Descriptions of global network structure

• relationship to explanatory variables

• global measures of density, transitivity, degree distribution

Inference

• prediction and imputation

• confidence intervals for regression effects

• hypothesis testing and model comparison
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Model building principles

• Statistical inference utilizes probability models

• Networks and relational data are represented by matrices and arrays

Social network analysis can utilize probability models of matrices and arrays.

We will construct social network models based on these tools:

1. Probability: symmetry considerations (exchangeability) will motivate
latent variable models generally.

2. Matrix algebra: matrix decomposition methods will motivate latent factor
models specifically.
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A primer on exchangeability and de Finetti’s theorem

Let Y1, . . . ,Yn be an exchangeable sequence for all n:

Pr(Y1 = y1, . . . ,Yn = yn) = Pr(Y1 = yπ1 , . . . ,Yn = yπn ) ∀n

de Finetti’s theorem says

Yi = g(θ, εi ) , where

ε1, . . . , εn
iid∼ pε

• The parameter θ represents “global features” of the sequence.

• The εi ’s represent “local features”, specific to individual Yi ’s.

(This theorem justifies the ubiquitous “conditionally i.i.d.” assumption of statistical modeling)
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Exchangeability for nested data
Now consider an m × n data matrix :

Y =


Y1,1 Y1,2 · · · Y1,n

Y2,1 Y2,2 · · · Y2,n

...
...

...
Ym,1 Ym,2 · · · Ym,n


Suppose Pr(Y) is exchangeable across rows and within rows:

Pr(Y1 = y1, . . . ,Ym = ym) = Pr(Y1 = yπ1
, . . . ,Ym = yπm)

Pr(Yi,1 = yi,1, . . . ,Yi,n = yi,n) = Pr(Yi,1 = yi,ω1 , . . . ,Yi,n = yi,ωn )

A double application of de Finetti’s theorem implies

Yi,j = g(θ, ai , εi,j)

a1, . . . , an
iid∼ pa

{εi,j}
iid∼ pε

• The parameter θ represents global features of the data.

• Heterogeneity in the ai ’s represents across-group heterogeneity.

• Heterogeneity in the εi,j ’s represents within-group heterogeneity.
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Exchangeability for symmetric relational matrices

Let Y be a symmetric binary matrix with no explanatory variables. What

properties should a probability model Pr(Y = y) have?

yA =


· 0 1 1
0 · 0 1
1 0 · 0
1 1 0 ·

 yB =


· 1 0 0
1 · 1 0
0 1 · 1
0 0 1 ·


yB is just yA with the nodes relabeled : yB,i,j = yA,πi ,πj , π = (3, 1, 4, 2)

Pr(Y = yA)
?
= Pr(Y = yB)

RCE model: Pr(·) is RCE if Pr(Y = y) = Pr(Y = yπ) for all y and π.

(Hoover 1982, Aldous 1983)
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Exchangeability for symmetric relational matrices

Suppose our model Pr() for Y = {Yi,j , i = 1, . . . , n, j = 1, . . . , n} is RCE:

Pr(Y = {yi,j , i = 1, . . . , n, j = 1, . . . , n}) = Pr(Y = {yπi ,πj , i = 1, . . . , n, j = 1, . . . , n})

Then

Yi,j = g(θ, ai , aj , εi,j) = g(θ, aj , ai , εj,i )

a1, . . . , an
iid∼ pa

{εi,j}
iid∼ pε

• The parameter θ represents global features of the matrix.

• The ai ’s represent nodal heterogeneity , i.e. nodal features.

• The εi,j represent dyad heterogeneity.
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• The εi,j represent dyad heterogeneity.
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Latent class model: an exchangeable latent variable model

(Nowicki and Snijders 2001, Airoldi et al. 2008)

• Each node i is a member of an (unknown) latent class

ai ∈ {1, . . . ,K}

• The probability of a tie between i and j is

Pr(Yi,j = 1|ai , aj) = θai ,aj

• The classes are unknown but exchangeable a priori:

a1, . . . , an
iid∼ multinomial(p1, . . . , pK )

Model characteristics:

Nodes in the same class may have a small or high probability of ties:
θk,k may be small or large

Nodes in the same class are stochastically equivalent:

Pr({Yi,1, . . . ,Yi,n} = {y1, . . . , yn}|ai = k) = Pr({Yj,1, . . . ,Yj,n} = {y1, . . . , yn}|aj = k)
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Latent distance model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum 2007)

• Each node i has an (unknown) latent position

ai ∈ RK

• The probability of a tie from i to j depends on the distance between them

log odds Pr(Yi,j = 1|ai , aj) = θ − |ai − aj |

• The positions are unknown but exchangeable a priori:

a1, . . . , an
iid∼ mvnorm(0,Σ)

Model characteristics: Nodes nearby one another are more likely to have a tie, and
will likely have similar ties to others:

ai ≈ aj ⇔
{

Pr(Yi,j = 1|ai , aj ) ≈ θ
Pr(Yi,k = 1|ai , ak ) ≈ Pr(Yj,k = 1|aj , ak )
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Latent factor model: an exchangeable latent variable model

(Hoff, Raftery and Handcock 2002, Hoff 2005, Hoff 2008)

• Each node i has an (unknown) latent factor

ai ∈ RK

• The probability of a tie from i to j depends on their latent factors

log odds Pr(Yi,j = 1|ai , aj) = θ + aTi Baj ,B =

 b1 0 0
0 b2 0
0 0 b3


• The positions are unknown but exchangeable a priori:

a1, . . . , an
iid∼ mvnorm(µ,Σ)

Model characteristics:

nodes with similar factors may have a large or small probability of a tie

nodes with similar factors are approximately stochastically equivalent
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Incorporation into regression modeling

Consider expanding upon the simple LM or GLM:

Yi,j ∼ βTxi,j + γi,j

• The {γi,j}’s represent deviations from the simple regression model

• The matrix of deviations is itself a relational (unobserved) data matrix

• The latent variable structure can describe these deviations

Yi,j ∼ βTxi,j + γi,j

γi,j = θai ,aj (stochastic blockmodel)

γi,j = −|ai − aj | (distance model)

γi,j = aTi Baj (factor model)
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High school social network: additive effects fit
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High school social network: Latent factor fit

Yi,j ∼ βTxi,j + aT
i Baj

Parameters in this model can be fit with the eigenmodel package in R:

eigenmodel_mcmc(Y,X,R=3)
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The latent factors are able to represent the network transitivity.
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Underlying structure
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Missing variables
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Missing variables

The eigenmodel, without having explicit race information, captures a large
degree of the racial homophily in friendship:
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Model comparisons

How do the different latent variable models compare?

What structures do they represent?

Two important types of patterns:

Homophily: Similar nodes link to each other

• “similar” may be in terms of unobserved characteristics

• homophily leads to transitive or clustered social networks

• observed transitivity may be due to exogenous or endogenous factors

( See Shalizi and Thomas 2010 for a more careful discussion )

Stochastic equivalence: Similar nodes have similar relational patterns

• similar nodes may or may not link to each other

• equivalent nodes can be thought of as having the same “role”

Descriptive measures:

• Transitivity (global measure):
∑

i,j,k yi,jyj,kyk,i

• Stochastic equivalence (local measure): ρi,j = cor(y[i,], y[j,])
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Homophily and stochastic equivalence

●
●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
● ●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

How well can the distance model represent these networks?

How well can the latent class model represent these networks?
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Homophily and stochastic equivalence in real networks
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• AddHealth friendships: friendships among 247 12th-graders

• Word neighbors in Genesis: neighboring occurrences among 158 words

• Protein binding interactions: binding patterns among 230 proteins
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Model comparison via cross validation

1. Randomly divide the
(
n
2

)
data values into 5 sets letting si,j be the set to

which pair {i , j} is assigned.

2. For each s ∈ {1, . . . , 5}:
2.1 Estimate model parameters with {yi,j : si,j 6= s}, the data not in set s.
2.2 Predict {yi,j : si,j 6= s} from these estimated parameters

This generates a sociomatrix Ŷ, in which each entry ŷi,j is a predicted value
obtained from using a subset of the data that does not include yi,j .

(Hoff 2008)
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AddHealth friendships
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Genesis word neighbors
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Protein bindings
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More cross validation results

K Add health Genesis Protein interaction
dist class eigen dist class eigen dist class eigen

3 0.82 0.64 0.75 0.62 0.82 0.82 0.83 0.79 0.88
5 0.81 0.70 0.78 0.66 0.82 0.82 0.84 0.84 0.90

10 0.76 0.69 0.80 0.74 0.82 0.82 0.85 0.86 0.90

The eigenmodel is generally as good or better than the others in each case (it
can be made more comparable to the distance model if a diffuse prior is used).
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Model flexibility
Probit versions of the three latent variable models all have the following form:

yi,j =

{
1 if zi,j > 0
0 if zi,j ≤ 0

zi,j = µ+ α(ai , aj) + εi,j

{εi,j : 1 ≤ i < j ≤ n} ∼ i.i.d. normal(0, 1)

{a1, . . . , an} ∼ i.i.d. f (a|ψ)

where

Latent class model:

α(ai , aj) = θai ,aj
ai ∈ {1, . . . ,K}, i ∈ {1, . . . , n}
Θ a K × K symmetric matrix

Latent distance model:

α(ai , aj) = −|ai − aj |
ai ∈ RK , i ∈ {1, . . . , n}

Latent factor model:

α(ai , aj) = aTi Λaj
ai ∈ RK , i ∈ {1, . . . , n}
Λ a K × K diagonal matrix.
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Model flexibility

Let Sn be the set of symmetric n × n matrices, and let

CK = {C ∈ Sn : ci,j = θai ,aj , ai ∈ {1, . . . ,K}, Θ a K × K symmetric matrix};

DK = {D ∈ Sn : di,j = −|ai − aj |, ai ∈ RK};
EK = {E ∈ Sn : ei,j = aTi Λaj , ai ∈ RK , Λ a K × K diagonal matrix}.

CK , DK and EK describe the patterns representable by the class, distance and
factor models respectively.

Theoretical results:

• EK generalizes CK
• EK+1 weakly generalizes DK

• DK does not weakly generalize E1
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Matrix decompositions

Probit version of the latent factor model:

yi,j = g(zi,j) , where g is a nondecreasing function

zi,j = uT
i Λuj + εi,j , where ui ∈ RK , Λ=diag(λ1, . . . , λK )

{εi,j}
iid∼ normal(0, 1)

Writing {zi,j} as a matrix ,

Z = UΛUT + E

Recall from linear algebra:

• Every n × n symmetric matrix Z can be written

Z = UΛUT

where Λ = diag(λ1, . . . , λn) and U is orthonormal.

• If UΛUT is the eigendecomposition of Z, then

Ẑk ≡ U[,1:k]Λ[1:k,1:k]U
T
[,1:k]

is the least-squares rank-k approximation to Z.
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Least squares approximations of increasing rank
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Least squares approximations of increasing rank
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Least squares approximations of increasing rank
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Estimation and Inference

Data: Y = {yi,j , 1 ≤ i < j ≤ n}

Model:

yi,j = 1 if zi,j > 0 , 0 else

zi,j = µ+ uT
i Λuj + εi,j ,

{εi,j}
iid∼ normal(0, 1)

Posterior inference:

p(Z, µ,U,Λ|Y) ∝ p(Y|Z, µ,U,Λ)p(Z, µ,U,Λ)

= p(Y|Z)p(Z|µ,U,Λ)p(µ)p(U)p(Λ)

Gibbs sampling: MCMC approximation to p(Z, µ,U,Λ|Y) :

1. sample zi,j ∼ p(zi,j |yi,j , µ) for each pair (i , j)

2. sample ui ∼ p(ui |U[−i ],,Z[i,−i ], µ,Λ)

3. sample Λ ∼ p(Λ|U,Z, µ)

4. sample µ ∼ p(µ|Y,Z,U,Λ)
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R-Package eigenmodel

Description:

Construct approximate samples from the posterior distribution of

the parameters and latent variables in an eigenmodel for symmetric

relational data.

Usage:

eigenmodel_mcmc(Y, X = NULL, R = 2, S = 1000, seed = 1, Nss = min(S-burn, 1000), burn = 0)

Arguments:

Y: an n x n symmetric matrix with missing diagonal entries.

Off-diagonal missing values are allowed.

X: an n x n x p array of regressors

R: the rank of the approximating factor matrix

S: number of samples from the Markov chain

seed: a random seed

Nss: number of samples to be saved

burn: number of initial scans of the Markov chain to be dropped

Value: a list with the following components:

Z_postmean: posterior mean of the latent variable in the probit specification

ULU_postmean: posterior mean of the reduced-rank approximating matrix

Y_postmean: the original data matrix with missing values replaced by posterior means

L_postsamp: samples of the eigenvalues

b_postsamp: samples of the regression coefficients
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Friendship example

> library(eigenmodel)
> data(YX_Friend)
> fit<-eigenmodel_mcmc(Y=YX_Friend$Y,X=YX_Friend$X,R=2,S=100000,burn=5000)
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Protein interaction example

> library(eigenmodel)
> data(Y_Pro)
> fit<-eigenmodel_mcmc(Y=Y_Pro,R=2,S=100000,burn=5000)
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R-Software svdmodel

The same idea, except for asymmetric data...

Recall from linear algebra:

• Every m × n symmetric matrix Z can be written

Z = UDVT

where D = diag(d1, . . . , dn), U and V are orthonormal.

• If UDVT is the svd of Z, then

Ẑk ≡ U[,1:k]D[1:k,1:k]V
T
[,1:k]

is the least-squares rank-k approximation to Z.

Model:

yi,j = 1 if zi,j > 0 , 0 else

zi,j = µ+ uT
i Dvj + εi,j ,

{εi,j}
iid∼ normal(0, 1)
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Multiway relational arrays

yi,j,k =

• jth measurement on ith subject
under condition k (psychometrics)

• type-k relationship between i and j
(relational data/network)

• relationship between i and j at
time t (longitudinal relational data)

y125

y124

y123

y122

y121
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Longitudinal network example

Cold war cooperation and conflict

• 66 countries

• 8 years (1950,1955,. . . ,1980,1985)

• yi,j,t =relation between i , j in year t

• also have data on gdp and polity
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Reduced rank models

Y = Θ + E

• Θ contains the “main features” we hope to recover,

• E is “patternless.”

Matrix decomposition: If Θ is a rank-R matrix, then

θi,j = 〈ui , vj〉 =
R∑

r=1

ui,rvj,r Θ =
R∑

r=1

urv
T
r =

R∑
r=1

ur ◦ vr

Array decomposition: If Θ is a rank-R array, then

θi,j,k = 〈ui , vj ,wk〉 =
R∑

r=1

ui,rvj,rwk,r Θ =
R∑

r=1

ur ◦ vr ◦ wr

(Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989] )
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Some things you should know

1. Computing the rank
• matrix: easy to do
• array: no known algorithm

2. Possible rank
• matrix: Rmax = min(m1,m2)
• array: max(m1,m2,m3) ≤ Rmax ≤ min(m1m2,m1m3,m2m3)

3. Probable rank
• matrix: “almost all” matrices have full rank.
• array: a nonzero fraction (w.r.t. Lebesgue measure) have less than full rank.

4. Least squares approximation
• matrix: SVD of Y provides the rank R least-squares approximation to Θ.
• array: iterative “least squares” methods, but solution may not exist

(de Silva and Lim[2008] )

5. Uniqueness

• matrix: The representation Θ = 〈U,V〉 = UVT is not unique.
• array: The representation Θ = 〈U,V,W〉 is essentially unique.
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A model-based approach

For a K -way array Y,

Y = Θ + E

Θ =
R∑

r=1

u(1)
r ◦ · · · ◦ u(K)

r ≡ 〈U(1), . . . ,U(K)〉

u(k)
1 , . . . , u(k)

mk

iid∼ multivariate normal(µk ,Ψk),

with {µk ,Ψk , k = 1, . . . ,K} to be estimated.

Some motivation:

• shrinkage: Θ contains lots of parameters.

• hierarchical: covariance among columns of U(k) is identifiable.

• estimation: p(Y|U(1), . . . , vU(K)) multimodal, MCMC “stochastic search”

• adaptability: incorporate reduced rank arrays as a model component
• multilinear predictor in a GLM
• multilinear effects for regression parameters
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Longitudinal network example

• yi,j,t ∈ {−5,−4, . . . ,+1,+2}, the level of military conflict/cooperation

• xi,j,t,1 = log gdpi + log gdpj , the sum of the log gdps of the two countries;

• xi,j,t,2 = (log gdpi )× (log gdpj), the product of the log gdps;

• xi,j,t,3 = polityi × polityj , where polityi ∈ {−1, 0,+1};
• xi,j,t,4 = (polityi > 0)× (polityj > 0).

Model:

yi,j,t = max{y : zi,j,t > cy}
zi,j,t = βTxi,j,t + 〈ui , uj ,λt〉+ εi,j,t

u1, . . . , un ∼ iid p(u)

“Interpretation”:
Zt = UΛtU

T + Et
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Longitudinal network example
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Covariance structure of multiple relational arrays

Yearly change in log exports (2000 dollars) : Y = {yi,j,k,l} ∈ R30×30×6×10

• i ∈ {1, . . . , 30} indexes exporting nation

• j ∈ {1, . . . , 30} indexes importing nation

• k ∈ {1, . . . , 6} indexes commodity

• l ∈ {1, . . . , 10} indexes year

“Replications” over time: Y = {Y1, . . . ,Y10}

Yt = M + Et

• M ∈ R30×30×6, constant over time;

• Et ∈ R30×30×6, changing over time.

How should the covariance among {E1, . . . ,E10} be described?
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The Tucker product

Y = Θ + E

Decompose Θ using the Tucker decomposition (Tucker 1964,1966):

θi,j,k =
R∑

r=1

S∑
s=1

T∑
t=1

zr,s,tai,rbj,rck,r

Θ = Z× {A,B,C}

• Z is the R × S × T core array

• A , B , C are R ×m1, S ×m2, T ×m3 matrices.

• R, S and T are the 1-rank, 2-rank and 3-rank of Θ

• “×” is array-matrix multiplication (De Lathauwer et al., 2000)
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Separable covariance via Tucker products

Multivariate normal model:

z = {zj : j = 1, . . . ,m} iid∼ normal(0, 1)

y = µ + Az ∼ multivariate normal(µ,Σ = AAT )

Matrix normal model:

Z = {zi,j}m1,m2
i=1,j=1

iid∼ normal(0, 1)

Y = M + AZBT ∼ matrix normal(M,Σ1 = AAT ,Σ2 = BBT )

NOTE: AZBT = Z× {A,B}

Array normal model:

Z = {zi,j,k}m1,m2,m3
i=1,j=1,k=1

iid∼ normal(0, 1)

Y = M + Z× {A,B,C} ∼ array normal(M,Σ1 = AAT ,Σ2 = BBT ,Σ3 = CCT )
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Separable covariance structure

For the matrix normal model:

Cov[Y] = Σ1 ◦Σ2

Cov[vec(Y)] = Σ2 ⊗Σ1

E[YYT ] = Σ1 × tr(Σ2)

E[YTY] = Σ2 × tr(Σ1)

For the array normal model:

Cov[Y] = Σ1 ◦Σ2 ◦Σ3

Cov[vec(Y)] = ΣK ⊗ · · · ⊗Σ1

E[Y(k)Y
T
(k)] = Σk ×

∏
j 6=k

tr(Σj)



Introduction Models based on exchangeability Homophily and stochastic equivalence Matrix decomposition models Multiway data

International trade example

Yearly change in log exports (2000 dollars) : Y = {yi,j,k,l} ∈ R30×30×6×7

• i ∈ {1, . . . , 30} indexes exporting nation

• j ∈ {1, . . . , 30} indexes importing nation

• k ∈ {1, . . . , 6} indexes commodity

• l ∈ {1, . . . , 10} indexes year

Full “cell means” model:

yi,j,k,l = µi,j,k + ei,j,k,l

Let E = {ei,j,k,l}
• iid error model: E ∼ array normal(0, I, I, I, σ2I)

• vector normal error model: E ∼ array normal(0, I, I,Σ3, I)

• matrix normal error model: E ∼ array normal(0, I, I,Σ3,Σ4)

• array normal model: E ∼ array normal(0,Σ1,Σ2,Σ3,Σ4}
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International trade example

Model comparison:

reduced: array normal(0, I, I,Σ3,Σ4)

full: array normal(0,Σ1,Σ2,Σ3,Σ4)
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Summary

• Exchangeability implies a latent variable representation

• Matrix and array decompositions provide latent variable representations

• Lots of work to be done
1. Theoretical: asymptotics, sampling frame, MDL
2. Methodological: Rank selection, regularization
3. Computational: MCMC, VB, other approximate solutions.
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