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The goal

“Reverse-engineering the mind”

Understand human learning and inference in our 

best engineering terms, and use that knowledge 

to build more human-like machine learning and 

inference systems.



The big question

How does the mind get so much out of so 

little?

Our minds build rich models of the world and make strong 

generalizations from input data that is sparse, noisy, and 

ambiguous – in many ways far too limited to support the 

inferences we make.   

How do we do it?



Learning words for objects
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The big question

How does the mind get so much out of so 

little?

– Perceiving the world from sense data

– Learning about kinds of objects and their properties

– Learning the meanings of words, phrases, and sentences 

– Inferring causal relations

– Learning and using intuitive theories of physics, 

psychology, biology, social structure…  



Heider and Simmel, 1944

Southgate and Csibra, 2009



1.  How does abstract knowledge guide learning and inference    

from sparse data?

Bayesian inference in 

probabilistic generative models.

2.  What form does abstract knowledge take, across different 

domains and tasks?

Probabilities defined over a range of structured representations: 

spaces, graphs, grammars, predicate logic, schemas, programs. 

3.  How is abstract knowledge itself acquired – balancing 

complexity versus fit, constraint versus flexibility? 

Hierarchical models, with inference at multiple levels (“learning 

to learn”).  Nonparametric (“infinite”) models, growing 

complexity and adapting their structure as the data require. 
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The approach: learning with knowledge



Weiss, Simoncelli & Adelson (2002): 

“Slow and smooth” priors 

Kording & Wolpert (2004): Priors

in sensorimotor integration

Perception as Bayesian inference



Wainwright, Schwartz & Simoncelli (2002): Bayesian ideal observers 

based on natural scene statistics

Does this approach extend to cognition?

Perception as Bayesian inference



• You read about a movie that has made $60 million to date.  

How much money will it make in total?

• You see that something has been baking in the oven for 34 

minutes.  How long until it’s ready?

• You meet someone who is 78 years old.  How long will they 

live?

• Your friend quotes to you from line 17 of his favorite poem.  

How long is the poem?

• You meet a US congressman who has served for 11 years.  

How long will he serve in total?

• You encounter a phenomenon or event with an unknown 

extent or duration, ttotal, at a random time or value of t <ttotal.

What is the total extent or duration ttotal?

Everyday prediction problems
(Griffiths & Tenenbaum, Psych. Science 2006)



Priors P(ttotal) based on empirically measured durations or magnitudes 

for many real-world events in each class:

Median human judgments of the total duration or magnitude ttotal of 

events in each class, given one random observation at a duration or 

magnitude t, versus Bayesian predictions (median of P(ttotal|t)).  



Learning words for objects
“tufa”

“tufa”

“tufa”

What is the right prior?

What is the right hypothesis space?

How do learners acquire that background knowledge?  



Learning words for objects
“tufa”

“tufa”

“tufa”

(Collins & Quillian, 1969) (Kiani et al., 2007, IT 

population responses;

c.f. Hung et al., 2005)



“tufa” “tufa”

“tufa”

Learning words for objects

Bayesian inference over tree-

structured hypothesis space:
(Xu & Tenenbaum, 

Psych. Review 2007;

Schmidt & Tenenbaum,

in prep)

Model

People



Learning to learn words
(w/ Kemp, Perfors)

• Learning which features count for which kinds of 

concepts and words. 

– Shape bias (Smith) for simple solid objects (2 years). 

– Material bias for non-solid substances (~3 years). 

– …

• Learning the form of structure in a domain.

– Early hypotheses follow mutual exclusivity (Markman). 

A tree-structured hierarchy of nameable categories 

emerges only later.  

This is a dax.

Show me the dax…



Learning to learn: which object features count 

for word learning? 
Query

image

46,875 “texture of

textures” features:

[Salakhutdinov, Tenenbaum, Torralba „10]
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“Similar categories have 

similar similarity metrics”
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Learning to learn: which object features 

count for word learning? 

[Salakhutdinov, Tenenbaum, Torralba „10]

Tree learned with

nCRP prior



Learning to learn: which object features 

count for word learning? 

ROC Curve for 1-shot learning

Learned metric

Euclidean distance

Oracle (best possible 

metric)

MSR dataset:

[Salakhutdinov, Tenenbaum, Torralba „10]

Tree learned with

nCRP prior
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Low-level general features

[Restricted Boltzmann Machine]

learned from 4 million tiny images

High-level class-sensitive features

[HDP topic model (admixture)]

learned from 100 CIFAR classes

Images

(= 32 x 32 pixels x 3 RGB)

HDP-RBM
[Salakhutdinov, Tenenbaum, 

Torralba, in prep]

…

…
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1000 unitsijX

ijY

Low-level general features

[Restricted Boltzmann Machine]

learned from 4 million tiny images

High-level class-sensitive features

[HDP topic model (admixture)]

learned from 100 CIFAR classes

Images

(= 32 x 32 pixels x 3 RGB)

Learned tree structure of 

classes  [nested CRP prior]
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[Salakhutdinov, Tenenbaum, 

Torralba, in prep]
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The characters challenge

(“MNIST++” or “MNIST*”)



Learned features

Low-level general-purpose 

features from RBM

High-level class-sensitive 

features from HDP

(composed of RBM features)
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Learning from very few examples

3 examples of

a new class

Inferred super-class

Conditional samples

in the same class



Learning from very few examples
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Learning from very few examples



Learning from very few examples



1 3 5 10

# examples

Area under ROC curve for same/different 
(1 new class vs. 1000 distractor classes)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

Pixels
LDA-RBM
(class conditional)

LDA-RBM
(unsupervised)

HDP-RBM
(tree)

HDP-RBM
(flat)

[Averaged over 50 test classes]



Learning to learn: what is the right form 

of structure for the domain?  
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People can discover structural forms…

– Children

e.g., hierarchical structure of category labels, cyclical structure of seasons 

or days of the week, clique structure of social networks. 

– Scientists

… but standard learning algorithms assume fixed forms.

– Hierarchical clustering: tree structure

– k-means clustering, mixture models: flat partition

– Principal components analysis: low-dimensional spatial structure

Linnaeus

Kingdom Animalia

Phylum Chordata 

Class Mammalia 

Order Primates 

Family Hominidae 

Genus Homo 

Species Homo sapiens

Darwin Mendeleev

Learning to learn: what is the right form 

of structure for the domain?  



Goal: A universal framework for 

unsupervised learning

“Universal Learner”

K-Means

Hierarchical clustering

Factor Analysis

PCA
Manifold learning

Circumplex models

···

Data Representation



Form FormProcess Process

Hypothesis space of structural forms
(Kemp & Tenenbaum, PNAS 2008)



F: form

S: structure

D: data

A hierarchical Bayesian approach
(Kemp & Tenenbaum, PNAS 2008)

Features

P(F)

P(S | F)

P(D | S)

…
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F: form

S: structure

D: data

A hierarchical Bayesian approach
(Kemp & Tenenbaum, PNAS 2008)

Features

P(F)

P(S | F)
Simplicity
(Bayes Occam’s 

razor)

P(D | S)
Fit to data
(Smoothness: Gaussian process 

based on graph Laplacian)

…
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Development of structural forms as more 

data are observed

“blessing of abstraction”

5 features

110 features

20 features



Graphical models++

Understanding intelligence requires us to go beyond 

the statistician’s toolkit: Inference over fixed sets 

of random variables, linked by simple (or well-

understood) distributions.  

“Probabilistic programming” (NIPS ’08 workshop): 

Machine learning and Probabilistic AI must 

expand to include the full computer science toolkit.

• Inference over flexible data structures.

• Complex generative models based on stochastic programs, 

to capture the rich causal texture of the world. 





Heider and Simmel, 1944

Southgate and Csibra, 2009

Intuitive psychology



Modeling human action understanding

• Latent mental states: beliefs 

and desires.

• Principle of rationality: 

Assume that other agents will 

tend to take sequences of 

actions that most effectively 

achieve their desires given 

their beliefs.  

• Model this more formally as 

Bayesian inference?

Beliefs (B) Desires (D)

Actions (A)

)|,( ADBp

),(),|( DBpDBAp



Modeling human action understanding

• Latent mental states: beliefs 

and desires. 

• Principle of rationality: 

Assume that other agents will 

tend to take sequences of 

actions that most effectively 

achieve their desires given 

their beliefs.  

• Bayesian inverse planning in a 

Partially Observable Markov 

Decision Process (MDP). 

(c.f. inverse optimal control, 

inverse RL) 

Beliefs (B) Desires (D)

Actions (A)

Rational

Planning

(e.g. POMDP solver)

)|,( ADBp

),(),|( DBpDBAp

Probabilistic program



Goal inference as inverse

probabilistic planning
(Baker, Tenenbaum & Saxe, Cognition, 2009)

constraints goals

actions

rational planning

(MDP)

Agent

Model
P

e
o

p
le

r = 0.98

0               0.5              1
0

1

0.5



Theory of mind: 
Joint inferences about beliefs 

and preferences

(Baker, Saxe & Tenenbaum, in prep)

Beliefs Preferences

Actions

Environment
Agent 

state

rational 

perception

rational 

planning

Agent

Preferences Initial Beliefs

Food truck scenarios:



Intuitive physics

















Modeling intuitive physical 

inferences about visual scenes

1. “Vision as inverse graphics.”

– Recover a physically realistic 3D scene description by 

Bayesian inference in a probabilistic rendering model. 

2. “Physics as forward physics.” 

– Run forward simulations with probabilistic Newtonian 

mechanics. (Cf. Griffiths, Sanborn, Mansinghka)

• Starting point: dynamics are fundamentally deterministic; 

uncertainty enters from imperfect state estimates by vision. 

• Next steps: uncertainty about mechanics, simulation noise, noise 

in working memory.

(Battaglia, Hamrick, Tenenbaum, Torralba, Wingate)















Stability inferences

Model prediction
(expected proportion of tower that will fall)

Mean human 

stability 

judgment



Intuitive physics in infants

(Teglas, Vul, Gonzalez, Girotto,   

Tenenbaum, Bonatti, under review)



Probabilistic programming languages

Universal language for describing generative models + 

generic tools for (approximate) probabilistic inference. 

• Probabilistic logic programming (Prolog)
– BLOG (Russell, Milch et al)

– Markov Logic (Domingos et al)

– ICL (Poole)

• Probabilistic functional programming (lisp) or 

imperative programming (Matlab)
– Church: stochastic lisp (Goodman, Mansinghka et al)

– Monte™ (Mansinghka & co. @ Navia Systems)

– Stochastic Matlab (Wingate)

– IBAL: probabilistic ML (Pfeffer)  

– HANSEI: probabilistic OCaml (Oleg, Shan)



Learning as program induction, cognitive 

development as program synthesis 

• Ultimately would like to understand development 

of intuitive psychology, intuitive physics as 

program synthesis.  

• Shorter-term goals & warm-up problems:

– Graph grammars for structural form. [Kemp & Tenenbaum]

– Motor programs for handwritten characters.  [Revow, 

Williams, Hinton;  Lake, Salakhutdinov, Tenenbaum]

– Learning functional aspects of language: determiners, 

quantifiers, prepositions, adverbs. [Piantadosi, Goodman 

Tenenbaum; Liang et al.; Zettlemoyer et al., …]



Conclusions
How does the mind get so much from so little, in learning about objects, 

categories, causes, scenes, sentences, thoughts, social systems? 

A toolkit for studying the nature, use and acquisition of abstract knowledge:
– Bayesian inference in probabilistic generative models. 

– Probabilistic models defined over a range of structured representations: 
spaces, graphs, grammars, predicate logic, schemas, and other data structures.

– Hierarchical models, with inference at multiple levels of abstraction. 

– Nonparametric models, adapting their complexity to the data. 

– Learning and reasoning in probabilistic programming languages. 

An alternative to classic “either-or” dichotomies: “Nature” versus “Nurture”, 
“Logic” (Structure, Rules, Symbols) versus “Probability” (Statistics).
– How can domain-general mechanisms of learning and representation build 

domain-specific abstract knowledge?

– How can structured symbolic knowledge be acquired by statistical learning? 

A different way to think about the development of a cognitive system.
– Powerful abstractions can be learned surprisingly quickly, together with or prior 

to learning the more concrete knowledge they constrain.

– Structured symbolic representations need not be rigid, static, hand-wired, brittle. 
Embedded in a probabilistic framework, they can grow dynamically and 
robustly in response to the sparse, noisy data of experience.



How could this work in the brain?



Hinton, Dayan, Pouget, Zemel, Schrater, Lengyel, Fiser, Berkes, Griffiths, Steyvers, 

Vul, Goodman, Tenenbaum, Gershman, ...
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Computational

Algorithmic

Neural

Importance sampling
Markov Chain

Monte Carlo

(MCMC)

The “sampling hypothesis”

Particle filtering

t=150 ms



Cortex as hierarchical Bayesian modeler
Barlow, Lee & Mumford, Hinton, Dayan, Zemel, Olshausen, Pouget, Rao, 

Lewicki, Dean, George & Hawkins, Friston, …

Deep Belief Net



Computation at COSYNE*09

Some popular words in titles:
– Feedback: 5

– Circuit: 20

– Gain: 7

– Signal: 5

– Frequency: 8

– Phase: 11

– Correlation: 9

– Nonlinear: 8

– Coding: 12

– Decoding: 13

– Adaptation: 10

– State: 11

Some less popular words: 
– Data structure: 0

– Algorithm: 1

– Symbol: 0

– Pointer: 0

– Buffer: 0

– Graph: 1

– Function: 3

– Language: 0

– Program: 0

– Grammar: 0

– Rule: 1

– Abstract: 1

– Hierarchical: 3

– Recursive: 1
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