
A Theory of Multiclass
Boosting

Indraneel Mukherjee*, R. E. Schapire
Princeton University

1

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn in

Sports

Business

Politics

2

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn in

Sports

Business

Politics

liquidity

y n
Business Politics

2

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn in

Sports

Business

Politics

liquidity

y n
Business Politics

weak
classifier

2

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn in

Sports

Business

Politics

liquidity

y n
Business Politics

senators

y n
Politics Sports

football

y
Sports Business

n

+ +

weak
classifier

2

Goals of Boosting

3

Goals of Boosting

• Boost simplest weak classifiers

3

Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

3

Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

• Important for generalization error:

3

Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

• Important for generalization error:

• Simple weak classifier may imply less
overfitting

3

Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

• Important for generalization error:

• Simple weak classifier may imply less
overfitting

• Too simple could lead to underfitting

3

Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

• Important for generalization error:

• Simple weak classifier may imply less
overfitting

• Too simple could lead to underfitting

• Theory known for binary, not for multiclass

3

This Talk

4

This Talk
• Existing frameworks inadequate for multiclass

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

• Introduce new framework for multiclass boosting

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

• Introduce new framework for multiclass boosting

• Captures the minimal WLC

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

• Introduce new framework for multiclass boosting

• Captures the minimal WLC

• Boosting algorithm using the minimal WLC

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

• Introduce new framework for multiclass boosting

• Captures the minimal WLC

• Boosting algorithm using the minimal WLC

• Provably drives down error efficiently

4

This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too
strong

• Introduce new framework for multiclass boosting

• Captures the minimal WLC

• Boosting algorithm using the minimal WLC

• Provably drives down error efficiently

• Experiments to complement the theory

4

Binary boosting

5

Binary boosting
Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

5

Binary boosting
Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

5

Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

5

Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

Binary WLC

5

Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

Final model: (weighted) majority{h1, ... , hT}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

Binary WLC

5

Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

More weight on
misclassified
examples

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

Final model: (weighted) majority{h1, ... , hT}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

Binary WLC

5

Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

After T rounds, êrr of maj{h1, . . . , hT } ≤ exp(−Tγ2/2)

More weight on
misclassified
examples

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

Final model: (weighted) majority{h1, ... , hT}

d1 , ... , dm

h ∈ H, h: {Example} ⇒ {Label}

Binary WLC

5

Binary WLC Ideal

6

Binary WLC Ideal

• Required tasks easy. Only better than random

6

Binary WLC Ideal

• Required tasks easy. Only better than random

• Sufficient. H satisfies binary WLC => H is boostable

6

Binary WLC Ideal

• Required tasks easy. Only better than random

• Sufficient. H satisfies binary WLC => H is boostable

• Boostable space: contains perfect combination

6

Binary WLC Ideal

• Required tasks easy. Only better than random

• Sufficient. H satisfies binary WLC => H is boostable

• Boostable space: contains perfect combination

• Necessary. Boostable space satisfies binary WLC

6

Binary WLC Ideal

• Required tasks easy. Only better than random

• Sufficient. H satisfies binary WLC => H is boostable

• Boostable space: contains perfect combination

• Necessary. Boostable space satisfies binary WLC

• Effective. Allows efficient boosting algorithm

6

Extending to Multiclass

7

Extending to Multiclass

d1 , ... , dm

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

h ∈ H, h: {Example} ⇒ {Multiclass Label}

7

Extending to Multiclass

d1 , ... , dm

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

h ∈ H, h: {Example} ⇒ {Multiclass Label}

êrrd(h) ≤ 1− 1
k − γ

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

7

Extending to Multiclass

Too weak

d1 , ... , dm

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

h ∈ H, h: {Example} ⇒ {Multiclass Label}

êrrd(h) ≤ 1− 1
k − γ

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

7

Extending to Multiclass

Too weak

d1 , ... , dm

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

h ∈ H, h: {Example} ⇒ {Multiclass Label}

êrrd(h) ≤ 1− 1
k − γ

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

AdaBoost.M1 [Freund, Schapire ‘96]

êrrd(h) ≤
1
2 − γ

7

Extending to Multiclass

Too weak

Too strong

d1 , ... , dm

Input: (x1,y1) , ... , (xm, ym)

Booster H = {weak classifiers}

h ∈ H, h: {Example} ⇒ {Multiclass Label}

êrrd(h) ≤ 1− 1
k − γ

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

AdaBoost.M1 [Freund, Schapire ‘96]

êrrd(h) ≤
1
2 − γ

7

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.
•One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.
•One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
•All-pairs: (AdaBoost.MR)[Freund & Schapire ’96, Schapire & Singer ‘99]

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.
•One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
•All-pairs: (AdaBoost.MR)[Freund & Schapire ’96, Schapire & Singer ‘99]

•Practical, but poorly understood

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.
•One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
•All-pairs: (AdaBoost.MR)[Freund & Schapire ’96, Schapire & Singer ‘99]

•Practical, but poorly understood
•Sometimes too strong

8

Reduction to binary
Multiclass

Binary 1 Binary 2 Binary 3

Classifier1 Classifier2 Classifier3

Final
Classifier

Bo
os

tin
g

Bo
os

tin
g

Bo
os

tin
g

Artificial binary problems

•One-against-all, all-pairs, ECOC. E.g.
•One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
•All-pairs: (AdaBoost.MR)[Freund & Schapire ’96, Schapire & Singer ‘99]

•Practical, but poorly understood
•Sometimes too strong

•e.g. One-against-all (AdaBoost.MH)

8

New Framework (simplified)

9

New Framework (simplified)

• Booster sends cost matrix C, not distribution

9

New Framework (simplified)

• Booster sends cost matrix C, not distribution

• C(i, !): cost of predicting label ! on example i

• Cost(C, h) =
∑

i C(i, h(xi)

9

New Framework (simplified)

• Booster sends cost matrix C, not distribution

• Perform as well as fixed baseline predictor B

• C(i, !): cost of predicting label ! on example i

• Cost(C, h) =
∑

i C(i, h(xi)

9

New Framework (simplified)

• Booster sends cost matrix C, not distribution

• Perform as well as fixed baseline predictor B

• B(i, !): prob. with which B predicts ! on i

• Cost(C, B) =
∑

i E[C(i, B(xi))] =
∑

i
∑
! C(i, l) B(i, !)

• C(i, !): cost of predicting label ! on example i

• Cost(C, h) =
∑

i C(i, h(xi)

9

New Framework (simplified)

• Booster sends cost matrix C, not distribution

• Perform as well as fixed baseline predictor B

• B(i, !): prob. with which B predicts ! on i

• Cost(C, B) =
∑

i E[C(i, B(xi))] =
∑

i
∑
! C(i, l) B(i, !)

• C(i, !): cost of predicting label ! on example i

• Cost(C, h) =
∑

i C(i, h(xi)

• Restriction: Cost (C, h) ≤ Cost (C, B)

9

New Framework (simplified)

10

New Framework (simplified)

Parameter: Fixed baseline B

10

New Framework (simplified)

Parameter: Fixed baseline B

cost matrix C

Booster

h ∈ H, h: {Example} ⇒ {Label}

H = {weak classifiers}

10

New Framework (simplified)

Parameter: Fixed baseline B

cost matrix C

Booster

h ∈ H, h: {Example} ⇒ {Label}

H = {weak classifiers}

Cost(C, h) ≤ Cost(C, B)

10

Binary Boosting

cost matrix C

Booster

h ∈ H, h: {Example} ⇒ {Label}

H = {weak classifiers}

Cost(C, h) ≤ Cost(C, B)

B(i, !) =

{
1
2 + γ if ! correct
1
2 − γ if ! wrong

11

Edge-over-random WLC

12

Edge-over-random WLC

• Edge-over-random baseline Q

12

Edge-over-random WLC

• Edge-over-random baseline Q

• B(i, correct) ≥ B(i, wrong) + 2γ

• B(i, ·) is a distribution

12

Edge-over-random WLC

• Many choices for B (only one for binary)

• Edge-over-random baseline Q

• B(i, correct) ≥ B(i, wrong) + 2γ

• B(i, ·) is a distribution

12

Edge-over-random WLC

• Many choices for B (only one for binary)

• Condition with such baseline:

• Edge-over-random baseline Q

• B(i, correct) ≥ B(i, wrong) + 2γ

• B(i, ·) is a distribution

12

Edge-over-random WLC

• Many choices for B (only one for binary)

• Condition with such baseline:

Edge-over-random WLC

• Edge-over-random baseline Q

• B(i, correct) ≥ B(i, wrong) + 2γ

• B(i, ·) is a distribution

12

EOR nearly Ideal

13

EOR nearly Ideal
• Required tasks easy. Only beat random

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

• Not Necessary. For any EOR (B), there is some
boostable space H that does not satisfy it.

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

• Not Necessary. For any EOR (B), there is some
boostable space H that does not satisfy it.

• Relaxed necessity. For any boostable space H,there
is some EOR (B) that H satisfies

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

• Not Necessary. For any EOR (B), there is some
boostable space H that does not satisfy it.

• Relaxed necessity. For any boostable space H,there
is some EOR (B) that H satisfies

• Combine to form single minimal WLC

13

EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

• Not Necessary. For any EOR (B), there is some
boostable space H that does not satisfy it.

• Relaxed necessity. For any boostable space H,there
is some EOR (B) that H satisfies

• Combine to form single minimal WLC

• Necessary and sufficient for boostability

13

Boosting Algorithms

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

• Non-adaptive. Requires knowledge of γ

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

• Non-adaptive. Requires knowledge of γ

• Adaptive algorithm assuming the minimal WLC

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

• Non-adaptive. Requires knowledge of γ

• Adaptive algorithm assuming the minimal WLC

• Based on multiplicative updates, like AdaBoost

14

Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

• Non-adaptive. Requires knowledge of γ

• Adaptive algorithm assuming the minimal WLC

• Based on multiplicative updates, like AdaBoost

• Not optimal, but still provably very efficient

14

Adaptive Algorithm

15

Adaptive Algorithm

• In each round t:

15

Adaptive Algorithm

• In each round t:

• Create cost matrix Ct

15

Adaptive Algorithm

• In each round t:

• Create cost matrix Ct

• Receive weak classifier ht with edge δt

15

Adaptive Algorithm

• In each round t:

• Create cost matrix Ct

• Receive weak classifier ht with edge δt

• Compute weight αt and update ft = ft-1 + αt ht

15

Adaptive Algorithm

• In each round t:

• Create cost matrix Ct

• Receive weak classifier ht with edge δt

• Compute weight αt and update ft = ft-1 + αt ht

Ct+1(i, l) =

{
eft(i,l)−ft(i,yi) if l != yi

−
∑

l′ "=yi
eft(i,l

′)−ft(i,yi) if l = yi

αt = ln
{

1 + δt

1− δt

}
Weight

Cost Matrix

15

Experiments

• Ran adaptive algorithm using minimal WLC

• Compared with AdaBoost.M1, AdaBoost.MH

• Tested on benchmark datasets

• Weak classifiers: bounded size decision trees

16

17

18

Future Work

19

Future Work

• What happens with multi-label / confidence
rated weak classifiers?

19

Future Work

• What happens with multi-label / confidence
rated weak classifiers?

• Consistency of the algorithms.

19

Future Work

• What happens with multi-label / confidence
rated weak classifiers?

• Consistency of the algorithms.

• Extensions to ranking.

19

Thank you

20

