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Goals of Boosting

• Boost simplest weak classifiers

• Use right weak learning condition (WLC)

• Important for generalization error:

• Simple weak classifier may imply less 
overfitting

• Too simple could lead to underfitting

• Theory known for binary, not for multiclass
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This Talk
• Existing frameworks inadequate for multiclass

• Most resulting WLC’s are too weak or too 
strong

• Introduce new framework for multiclass boosting

• Captures the minimal WLC

• Boosting algorithm using the minimal WLC

• Provably drives down error efficiently

• Experiments to complement the theory
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Binary boosting

Condition : êrrd(h) ≤ 1
2 − γ

After T rounds, êrr of maj{h1, . . . , hT } ≤ exp(−Tγ2/2)
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Binary WLC Ideal

• Required tasks easy. Only better than random

• Sufficient. H satisfies binary WLC => H is boostable

• Boostable space:  contains perfect combination

• Necessary. Boostable space satisfies binary WLC

• Effective. Allows efficient boosting algorithm
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• Cost(C, B) =
∑

i E[C(i, B(xi))] =
∑

i
∑
! C(i, l) B(i, !)

• C(i, !): cost of predicting label ! on example i

• Cost(C, h) =
∑

i C(i, h(xi)

• Restriction: Cost (C, h) ≤ Cost (C, B)
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New Framework (simplified)

Parameter:  Fixed baseline B

cost matrix C 

Booster

h ∈ H, h: {Example} ⇒ {Label} 

H = {weak classifiers}

Cost(C, h) ≤ Cost(C, B)
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Binary Boosting

cost matrix C 

Booster

h ∈ H, h: {Example} ⇒ {Label} 

H = {weak classifiers}

Cost(C, h) ≤ Cost(C, B)

B(i, !) =

{
1
2 + γ if ! correct
1
2 − γ if ! wrong
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EOR nearly Ideal
• Required tasks easy. Only beat random

• Sufficient. Satisfying EOR implies boostability

• Effective. Allows efficient boosting

• Not Necessary. For any EOR (B), there is some 
boostable space H that does not satisfy it.

• Relaxed necessity. For any boostable space H,there 
is some EOR (B) that H satisfies

• Combine to form single minimal WLC

• Necessary and sufficient for boostability
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Boosting Algorithms

• Optimally efficient algorithm for any fixed EOR

• Like Boost-by-majority [Freund ‘95]

• Non-adaptive. Requires knowledge of γ

• Adaptive algorithm assuming the minimal WLC

• Based on multiplicative updates, like AdaBoost

• Not optimal, but still provably very efficient
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Adaptive Algorithm

• In each round t:

• Create cost matrix Ct

• Receive weak classifier ht with edge δt

• Compute weight αt and update ft = ft-1 + αt ht

Ct+1(i, l) =

{
eft(i,l)−ft(i,yi) if l != yi

−
∑

l′ "=yi
eft(i,l

′)−ft(i,yi) if l = yi

αt = ln
{

1 + δt

1− δt

}
Weight

Cost Matrix
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Experiments

• Ran adaptive algorithm using minimal WLC

• Compared with AdaBoost.M1, AdaBoost.MH

• Tested on benchmark datasets

• Weak classifiers: bounded size decision trees 

16



17



18



Future Work

19



Future Work

• What happens with multi-label / confidence 
rated weak classifiers?

19



Future Work

• What happens with multi-label / confidence 
rated weak classifiers?

• Consistency of the algorithms.

19



Future Work

• What happens with multi-label / confidence 
rated weak classifiers?

• Consistency of the algorithms.

• Extensions to ranking.
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