A Theory of Multiclass
Boosting

Indraneel Mukherjee*, R. E. Schapire
Princeton University

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn In

Sports

Business

Politics

Wrigley Field prepared for college
football game

Dublin warned over ECB liquidity

Newest senators Coons and
Manchin sworn In

[quuidityj
y n

AN

Business Politics

Sports

Business

Politics

Wrigley Field prepared for college

football game Sports

Dublin warned over ECB liquidity |Bysiness

Newest senators Coons and

Manchin sworn in Politics

weak

classifier

[quuidity]
y n

AN

Business Politics

Wrigley Field prepared for college
football game Sports

Dublin warned over ECB liquidity |Bysiness

Newest senators Coons and —
Manchin sworn in Politics

weak

classifier

[football] + [quuidity] + [senatorsj

AN N AN

Sports Business Business Politics Politics Sports

Goals of Boosting

Goals of Boosting

® Boost simplest weak classifiers

Goals of Boosting

® Boost simplest weak classifiers

® Use right weak learning condition (WLC)

Goals of Boosting

® Boost simplest weak classifiers
® Use right weak learning condition (WLC)

® |Important for generalization error:

Goals of Boosting

® Boost simplest weak classifiers
® Use right weak learning condition (WLC)
® |Important for generalization error:

® Simple weak classifier may imply less
overfitting

Goals of Boosting

® Boost simplest weak classifiers
® Use right weak learning condition (WLC)
® |Important for generalization error:

® Simple weak classifier may imply less
overfitting

® TJoo simple could lead to underfitting

Goals of Boosting

® Boost simplest weak classifiers
® Use right weak learning condition (WLC)
® |Important for generalization error:

® Simple weak classifier may imply less
overfitting

® TJoo simple could lead to underfitting

® Theory known for binary, not for multiclass

This Talk

This Talk

® Existing frameworks inadequate for multiclass

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting

® Captures the minimal WLC

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting
® Captures the minimal WLC

® Boosting algorithm using the minimal WLC

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting
® Captures the minimal WLC
® Boosting algorithm using the minimal WLC

® Provably drives down error efficiently

This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting
® Captures the minimal WLC

® Boosting algorithm using the minimal WLC
® Provably drives down error efficiently

® Experiments to complement the theory

Binary boosting

Binary boosting

Input: (x1,y1) , ..., (Xm, Ym)

Booster # = tweak classifierst

Binary boosting

Input: (x1,y1) , ..., (Xm, Ym)

= tweak classifierss

d | . dm
Booster |

h € #, h:{Example} = {Label}

Binary boosting

Input: (x1,y1) , ..., (Xm, Ym)

= {weak classifierss

dl .y dm
Booster |

h € #, h:{Example} = {Label}

[Condition :"errq(h) < % — j

Binary boosting

Input: (x1,y1) , ..., (Xm, Ym)

= {weak classifierss

dl .y dm
Booster |

h € #, h:{Example} = {Label}

[Condition :errg(h) < 2 — v j Binary WLC

Binary boosting

Input: (x1,y1) , ..., (Xm, Ym)

= tweak classifiers}

dl g coe 9 dm
Booster |

h € #, h:{Example} = {Label}

[Condition :errg(h) < 2 — v j Binary WLC

Final model: (weighted) majority{hi, ..., ht}

Binary boosting

More weight on .
misclassified InPUt‘ (XI,)’I) » ot (Xm’)’m)

examples

dl g coe 9 dm
Booster |

h € #, h:{Example} = {Label}

= tweak classifierss

[Condition :errg(h) < 2 — v j Binary WLC

Final model: (weighted) majority{hi, ..., ht}

Binary boosting

More weight on .
misclassified InPUt‘ (XI,)’I) » ot (Xm’)’m)

examples

Booster I

h € #, h:{Example} = {Label}

= tweak classifiers}

[Condition :errg(h) < 2 — v j Binary WLC

Final model: (weighted) majority{hi, ..., ht}

After T rounds, “err of maj{hy,...,hp} < exp(—T~v*/2)

Binary WLC |deal

Binary WLC |deal

® Required tasks easy. Only better than random

Binary WLC |deal

® Required tasks easy. Only better than random

e Sufficient. # satisfies binary WLC => % is boostable

Binary WLC |deal

® Required tasks easy. Only better than random

e Sufficient. # satisfies binary WLC => % is boostable

® Boostable space: contains perfect combination

Binary WLC |deal

® Required tasks easy. Only better than random

e Sufficient. # satisfies binary WLC => % is boostable

® Boostable space: contains perfect combination

® Necessary. Boostable space satisfies binary VWLC

Binary WLC |deal

® Required tasks easy. Only better than random

e Sufficient. # satisfies binary WLC => % is boostable

® Boostable space: contains perfect combination
® Necessary. Boostable space satisfies binary VWLC

® [Effective.Allows efficient boosting algorithm

Extending to Multiclass

Extending to Multiclass

Input: (x1,Y1) , ..., (Xm, Ym)

Booster # = tweak classifierss

{———

h € %, h:{Example} = {Multiclass Label}

Extending to Multiclass

Input: (x1,Y1) , ..., (Xm, Ym)

Booster # = tweak classifierss

{———

h € %, h:{Example} = {Multiclass Label}

[errg(h) <1— 4 —7 j

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

Extending to Multiclass

Input: (x1,Y1) , ..., (Xm, Ym)

Booster # = tweak classifierss

{———

h € %, h:{Example} = {Multiclass Label}

[errg(h) <1—+ —~ j Too weak

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

Extending to Multiclass

Input: (x1,Y1) , ..., (Xm, Ym)

Booster # = tweak classifierss

{———

h € %, h:{Example} = {Multiclass Label}

[errg(h) <1—+ —~ j Too weak

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

[ér\rd(h)gé—vj

AdaBoost.M| [Freund, Schapire ‘96]

Extending to Multiclass

Input: (x1,y1) , ... , (Xm, Ym)

Booster # = tweak classifierss

{———

h € % h:{Example} = {Multiclass Label}

[errg(h) <1—+ —~ j Too weak

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

[errg(h) < - —~ j Too strong

AdaBoost.M| [Freund, Schapire ‘96]

Reduction to binary

Artificial binary problems

Multiclass

Binary 1 Binary 2 Binary 3

Boosting
Boosting

Classifier1 Classifier2 Classifier3

Reduction to binary

Artificial binary problems

Multiclass

Binary 2 Binary 3

Boosting
Boosting

Classifier1 Classifier2 Classifier3

*One-against-all, all-pairs, ECOC. E.g.

Reduction to binary

Artificial binary problems

Multiclass

Binary 2 Binary 3

Boosting
Boosting

Classifier1 Classifier2 ~ (Classifier3

*One-against-all, all-pairs, ECOC. E.g.
*One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]

Reduction to binary

Artificial binary problems

Multiclass

Binary 2

Boosting
Boosting

Classifier1 Classifier2 ~ (Classifier3

*One-against-all, all-pairs, ECOC. E.g.
*One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
*All-pairs: (AdaBoost.MR)[Freund & Schapire 96, Schapire & Singer ‘99]

Reduction to binary

Artificial binary problems

Multiclass)

Binary 2

Boosting
Boosting

Classifier1 | Classifier2 ~ (Classifier3

*One-against-all, all-pairs, ECOC. E.g.
*One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
*All-pairs: (AdaBoost.MR)[Freund & Schapire 96, Schapire & Singer ‘99]

*Practical, but poorly understood

Reduction to binary

Artificial binary problems

Multiclass)

Binary 2

Boosting
Boosting

Classifier1 | Classifier2 ~ (Classifier3

*One-against-all, all-pairs, ECOC. E.g.
*One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
*All-pairs: (AdaBoost.MR)[Freund & Schapire 96, Schapire & Singer ‘99]

*Practical, but poorly understood
eSometimes too strong

Reduction to binary

Artificial binary problems

Multiclass)

Boosting
Boosting

*One-against-all, all-pairs, ECOC. E.g.
*One-against-all: (AdaBoost.MH)[Schapire & Singer ‘99]
*All-pairs: (AdaBoost.MR)[Freund & Schapire 96, Schapire & Singer ‘99]

*Practical, but poorly understood

eSometimes too strong
*e.g. One-against-all (AdaBoost.MH)

New Framework simpiified)

New Framework simpiified)

® Booster sends cost matrix C, not distribution

New Framework simpiified)

® Booster sends cost matrix C, not distribution

-

_

o C(i, {): cost of predicting label £ on example i

e Cost(C, h) = >=: C(i, h(x;)

~

New Framework simpiified)

® Booster sends cost matrix C, not distribution

-

_

o C(i, {): cost of predicting label £ on example i

e Cost(C, h) = >=: C(i, h(x;)

~

® Perform as well as fixed baseline predictor B

New Framework simpiified)

® Booster sends cost matrix C, not distribution
g

o C(i, {): cost of predicting label £ on example i

e Cost(C, h) = >=: C(i, h(x;)

_

® Perform as well as fixed baseline predictor B

(o B(i, £): prob. with which B predicts / on i
| Cost(C, B) = Y E[C(. Bxq))] = i 32 C(i) BG)

New Framework simpiified)

® Booster sends cost matrix C, not distribution
g

o C(i, {): cost of predicting label £ on example i

e Cost(C, h) = >=: C(i, h(x;)

_

® Perform as well as fixed baseline predictor B

(o B(i, £): prob. with which B predicts / on i
| Cost(C, B) = Y E[C(. Bxq))] = i 32 C(i) BG)
® Restriction: Cost (C, h) = Cost (C, B)

New Framework simpiified)

New Framework simpiified)

Parameter: Fixed baseline B

New Framework simpiified)

Parameter: Fixed baseline B

cost matrix C

—> »
Booster # = weak classifierss
T

h € # h:{Example} = {Label}

10

New Framework simpiified)

Parameter: Fixed baseline B

cost matrix C

—> »
Booster # = weak classifierss
T

h € # h:{Example} = {Label}

[Cost(C, h) < Cost(C, B)]

10

Binary Boosting

(

-

B,) — !% + fff correct
2= if £ wrong

~

J

$ooster

cost matrix C

——>

= tweak classifierst
 —

h € # h:{Example} = {Label}

[Cost(C, h) < Cost(C, Bﬂ

11

Edge-over-random WLC

Edge-over-random WLC

® Edge-over-random baseline Q

Edge-over-random WLC

® Edge-over-random baseline Q

[

e B(i, correct) > B(i, wrong) + 2~

.o B(i, -) is a distribution

\

12

Edge-over-random WLC

® Edge-over-random baseline Q

4)

e B(i, correct) > B(i, wrong) + 2~

.o B(i, -) is a distribution)

® Many choices for B (only one for binary)

Edge-over-random WLC

® Edge-over-random baseline Q

4)

e B(i, correct) > B(i, wrong) + 2~

.o B(i, -) is a distribution)

® Many choices for B (only one for binary)

® Condition with such baseline:

Edge-over-random WLC

® Edge-over-random baseline Q

4)

e B(i, correct) > B(i, wrong) + 2~

.o B(i, -) is a distribution)

® Many choices for B (only one for binary)

® Condition with such baseline:

Edge-over-random WLC

EOR nearly Ideal

EOR nearly ldeal

® Required tasks easy. Only beat random

EOR nearly ldeal

® Required tasks easy. Only beat random

® Sufficient. Satisfying EOR implies boostability

13

EOR nearly ldeal

® Required tasks easy. Only beat random
® Sufficient. Satisfying EOR implies boostability

® FEffective. Allows efficient boosting

13

EOR nearly ldeal

Required tasks easy. Only beat random
Sufficient. Satisfying EOR implies boostability
Effective. Allows efficient boosting

Not Necessary. For any EOR (B), there is some
boostable space # that does not satisfy it.

13

EOR nearly ldeal

Required tasks easy. Only beat random
Sufficient. Satisfying EOR implies boostability
Effective. Allows efficient boosting

Not Necessary. For any EOR (B), there is some
boostable space # that does not satisfy it.

Relaxed necessity. For any boostable space #, there
is some EOR (B) that # satisfies

13

EOR nearly ldeal

Required tasks easy. Only beat random
Sufficient. Satisfying EOR implies boostability
Effective. Allows efficient boosting

Not Necessary. For any EOR (B), there is some
boostable space # that does not satisfy it.

Relaxed necessity. For any boostable space #, there
is some EOR (B) that # satisfies

Combine to form single minimal WLC

13

EOR nearly Ideal

Required tasks easy. Only beat random
Sufficient. Satisfying EOR implies boostability
Effective. Allows efficient boosting

Not Necessary. For any EOR (B), there is some
boostable space # that does not satisfy it.

Relaxed necessity. For any boostable space #, there
is some EOR (B) that # satisfies

Combine to form single minimal WLC

® Necessary and sufficient for boostability

13

Boosting Algorithms

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR

® |ike Boost-by-majority [Freund ‘95]

14

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR
® |ike Boost-by-majority [Freund ‘95]

® Non-adaptive. Requires knowledge of y

14

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR
® |ike Boost-by-majority [Freund ‘95]
® Non-adaptive. Requires knowledge of y

® Adaptive algorithm assuming the minimal WLC

14

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR
® |ike Boost-by-majority [Freund ‘95]
® Non-adaptive. Requires knowledge of y

® Adaptive algorithm assuming the minimal WLC

® Based on multiplicative updates, like AdaBoost

14

Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR
® |ike Boost-by-majority [Freund ‘95]
® Non-adaptive. Requires knowledge of y
® Adaptive algorithm assuming the minimal WLC
® Based on multiplicative updates, like AdaBoost

® Not optimal, but still provably very efficient

14

Adaptive Algorithm

Adaptive Algorithm

® |n each round t:

Adaptive Algorithm

® |n each round t:

® (Create cost matrix C;

15

Adaptive Algorithm

® |n each round t:

® (Create cost matrix C;

® Receive weak classifier h; with edge 0

15

Adaptive Algorithm

® |n each round t:

® Create cost matrix C;
® Receive weak classifier h; with edge 0

® Compute weight O; and update f; = f..;1 + ; h;

15

Adaptive Algorithm

® |n each round t:

® Create cost matrix C;
® Receive weak classifier h; with edge 0

® Compute weight O; and update f; = f..;1 + ; h;

Weight [a —n{ }]

s

Cost Matrix Ciy1(7,1) = {
"

— > iy, €T RGV) i =y,

Experiments

Ran adaptive algorithm using minimal WLC
Compared with AdaBoost.M|,AdaBoost.MH
Tested on benchmark datasets

Weak classifiers: bounded size decision trees

16

error

error

0.35
I

02 03 04 05

0.1

connectd
Ao oL,
LN 5
LY
LY . - @
L o
» Ts)
-.‘ =
=+
‘h." 'l
o)
o
[| | | [[[| |
5 20 50 200 1000
pendigits =
{1 i
]
(=]
=
(=1
! =
R =
%
\ .
- /ﬁ
I T T T T T | =
5 10 20 50 200 500

forest

20 30 200

tree sjze

1000

1.0

00 02 04 06 08

016

0.12

letter

— MNew Method
m e Ew MH
- = M1

satimage

3 10 20

50

17

error

error

0.36 0.40

0.32

0.2 03 04 05

0.1

connectd

1.0

0.8

0.6

=
(=

| 1 1 1
o 100 200 300 400 3500

pendigits

|';

0.55

0.50

045

=
s
I I I I I I =

0 100 200 300 400 300

0.6

| | I I I |
0 100

poker

200 300 400 300

015 020 025

0.10

0 100 200 300 400 500

rounds of boosting

letter

— New Method
MH
- = M

| I I I I |
0 100 200 300 400 300

satimage

I I I I I I
0 100 200 300 400 300

18

Future Work

Future Work

® What happens with multi-label / confidence
rated weak classifiers!?

19

Future Work

® What happens with multi-label / confidence
rated weak classifiers!?

® Consistency of the algorithms.

19

Future Work

® What happens with multi-label / confidence
rated weak classifiers!?

® Consistency of the algorithms.

® Extensions to ranking.

19

Thank you

