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® Boost simplest weak classifiers
® Use right weak learning condition (WLC)
® |Important for generalization error:

® Simple weak classifier may imply less
overfitting

® TJoo simple could lead to underfitting

® Theory known for binary, not for multiclass
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This Talk

® Existing frameworks inadequate for multiclass

® Most resulting WLC’s are too weak or too
strong

® |ntroduce new framework for multiclass boosting
® Captures the minimal WLC

® Boosting algorithm using the minimal WLC
® Provably drives down error efficiently

® Experiments to complement the theory
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Binary boosting

More weight on .
misclassified InPUt‘ (XI,)’I) » ot (Xm’ )’m)

examples

Booster I

h € #, h:{Example} = {Label}

# = tweak classifiers}

[ Condition :errg(h) < 2 — v j Binary WLC

Final model: (weighted) majority{hi, ..., ht}

After T rounds, “err of maj{hy,...,hp} < exp(—T~v*/2)
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Binary WLC |deal

® Required tasks easy. Only better than random

e Sufficient. # satisfies binary WLC => % is boostable

® Boostable space: contains perfect combination
® Necessary. Boostable space satisfies binary VWLC

® [Effective.Allows efficient boosting algorithm
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Extending to Multiclass

Input: (x1,y1) , ... , (Xm, Ym)

Booster # = tweak classifierss

{———

h € % h:{Example} = {Multiclass Label}

[ errg(h) <1—+ —~ j Too weak

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

[ errg(h) < - —~ j Too strong

AdaBoost.M| [Freund, Schapire ‘96]
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*Practical, but poorly understood

eSometimes too strong
*e.g. One-against-all (AdaBoost.MH)
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® Booster sends cost matrix C, not distribution
g

o C(i, {): cost of predicting label £ on example i

e Cost(C, h) = >=: C(i, h(x;)

\_

® Perform as well as fixed baseline predictor B

(o B(i, £): prob. with which B predicts / on i
| Cost(C, B) = Y E[C(. Bxq))] = i 32 C(i ) BG )
® Restriction: Cost (C, h) = Cost (C, B)
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New Framework simpiified)

Parameter: Fixed baseline B

cost matrix C

—> »
Booster # = weak classifierss
T

h € # h:{Example} = {Label}

[Cost(C, h) < Cost(C, B)]
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Binary Boosting
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h € # h:{Example} = {Label}

[Cost(C, h) < Cost(C, Bﬂ
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® Edge-over-random baseline Q

4 )

e B(i, correct) > B(i, wrong) + 2~

.o B(i, -) is a distribution )

® Many choices for B (only one for binary)

® Condition with such baseline:

Edge-over-random WLC
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EOR nearly Ideal

Required tasks easy. Only beat random
Sufficient. Satisfying EOR implies boostability
Effective. Allows efficient boosting

Not Necessary. For any EOR (B), there is some
boostable space # that does not satisfy it.

Relaxed necessity. For any boostable space #, there
is some EOR (B) that # satisfies

Combine to form single minimal WLC

® Necessary and sufficient for boostability

13
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Boosting Algorithms

® Optimally efficient algorithm for any fixed EOR
® |ike Boost-by-majority [Freund ‘95]
® Non-adaptive. Requires knowledge of y
® Adaptive algorithm assuming the minimal WLC
® Based on multiplicative updates, like AdaBoost

® Not optimal, but still provably very efficient

14



Adaptive Algorithm




Adaptive Algorithm

® |n each round t:




Adaptive Algorithm

® |n each round t:

® (Create cost matrix C;

15



Adaptive Algorithm

® |n each round t:

® (Create cost matrix C;

® Receive weak classifier h; with edge 0

15



Adaptive Algorithm

® |n each round t:

® Create cost matrix C;
® Receive weak classifier h; with edge 0

® Compute weight O; and update f; = f..;1 + ; h;

15



Adaptive Algorithm

® |n each round t:

® Create cost matrix C;
® Receive weak classifier h; with edge 0

® Compute weight O; and update f; = f..;1 + ; h;

Weight [a —n{ }]

s

Cost Matrix Ciy1(7,1) = {
"

— > iy, €T RGV) i =y,




Experiments

Ran adaptive algorithm using minimal WLC
Compared with AdaBoost.M|,AdaBoost.MH
Tested on benchmark datasets

Weak classifiers: bounded size decision trees

16
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Future Work

® What happens with multi-label / confidence
rated weak classifiers!?

® Consistency of the algorithms.

® Extensions to ranking.
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