A Theory of Multiclass Boosting

Indraneel Mukherjee*, R. E. Schapire
Princeton University

Wrigley Field prepared for college football game

Sports

Dublin warned over ECB liquidity Business
Newest senators Coons and
Manchin sworn in
Politics

Wrigley Field prepared for college
football game

Sports

Dublin warned over ECB liquidity Business
Newest senators Coons and Manchin sworn in

Wrigley Field prepared for college football game

Sports

Dublin warned over ECB liquidity Business
Newest senators Coons and Manchin sworn in

Politics

Wrigley Field prepared for college football game

Sports

Dublin warned over ECB liquidity Business
Newest senators Coons and Manchin sworn in

Politics

Goals of Boosting

Goals of Boosting

- Boost simplest weak classifiers

Goals of Boosting

- Boost simplest weak classifiers
- Use right weak learning condition (WLC)

Goals of Boosting

- Boost simplest weak classifiers
- Use right weak learning condition (WLC)
- Important for generalization error:

Goals of Boosting

- Boost simplest weak classifiers
- Use right weak learning condition (WLC)
- Important for generalization error:
- Simple weak classifier may imply less overfitting

Goals of Boosting

- Boost simplest weak classifiers
- Use right weak learning condition (WLC)
- Important for generalization error:
- Simple weak classifier may imply less overfitting
- Too simple could lead to underfitting

Goals of Boosting

- Boost simplest weak classifiers
- Use right weak learning condition (WLC)
- Important for generalization error:
- Simple weak classifier may imply less overfitting
- Too simple could lead to underfitting
- Theory known for binary, not for multiclass

This Talk

This Talk

- Existing frameworks inadequate for multiclass

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong
- Introduce new framework for multiclass boosting

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong
- Introduce new framework for multiclass boosting
- Captures the minimal WLC

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong
- Introduce new framework for multiclass boosting
- Captures the minimal WLC
- Boosting algorithm using the minimal WLC

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong
- Introduce new framework for multiclass boosting
- Captures the minimal WLC
- Boosting algorithm using the minimal WLC
- Provably drives down error efficiently

This Talk

- Existing frameworks inadequate for multiclass
- Most resulting WLC's are too weak or too strong
- Introduce new framework for multiclass boosting
- Captures the minimal WLC
- Boosting algorithm using the minimal WLC
- Provably drives down error efficiently
- Experiments to complement the theory

Binary boosting

Binary boosting

Input: $\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$2300 s t e r$

$$
\nRightarrow=\{m e a k \text { classifiers }\}
$$

Binary boosting

Input: $\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$$
d_{1}, \ldots, d_{m}
$$

$2300 s t e r$

$$
\neq\{\text { meak classifiers }\}
$$

$h \in \mathcal{H}, h:\{$ Example $\} \Rightarrow\{$ Label $\}$

Binary boosting

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{I}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$$
d_{1}, \ldots, d_{m}
$$

$2300 s t e r$

$$
\neq\{\text { meak classifiers }\}
$$

$\mathrm{h} \in \mathcal{H}, \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Label $\}$
Condition : $\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{h}) \leq \frac{1}{2}-\gamma$

Binary boosting

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{I}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$$
\mathrm{d}_{\mathrm{l}}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$

$2300 s t e r$

$$
\neq\{\text { meak classifiers }\}
$$

$\mathrm{h} \in \mathcal{H}, \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Label $\}$
Condition : $\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{h}) \leq \frac{1}{2}-\gamma$
Binary WLC

Binary boosting

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$$
\mathrm{d}_{\mathrm{l}}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$

$2300 s t e r$
$\#=\{$ meak classifiers $\}$
$\mathrm{h} \in \mathbb{H}, \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Label $\}$

Condition : $\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{h}) \leq \frac{1}{2}-\gamma$

Binary WLC

Final model: (weighted) majority\{$\left\{h_{1}, \ldots, h_{\top}\right\}$

Binary boosting

More weight on misclassified examples

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$$
\mathrm{d}_{\mathrm{l}}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$

2300ster

$$
\mathrm{h} \in \mathcal{H}, \mathrm{~h}:\{\text { Example }\} \Rightarrow\{\text { Label }\}
$$

$$
\text { Condition : } \widehat{\operatorname{err}}_{\mathbf{d}}(\mathrm{h}) \leq \frac{1}{2}-\gamma
$$

Binary WLC

Final model: (weighted) majority\{ $\left.\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\top}\right\}$

Binary boosting

More weight on misclassified examples

Input: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$

$$
d_{1}, \ldots, d_{m}
$$

$2300 s t e r$
$\#=\{$ meak classifiers $\}$
$h \in \neq h:\{$ Example $\} \Rightarrow\{$ Label $\}$

$$
\text { Condition : } \widehat{\operatorname{err}}_{\mathbf{d}}(\mathrm{h}) \leq \frac{1}{2}-\gamma
$$

Binary WLC

Final model: (weighted) majority $\left\{\mathrm{h}_{1}, \ldots, \mathrm{~h}_{T}\right\}$
After T rounds, $\widehat{\operatorname{err}}$ of $\operatorname{maj}\left\{\mathrm{h}_{1}, \ldots, \mathrm{~h}_{T}\right\} \leq \exp \left(-T \gamma^{2} / 2\right)$

Binary WLC Ideal

Binary WLC Ideal

- Required tasks easy. Only better than random

Binary WLC Ideal

- Required tasks easy. Only better than random
- Sufficient. \# satisfies binary WLC => \# is boostable

Binary WLC Ideal

- Required tasks easy. Only better than random
- Sufficient. \# satisfies binary WLC => \# is boostable
- Boostable space: contains perfect combination

Binary WLC Ideal

- Required tasks easy. Only better than random
- Sufficient. \# satisfies binary WLC => \# is boostable
- Boostable space: contains perfect combination
- Necessary. Boostable space satisfies binary WLC

Binary WLC Ideal

- Required tasks easy. Only better than random
- Sufficient. \# satisfies binary WLC => \# is boostable
- Boostable space: contains perfect combination
- Necessary. Boostable space satisfies binary WLC
- Effective.Allows efficient boosting algorithm

Extending to Multiclass

Extending to Multiclass

Input: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$

$2300 s t e r$

$$
\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$ $\nRightarrow=\{$ weak classifiers $\}$

$\mathrm{h} \in \mathcal{H}, \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Multiclass Label $\}$

Extending to Multiclass

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$

$2300 s t e r$

$$
\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$ $\nRightarrow=\{$ meak elassifiers\}

$\mathrm{h} \in \not, \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Multiclass Label $\}$

$$
\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{~h}) \leq 1-\frac{1}{k}-\gamma
$$

SAMME [Zhu, Zou, Rosset, Hastie "09]

Extending to Multiclass

Input: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
$2300 s t e r$

$$
\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$ $\nRightarrow=\{$ meak elassifiers\}

$h \in \notin, h:\{$ Example $\} \Rightarrow\{$ Multiclass Label $\}$

$$
\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{~h}) \leq 1-\frac{1}{k}-\gamma
$$

Too weak
SAMME [Zhu, Zou, Rosset, Hastie "09]

Extending to Multiclass

Input: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
$2300 s t e r$

$$
\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$

$\#=\{$ meak classifiers $\}$

$\mathrm{h} \in \notin \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Multiclass Label $\}$
$\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{h}) \leq 1-\frac{1}{k}-\gamma$
Too weak
SAMME [Zhu, Zou, Rosset, Hastie ‘09]

$$
\widehat{\operatorname{errr}}_{\mathrm{d}}(\mathrm{~h}) \leq \frac{1}{2}-\gamma
$$

AdaBoost.MI [Freund, Schapire '96]

Extending to Multiclass

Input: $\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}\right), \ldots,\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$
$2300 s t e r$

$$
\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}
$$

$\#=\{$ meak classifiers $\}$

$\mathrm{h} \in \notin \mathrm{h}:\{$ Example $\} \Rightarrow\{$ Multiclass Label $\}$

$$
\widehat{\operatorname{err}}_{\mathrm{d}}(\mathrm{~h}) \leq 1-\frac{1}{k}-\gamma
$$

SAMME [Zhu, Zou, Rosset, Hastie ‘09]

$$
\widehat{\operatorname{errr}}_{\mathrm{d}}(\mathrm{~h}) \leq \frac{1}{2}-\gamma
$$

AdaBoost.MI [Freund, Schapire '96]

Too weak

Too strong

Reduction to binary

Artificial binary problems

Reduction to binary

Artificial binary problems

- One-against-all, all-pairs, ECOC. E.g.

Reduction to binary

- One-against-all, all-pairs, ECOC. E.g.
- One-against-all: (AdaBoost.MH)[Schapire \& Singer ‘99]

Reduction to binary

- One-against-all, all-pairs, ECOC. E.g.
- One-against-all: (AdaBoost.MH)[Schapire \& Singer ‘99]
-All-pairs: (AdaBoost.MR)[Freund \& Schapire '96, Schapire \& Singer '99]

Reduction to binary

- One-against-all, all-pairs, ECOC. E.g.
- One-against-all: (AdaBoost.MH)[Schapire \& Singer ‘99]
-All-pairs: (AdaBoost.MR)[Freund \& Schapire '96, Schapire \& Singer '99]
- Practical, but poorly understood

Reduction to binary

- One-against-all, all-pairs, ECOC. E.g.
- One-against-all: (AdaBoost.MH)[Schapire \& Singer ‘99]
-All-pairs: (AdaBoost.MR)[Freund \& Schapire '96, Schapire \& Singer ‘99]
- Practical, but poorly understood
- Sometimes too strong

Reduction to binary

- One-against-all, all-pairs, ECOC. E.g.
- One-against-all: (AdaBoost.MH)[Schapire \& Singer ‘99]
-All-pairs: (AdaBoost.MR)[Freund \& Schapire '96, Schapire \& Singer '99]
-Practical, but poorly understood
- Sometimes too strong
-e.g. One-against-all (AdaBoost.MH)

New Framework (simplified)

New Framework (simplified)

- Booster sends cost matrix C, not distribution

New Framework (simplified)

- Booster sends cost matrix C, not distribution
- $\mathrm{C}(\mathrm{i}, \ell)$: cost of predicting label ℓ on example i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{h})=\sum_{\mathrm{i}} \mathrm{C}\left(\mathrm{i}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right.$

New Framework (simplified)

- Booster sends cost matrix C, not distribution
- $\mathrm{C}(\mathrm{i}, \ell)$: cost of predicting label ℓ on example i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{h})=\sum_{\mathrm{i}} \mathrm{C}\left(\mathrm{i}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right.$
- Perform as well as fixed baseline predictor B

New Framework (simplified)

- Booster sends cost matrix C, not distribution
- $\mathrm{C}(\mathrm{i}, \ell)$: cost of predicting label ℓ on example i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{h})=\sum_{\mathrm{i}} \mathrm{C}\left(\mathrm{i}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right.$
- Perform as well as fixed baseline predictor B
- B(i, $\ell)$: prob. with which B predicts ℓ on i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{B})=\sum_{\mathrm{i}} \mathbb{E}\left[\mathrm{C}\left(\mathrm{i}, \mathrm{B}\left(\mathrm{x}_{\mathrm{i}}\right)\right)\right]=\sum_{\mathrm{i}} \sum_{\ell} \mathrm{C}(\mathrm{i}, \mathrm{I}) \mathrm{B}(\mathrm{i}, \ell)$

New Framework (simplified)

- Booster sends cost matrix C, not distribution
- $\mathrm{C}(\mathrm{i}, \ell)$: cost of predicting label ℓ on example i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{h})=\sum_{\mathrm{i}} \mathrm{C}\left(\mathrm{i}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right.$
- Perform as well as fixed baseline predictor B
- B(i, $\ell)$: prob. with which B predicts ℓ on i
- $\operatorname{Cost}(\mathrm{C}, \mathrm{B})=\sum_{\mathrm{i}} \mathbb{E}\left[\mathrm{C}\left(\mathrm{i}, \mathrm{B}\left(\mathrm{x}_{\mathrm{i}}\right)\right)\right]=\sum_{\mathrm{i}} \sum_{\ell} \mathrm{C}(\mathrm{i}, \mathrm{I}) \mathrm{B}(\mathrm{i}, \ell)$
- Restriction: Cost (C, h) $\leq \operatorname{Cost}(\mathrm{C}, \mathrm{B})$

New Framework (simplified)

New Framework (simplified)

Parameter: Fixed baseline B

New Framework (simplified)

Parameter: Fixed baseline B

New Framework (simplified)

Parameter: Fixed baseline B

$2300 s t e r$

$$
\nRightarrow=\{\text { meak classifiers }\}
$$

$h \in \notin, h:\{$ Example $\} \Rightarrow\{$ Label $\}$

$$
\operatorname{Cost}(\mathrm{C}, \mathrm{~h}) \leq \operatorname{Cost}(\mathrm{C}, \mathrm{~B})
$$

Binary Boosting

$$
\mathrm{B}(\mathrm{i}, \ell)= \begin{cases}\frac{1}{2}+\gamma & \text { if } \ell \text { correct } \\ \frac{1}{2}-\gamma & \text { if } \ell \text { wrong }\end{cases}
$$

cost matrix C
$2300 s t e r$

$\nRightarrow=\{$ meak classifiers $\}$

$h \in \notin, h:\{$ Example $\} \Rightarrow\{$ Label $\}$
$\operatorname{Cost}(\mathrm{C}, \mathrm{h}) \leq \operatorname{Cost}(\mathrm{C}, \mathrm{B})$

Edge-over-random WLC

Edge-over-random WLC

- Edge-over-random baseline Q

Edge-over-random WLC

- Edge-over-random baseline Q
- $\mathrm{B}(\mathrm{i}$, correct $) \geq \mathrm{B}(\mathrm{i}$, wrong $)+2 \gamma$
- $\mathrm{B}(\mathrm{i}, \cdot)$ is a distribution

Edge-over-random WLC

- Edge-over-random baseline Q
- $\mathrm{B}(\mathrm{i}$, correct $) \geq \mathrm{B}(\mathrm{i}$, wrong $)+2 \gamma$
- $\mathrm{B}(\mathrm{i}, \cdot)$ is a distribution
- Many choices for B (only one for binary)

Edge-over-random WLC

- Edge-over-random baseline Q
- $\mathrm{B}(\mathrm{i}$, correct $) \geq \mathrm{B}(\mathrm{i}$, wrong $)+2 \gamma$
- $\mathrm{B}(\mathrm{i}, \cdot)$ is a distribution
- Many choices for B (only one for binary)
- Condition with such baseline:

Edge-over-random WLC

- Edge-over-random baseline Q
- $\mathrm{B}(\mathrm{i}$, correct $) \geq \mathrm{B}(\mathrm{i}$, wrong $)+2 \gamma$
- $\mathrm{B}(\mathrm{i}, \cdot)$ is a distribution
- Many choices for B (only one for binary)
- Condition with such baseline:

Edge-over-random WLC

EOR nearly Ideal

EOR nearly Ideal

- Required tasks easy. Only beat random

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability
- Effective. Allows efficient boosting

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability
- Effective. Allows efficient boosting
- Not Necessary. For any EOR (B), there is some boostable space $\not \mathbb{H}^{4}$ that does not satisfy it.

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability
- Effective. Allows efficient boosting
- Not Necessary. For any EOR (B), there is some boostable space \nRightarrow that does not satisfy it.
- Relaxed necessity. For any boostable space \#, there is some EOR (B) that \# satisfies

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability
- Effective. Allows efficient boosting
- Not Necessary. For any EOR (B), there is some boostable space $\not \mathbb{H}^{4}$ that does not satisfy it.
- Relaxed necessity. For any boostable space \#,there is some EOR (B) that \# satisfies
- Combine to form single minimal WLC

EOR nearly Ideal

- Required tasks easy. Only beat random
- Sufficient. Satisfying EOR implies boostability
- Effective. Allows efficient boosting
- Not Necessary. For any EOR (B), there is some boostable space \# that does not satisfy it.
- Relaxed necessity. For any boostable space \#,there is some EOR (B) that \# satisfies
- Combine to form single minimal WLC
- Necessary and sufficient for boostability

Boosting Algorithms

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR
- Like Boost-by-majority [Freund '95]

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR
- Like Boost-by-majority [Freund '95]
- Non-adaptive. Requires knowledge of γ

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR
- Like Boost-by-majority [Freund '95]
- Non-adaptive. Requires knowledge of γ
- Adaptive algorithm assuming the minimal WLC

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR
- Like Boost-by-majority [Freund '95]
- Non-adaptive. Requires knowledge of γ
- Adaptive algorithm assuming the minimal WLC
- Based on multiplicative updates, like AdaBoost

Boosting Algorithms

- Optimally efficient algorithm for any fixed EOR
- Like Boost-by-majority [Freund '95]
- Non-adaptive. Requires knowledge of γ
- Adaptive algorithm assuming the minimal WLC
- Based on multiplicative updates, like AdaBoost
- Not optimal, but still provably very efficient

Adaptive Algorithm

Adaptive Algorithm

- In each round t :

Adaptive Algorithm

- In each round t :
- Create cost matrix C_{t}

Adaptive Algorithm

- In each round t :
- Create cost matrix C_{t}
- Receive weak classifier h_{t} with edge δ_{t}

Adaptive Algorithm

- In each round t :
- Create cost matrix C_{t}
- Receive weak classifier h_{t} with edge δ_{t}
- Compute weight α_{t} and update $f_{t}=f_{t-1}+\alpha_{t} h_{t}$

Adaptive Algorithm

- In each round t :
- Create cost matrix C_{t}
- Receive weak classifier h_{t} with edge δ_{t}
- Compute weight α_{t} and update $f_{t}=f_{t-1}+\alpha_{t} h_{t}$

Weight

$$
\alpha_{t}=\ln \left\{\frac{1+\delta_{t}}{1-\delta_{t}}\right\}
$$

Cost Matrix $\quad C_{t+1}(i, l)= \begin{cases}e^{f_{t}(i, l)-f_{t}\left(i, y_{i}\right)} & \text { if } l \neq y_{i} \\ -\sum_{l^{\prime} \neq y_{i}} e^{f_{t}\left(i, l^{\prime}\right)-f_{t}\left(i, y_{i}\right)} & \text { if } l=y_{i}\end{cases}$

Experiments

- Ran adaptive algorithm using minimal WLC
- Compared with AdaBoost.MI,AdaBoost.MH
- Tested on benchmark datasets
- Weak classifiers: bounded size decision trees
connect4

forest

pendigits

tree size

rounds of boosting

Future Work

Future Work

- What happens with multi-label / confidence rated weak classifiers?

Future Work

- What happens with multi-label / confidence rated weak classifiers?
- Consistency of the algorithms.

Future Work

- What happens with multi-label / confidence rated weak classifiers?
- Consistency of the algorithms.
- Extensions to ranking.

Thank you

