On the Convexity of Latent Social Network Inference NIPS 2010

Seth A. Myers* Jure Leskovec †

Stanford University

*Institute for Computational and Mathematical Engineering

[†]Computer Science

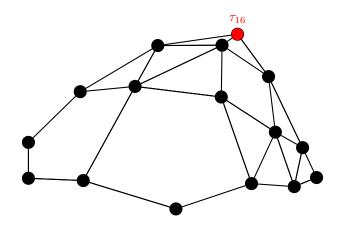
December 8, 2010 - W89

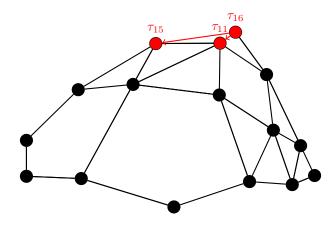
Motivating Problem

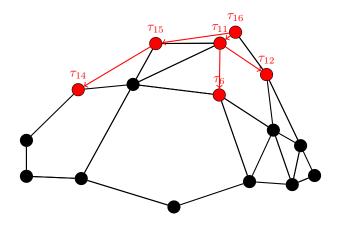
Many real world social networks are difficult to observe. For example:

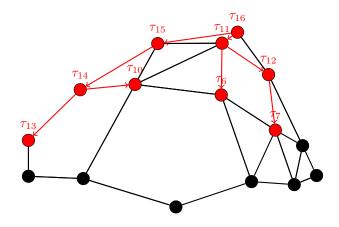
- The sexual relationship network of a population.
- People are not forthcoming with their sexual history.
- Accurately identifying network edges is difficult.
- But we can observe diffusive processes over the network
 - STD's propagate through sexual relationships
 - Observing when people become infected provides insight into the network.

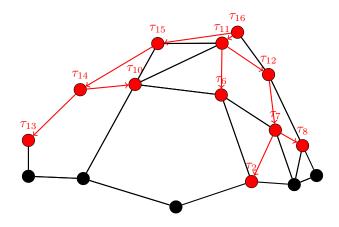
- An unobservable social network of influence interconnects nodes.
- Diffusive processes can be observed
 - Information cascades
 - Disease outbreaks.
- We observe infection times of nodes, and infer the social network.

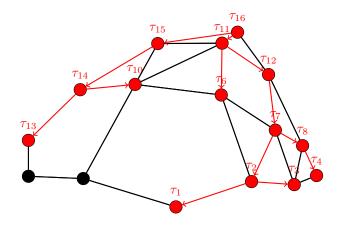


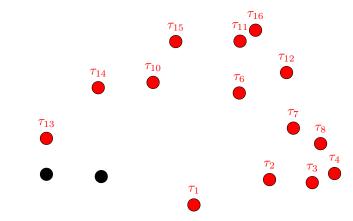






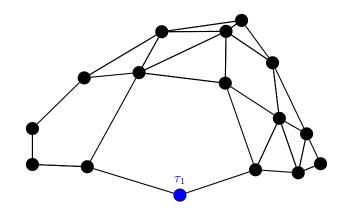




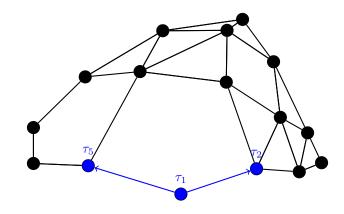


$$1^{st}$$
 Cascade: $c_1 = \{\tau_1, \tau_2, ...\}$

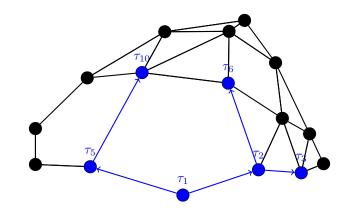
Example:



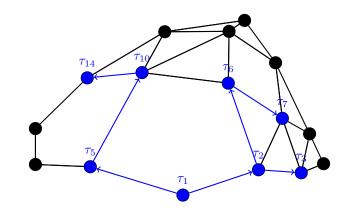
Example:



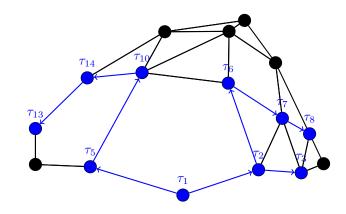
Example:



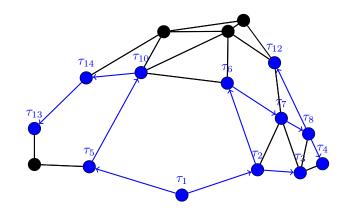
Example:



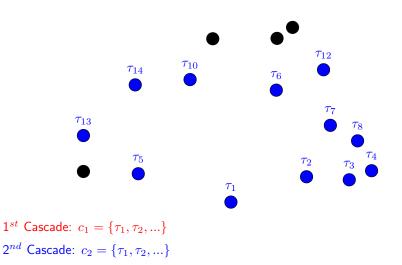
Example:



Example:



 1^{st} Cascade: $c_1 = \{\tau_1, \tau_2, ...\}$



	Disease Spread	Viral Marketing
Process	Infection spreads	People recommend
	between people	products to others
We observe	When people	When people buy
	become infected	products
We do not	Who infected them	Who influenced them
observe		

	Disease Spread	Viral Marketing
Process	Infection spreads	People recommend
	between people	products to others
We observe	When people	When people buy
	become infected	products
We do not	Who infected them	Who influenced them
observe		

Can we infer who infected who?

Our Approach

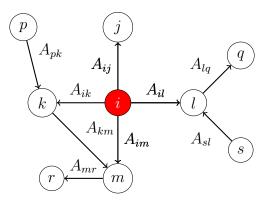
- Given:
 - A set of cascades.
- Goal:
 - Infer the network over which the cascades spread i.e it's adjacency matrix *A*.
 - A_{ij} is the probability of *i* infecting *j*.
- Our approach.
 - **1** Define a probabilistic model for cascade propagation.
 - 2 Find the likelihood function of observed cascades
 - **3** Turn likelihood maximization into a series of convex subproblems.
 - Generalize method to handle sparse networks.

Note: we learn both the structure of the network and the edge weights that model infection probabilities

Myers (Stanford)

Convex Social Network Inference

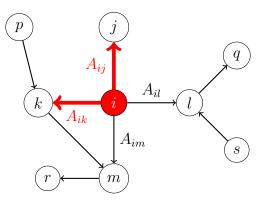
The Cascade Model



1 Adjacency matrix A defines the influence network.

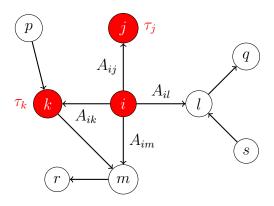
Node i is initially infected.

The Cascade Model



2 Infected node *i* infects each neighbor *j* with probability A_{ij} .

The Cascade Model



3 The incubation time of each new infection is sampled from known density w(t).

$$\tau_j = \tau_i + \Delta t_j$$
$$\Delta t_j \sim w(t)$$

Myers (Stanford)

Convex Social Network Inference

The Likelihood Function

- For a given cascade c, we observe the infection time τ_i^c of each node i.
- Then the Likelihood is:

$$L(j \text{ infected } i) = A_{ji} \cdot w(\tau_i^c - \tau_j^c).$$
$$L(i \text{ infected in } c) = 1 - \prod_{j;\tau_j^c < \tau_i^c} \left[1 - A_{ji} \cdot w(\tau_i^c - \tau_j^c) \right]$$

If i is not infected $(\tau_i^c = \infty)$:

$$L(i \text{ never infected in } c) = \prod_{j;\tau_j^c < \infty} (1 - A_{ji}).$$

The Likelihood Function

For all cascades \ensuremath{C} , the likelihood function is

$$L(A;C) = \prod_{c \in C} \left[\prod_{i;\tau_i^c < \infty} L(i \text{ infected in } c) \times \prod_{i;\tau_i^c = \infty} L(i \text{ never infected in } c) \right]$$

$$\uparrow \qquad \uparrow$$
All nodes infected by c
All nodes not infected by c

To find A, we maximize the likelihood:

$$\min_{A} -\log \left(L(A;C) \right)$$

subject to
$$0 \le A_{ij} \le 1 \ \forall \ i, j.$$

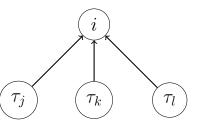
-

- Maximizing the likelihood is non-convex.
- We derive an equivalent convex problem.
 - **1** Break the problem down into N independent sub problems.
 - 2 Add parameters to create a geometric program.
 - **3** Convert geometric program into convex program.

Convexity: Subproblems

- All infections occur independently.
- The likelihood of infection depends only on node's inbound edges.
- We can maximize the likelihood of each node independently
 - N subproblems with N-1 parameters.

It does not matter how other nodes become infected.



- We treat L(i infected in c) as an independent parameter
 \$\gamma_c^{(i)}\$:
 - $$\begin{split} L_i(A;C) &= \prod_{c:\tau_i^c < \infty} L(i \text{ infected in } c) \times \prod_{c:\tau_i^c = \infty} L(i \text{ never infected in } c). \\ &\uparrow &\uparrow \\ \textbf{Cascades that infected } i & \textbf{Cascades that did not infect } i \end{split}$$
- We constrain $\gamma_c^{(i)}$:

$$\gamma_c^{(i)} \leq L(i \text{ infected in } c).$$

- We treat L(i infected in c) as an independent parameter
 \$\gamma_c^{(i)}\$:
 - $L_i(\gamma^{(i)}, A; C) = \prod_{c; \tau_i^c < \infty} \qquad \gamma_c^{(i)}$

Cascades that infected \boldsymbol{i}

↑

 $\times \prod_{c;\tau_i^c = \infty} L(i \text{ never infected in } c).$ \uparrow Cascades that did not infect *i*

• We constrain $\gamma_c^{(i)}$:

$$\gamma_c^{(i)} \leq L(i \text{ infected in } c).$$

Change of variables:

$$\hat{\gamma}_c^{(i)} = \log \gamma_c^{(i)}$$
 and $\hat{B}_{ji} = \log(1 - A_{ji})$

Result is a convex program:

Optimal network guaranteed!

$$\begin{split} \min_{\hat{\gamma}_c, \hat{B}(:,i)} \sum_{c \in C; \tau_i^c < \infty} -\hat{\gamma}_c - \sum_{c \in C; \tau_i^c = \infty} \sum_{j \in C; \tau_j^c < \infty} \hat{B}_{ji} \\ & \text{subject to} \\ \hat{B}_{ji} \leq 0 \,\forall \, j \\ \hat{\gamma}_c \leq 0 \,\forall \, c \\ \\ \log \left[\exp \hat{\gamma}_c + \prod_{j; \tau_j \leq \tau_i} \left(1 - w_j^c + w_j^c \exp \hat{B}_{ji} \right) \right] \leq 0 \,\forall \, c. \end{split}$$

Myers (Stanford)

Convex Social Network Inference

Network Sparsity

- Social networks are almost always sparse.
 - Most pairs of people are not friends/connected.
- The maximum likelihood estimation is almost never sparse.
- The l_1 penalty function ruins convexity.
- We propose a new penalty function:

$$\sum_{j} \frac{1}{1 - A_{ji}}$$

Convexity is preserved.

Sparsity is induced.

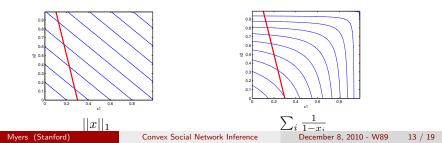
Network Sparsity

Why does this sparsity penalty function work?
 The l₁ penalty comes from the relaxation of

$$\min_{x} ||x||_{0}$$

s.t. $Ax = b$.

Often, the l_1 and l_0 norms intersect the constraints at the same place.



Experimental Setup

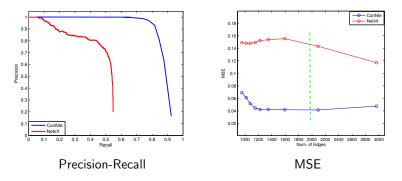
Evaluation Metric:

- The precision and recall of inferred edges.
- The mean square error (MSE) of edge weights (infection probabilities).
- Baseline Netinf¹
 - An approximation algorithm based on submodular optimization.
 - Assumes all infection probabilities are the same.

¹Gomez-Rodriguez, et al; KDD '10

Experiments: Synthetic Network, Synthetic Cascades

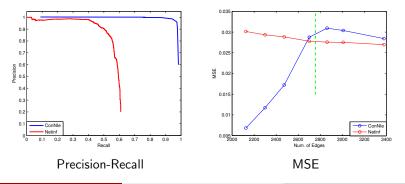
- **1** Network: Scale-free Network of N = 500 nodes with M = 2000 edges
- 2 Infection probabilities: uniform random
- 3 Incubation time model: Power-law: $w(t) \sim t^{-2}$
- 4 Generated cascades until 99% of all edges propagated an infection



Myers (Stanford)

Experiments: Real Network, Synthetic Cascades

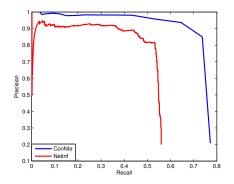
- **1** Network: Real email network, N = 593 nodes and M = 2824 edges
- 2 Infection probabilities: based on volume of emails
- 3 Incubation time model: Power-law: $w(t) \sim t^{-2}$
- 4 Generated cascades until 99% of all edges propagated an infection



Myers (Stanford)

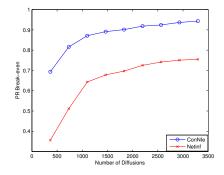
Experiments: Real Network, Real Cascades

- **1** Network: Recommendation network, N = 275 and M = 1522
- 2 Infection probabilities: Real
- 3 Incubation time model: Observed to be Power-law
- 4 Inferring from 625 recommendation cascades.
- Each product is a different cascade
- It is known when one user buys product on recommendation of another user
- Using product purchase times, we infer recommendations



Accuracy Vs. Number of Cascades

- **1** Network: Scale-free Network of N = 500 nodes with M = 2000 edges
- 2 Infection probabilities: uniform random
- 3 Incubation time model: Power-law: $w(t) \sim t^{-2}$
- 4 Generated cascade sets of size 400-3500



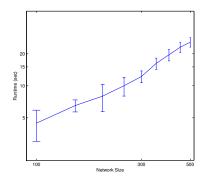
Summary - More At Poster W89!

We presented a scalable and robust algorithm for inferring social networks

- 1000 node networks inferred inside of 10 minutes.
- Applications can include
 - Epidemiology back tracing infection outbreaks
 - Viral marketing identifying the biggest influencers
- Further study
 - Inferring missing nodes
 - More specialized cascade models
 - Methods to handle an unknown incubation model w(t)
 - Explore connections to inferring more general graphical models.

Implementation

- Likelihood was maximized using SNOPT7Nonlinear constraints slow it down
 - Faster to solve nonconvex problem
 - Results were plugged into KKT conditions of convex problem to confirm global optimality
- We measured the runtime empirically.
- We can infer 1000 node networks inside of 10 minutes



19 / 19

Robustness to Error

- Incubation times were perturbed by i.i.d gaussian random variables
- The noise to signal ratio is the average perturbation over the average incubation time

