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Motivating Problem

Many real world social networks are difficult to observe.
For example:

The sexual relationship network of a population.

People are not forthcoming with their sexual history.

Accurately identifying network edges is difficult.

But we can observe diffusive processes over the network

STD’s propagate through sexual relationships

Observing when people become infected provides
insight into the network.
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Problem Definition

An unobservable social network of influence
interconnects nodes.
Diffusive processes can be observed

Information cascades
Disease outbreaks.

We observe infection times of nodes, and infer the
social network.
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Examples

Disease Spread Viral Marketing
Process Infection spreads People recommend

between people products to others
We observe When people When people buy

become infected products
We do not Who infected them Who influenced them

observe

Myers (Stanford) Convex Social Network Inference December 8, 2010 - W89 3 / 19



Examples

Disease Spread Viral Marketing
Process Infection spreads People recommend

between people products to others
We observe When people When people buy

become infected products
We do not Who infected them Who influenced them

observe

Can we infer who infected who?
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Our Approach

Given:
A set of cascades.

Goal:
Infer the network over which the cascades spread i.e it’s
adjacency matrix A.

Aij is the probability of i infecting j.

Our approach:
1 Define a probabilistic model for cascade propagation.
2 Find the likelihood function of observed cascades
3 Turn likelihood maximization into a series of convex

subproblems.
4 Generalize method to handle sparse networks.

Note: we learn both the structure of the network and the
edge weights that model infection probabilities
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The Cascade Model

i

j

k l

m

p

q

r

s

Aij

AilAik

Aim

Aij

Ail

Aim

Akm

Apk
Alq

Amr

Asl

1 Adjacency matrix A defines the influence network.

Node i is initially infected.
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2 Infected node i infects each neighbor j with probability Aij.
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The Cascade Model
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3 The incubation time of each new infection is sampled from
known density w(t).

τj = τi + ∆tj

∆tj ∼ w(t)

4 The time it takes j to show symptoms/become infectious.

5 Sampled from known density function w(t).

If node i is infected at time τi, then

τj = τi + ∆t

where ∆t ∼ w(t).

τk = τi + ∆tk where ∆tk ∼ w(t).
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The Likelihood Function

For a given cascade c, we observe the infection time
τ ci of each node i.

Then the Likelihood is:

L(j infected i) = Aji · w(τ ci − τ cj ).

L(i infected in c) = 1−
∏

j;τ cj<τ
c
i

[
1− Aji · w(τ ci − τ cj )

]
.

If i is not infected (τ ci =∞):

L(i never infected in c) =
∏

j;τ cj<∞
(1− Aji) .
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The Likelihood Function
For all cascades C, the likelihood function is

L(A;C) =
∏
c∈C

 ∏
i;τc

i <∞
L(i infected in c) ×

∏
i;τc

i =∞
L(i never infected in c)

 .
↑ ↑

All nodes infected by c All nodes not infected by c

To find A, we maximize the likelihood:

min
A
− log (L(A;C))

subject to

0 ≤ Aij ≤ 1 ∀ i, j.
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Convexity

Maximizing the likelihood is non-convex.
We derive an equivalent convex problem.

1 Break the problem down into N independent sub
problems.

2 Add parameters to create a geometric program.
3 Convert geometric program into convex program.
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Convexity: Subproblems

All infections occur independently.

The likelihood of infection depends only on node’s
inbound edges.
We can maximize the likelihood of each node
independently

N subproblems with N − 1 parameters.

It does not matter how
other nodes become in-
fected.

i

τlτkτj
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Convexity

We treat L(i infected in c) as an independent

parameter γ
(i)
c :

Li(A;C) =
∏

c;τc
i <∞

L(i infected in c)×
∏

c;τc
i =∞

L(i never infected in c).

↑ ↑

Cascades that infected i Cascades that did not infect i

We constrain γ
(i)
c :

γ(i)c ≤ L(i infected in c).
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∏
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Convexity

Change of variables:

γ̂(i)c = log γ(i)c and B̂ji = log(1− Aji)

Result is a convex program:

Optimal
network
guaranteed!

min
γ̂c,B̂(:,i)

∑
c∈C;τc

i <∞
−γ̂c −

∑
c∈C;τc

i =∞

∑
j∈C;τc

j<∞
B̂ji

subject to

B̂ji ≤ 0 ∀ j
γ̂c ≤ 0 ∀ c

log

exp γ̂c + ∏
j;τj≤τi

(
1− wcj + wcj exp B̂ji

) ≤ 0 ∀ c.
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Network Sparsity

Social networks are almost always sparse.
Most pairs of people are not friends/connected.

The maximum likelihood estimation is almost never
sparse.

The l1 penalty function ruins convexity.

We propose a new penalty function:

∑
j

1

1− Aji

Convexity is preserved.

Sparsity is induced.
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Network Sparsity

Why does this sparsity penalty function work?
The l1 penalty comes from the relaxation of

min
x
||x||0

s.t. Ax = b.

Often, the l1 and l0 norms intersect the constraints
at the same place.
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Experimental Setup

Evaluation Metric:
The precision and recall of inferred edges.
The mean square error (MSE) of edge weights (infection
probabilities).

Baseline - Netinf 1

An approximation algorithm based on submodular
optimization.
Assumes all infection probabilities are the same.

1Gomez-Rodriguez, et al; KDD ’10
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Experiments: Synthetic Network, Synthetic Cascades

1 Network: Scale-free Network of N = 500 nodes with M = 2000 edges

2 Infection probabilities: uniform random

3 Incubation time model : Power-law: w(t) ∼ t−2

4 Generated cascades until 99% of all edges propagated an infection
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Experiments: Real Network, Synthetic Cascades

1 Network: Real email network, N = 593 nodes and M = 2824 edges

2 Infection probabilities: based on volume of emails

3 Incubation time model : Power-law: w(t) ∼ t−2

4 Generated cascades until 99% of all edges propagated an infection
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Experiments: Real Network, Real Cascades

1 Network: Recommendation network, N = 275 and M = 1522

2 Infection probabilities: Real

3 Incubation time model : Observed to be Power-law

4 Inferring from 625 recommendation cascades.

Each product is a different
cascade

It is known when one user buys
product on recommendation of
another user

Using product purchase times,
we infer recommendations
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Accuracy Vs. Number of Cascades

1 Network: Scale-free Network of N = 500 nodes with M = 2000 edges

2 Infection probabilities: uniform random

3 Incubation time model : Power-law: w(t) ∼ t−2

4 Generated cascade sets of size 400-3500
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Summary - More At Poster W89!

We presented a scalable and robust algorithm for
inferring social networks

1000 node networks inferred inside of 10 minutes.

Applications can include
Epidemiology - back tracing infection outbreaks
Viral marketing - identifying the biggest influencers

Further study
Inferring missing nodes
More specialized cascade models
Methods to handle an unknown incubation model w(t)
Explore connections to inferring more general graphical
models.
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Implementation

Likelihood was maximized using SNOPT7
Nonlinear constraints slow it down

Faster to solve nonconvex problem
Results were plugged into KKT conditions of convex
problem to confirm global optimality

We measured the
runtime empirically.

We can infer 1000
node networks inside
of 10 minutes
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Robustness to Error

Incubation times were perturbed by i.i.d gaussian random variables

The noise to signal ratio is the average perturbation over the average
incubation time
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