High-dimensional statistics:
 from assocation to causal inference

Peter Bühlmann
ETH Zürich

December 2010

Sara van de Geer ETH Zurich

Marloes Maathuis ETH Zurich

Nicolai Meinshausen Oxford University

Markus Kalisch ETH Zurich

High-dimensional data

1. Classification of tumor samples based on gene expression microarray data, e.g. $p=7130, n=49(p \gg n)$

Lentemia	10	23	50	75	100	200	3571
Logiticosts optimal	4.17%	2785	4.17%	2.885	278\%	278\%	2.78%
Laghibcost estimuned	6.953	546%	5.56%	4.174	4178	566\%	5.564
Logitheast 100 iterations	5.86%	278\%	4.17\%	278\%	2788	278\%	278\%
Adhlocst 100 terations	4.17\%	4.17\%	4.17\%	4.17%	4175	278\%	4.17%
1-mearestueightor	4.17%	139\%	4.17\%	5.564	4.178	278\%	1.39\%
Classitastion tree	22.225	2222\%	22.22\%	22.22\%	2222%	2222\%	23.61\%
cato	10	23	50	75	100	200	2000
L.ogitibost. opitimal	1452\%	1613%	16.135	16.13\%	1613\%	${ }^{14.52 \%}$	12.90%
Logilibost, estumued	22585	1935\%	2258\%	20.97\%	22585	19.359	19.35%
Lagithosst. H00 iterations	${ }^{14525}$	2258%	22.585	19.35%	17.74\%	1613%	16.13\%
Aduhoost, 100 iteratichs	116.138	24.19%	24.19%	17.74\%	21997\%	17.748	17.74\%
1-neares-evilghtor	17.74	14.52%	14.52\%	20,975	1935%	17,24\%	25.815
Clasilfaction tree	1935\%	2258%	29.03\%	32.265	27.42%	14.52%	16.13%
Estrogen	10	23	50	75	100	200	1129
Logut cost, ppumal	4.085	4 CNF	2.045	2045	2045	4.1085	2.045
Logithosst, estimuted	6.12%	6.12%	6.125	6.124	6.12\%	6.12%	6.125
L.ggithoss, neo iterations	8.16%	6.12%	6.12%	4.03\%	4085	816%	6.12%
Aduh ocos, 100 iterations	8.16%	$\times 16 \%$	2.04\%	204\%	6.128	4.1085	4.188
1-nearest-seightar	4 4.sss	8.16%	18.37\%	12.24\%	1429%	14.29%	16.33\%
Classifikation tee	4 4.85\%	4 cas	4.188%	4.085	4008	4088	4.085
Noadl	10	23	so	75	100	200	7129
Logithcost. opumat	16.33\%	1837\%	22.45\%	22.456	2245%	18.37\%	20.415
Lognitcost estimind	22.45\%	3061\%	30.615	34.69\%	2857\%	26339	24.49\%
L.ggithoss, tre iterations	1837\%	20.41\%	26.53\%	42.865	42805	18.37\%	22.445
Adhbocot, 100 uterations	1837\%	1633%	28.57\%	40.82%	36.73\%	2245\%	28.578
1-mamest-seightor	1837\%	3061\%	30.61%	42.864	36,73\%	36739	48.98%
Classitication tre	22,48	20.41\%	20.415	20.41\%	20.41%	20.41\%	20.41\%
L mmphoma	10	23	50	75	100	200	41026
Logithosst, ©ptimal	1.61\%	3238	1.615	1.614	1615	${ }^{3} 33 \%$	8.1465
Loguiticost, estimmed	3.23\%	323%	3.23%	1.61\%	3238	3.235	\%
Logithost, teo iterations	1.61%	323%	1.61%	1.19\%	1.61%	3.23\%	8.06\%
Adatiocst 100 iterations	4.845	323\%	1.61%	1.615	1.61%	1.61%	3.234
Neares neigblor	1.61\%	${ }^{\text {cous }}$	0.0.0\%	0.00\%	$0^{000 \%}$	1.61%	1.614
Clussitication tree	22.58%	2258\%	2258%	22.585	22588	2258%	25.815
NCI	10	23	50	75	100	200	5244
Logilicost opumal	32,79\%	30.158	27.87\%	22.95%	26.238	24.59\%	31.15%
Logitibcost, estimuted	36.07%	44.26%	36.07\%	39.34\%	44285	47.54%	\%
Logithesst, ino iterations	37.00	44268	34.43\%	29515	26.238	24.59%	36.075
Adtrocos. 100 iterations	50.32\%	37.70\%	34.43\%	29514	327\%	29.515	36.17%
Nearest neijber	36.07\%	2931\%	27.87\%	24.593	2295%	22958	27.87\%
Classitication tree	70.49\%	Q 858	65.57%	65.57\%	6060\%	6230%	62.30\%

2. Riboflavin production with Bacillus Subtilis (in collaboration with DSM (Switzerland))
goal: improve riboflavin production rate of Bacillus Subtilis using clever genetic engineering
response variables $Y \in \mathbb{R}$: riboflavin (log-) production rate covariates $X \in \mathbb{R}^{p}$: expressions from $p=4088$ genes sample size $n=115, p \gg n$

Y versus 9 "reasonable" genes
gene expression data

High-dimensional linear models

$$
\begin{aligned}
& Y_{i}=(\mu+) \sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}, i=1, \ldots, n \\
& p \gg n \\
& \text { in short: } \mathbf{Y}=\mathbf{X} \beta+\epsilon
\end{aligned}
$$

goals:

- prediction, e.g. w.r.t. squared prediction error
- estimation of parameter β
- variable selection
i.e. estimating the effective variables
(having corresponding coefficient $\neq 0$)

Exemplifying the outline

binary lymph node classification using gene expressions

 a high noise problem: $n=49$ samples, $p=7130$ gene expr. despite that it is classification:$p(x)=\mathbb{P}[Y=1 \mid X=x]=\mathbb{E}[Y \mid X=x]$
$\leadsto \hat{p}(x)$ via linear model; can then do classification
cross-validated misclassification error ($2 / 3$ training; $1 / 3$ test)

Lasso	L_{2} Boosting	FPLR	Pelora	1 -NN	DLDA	SVM
21.1%	17.7%	35.25%	27.8%	43.25%	36.12%	36.88%

with variable selection
best 200 genes (Wilcoxon test) no additional variable selection

Exemplifying the outline

binary lymph node classification using gene expressions a high noise problem: $n=49$ samples, $p=7130$ gene expr. despite that it is classification:
$p(x)=\mathbb{P}[Y=1 \mid X=x]=\mathbb{E}[Y \mid X=x]$
$\leadsto \hat{p}(x)$ via linear model; can then do classification
cross-validated misclassification error (2/3 training; $1 / 3$ test)

Lasso	L_{2} Boosting	FPLR	Pelora	1-NN	DLDA	SVM
21.1%	17.7%	35.25%	27.8%	43.25%	36.12%	36.88%

with variable selection
best 200 genes (Wilcoxon test) no additional variable selection
from a practical perspective:
if you trust in cross-validation: can "validate" how good we are
i.e. prediction may be a black box, but we can "evaluate" it
"however"

- cross-validation has large variability... still want to know whether a method is good or optimal for prediction
- if concerned about $\left\|\hat{\beta}-\beta^{0}\right\|$ (estimation error) \sim no easy (cross-) validation available
- if concerned about the active set $S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ and variable selection
\sim no easy (cross-) validation available
and this is the outline:
- prediction, estimation, variable selection in regression/classification
- and then graphical modeling and intervention/causal analysis

The Lasso (Tibshirani, 1996)

Lasso for linear models

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}(n^{-1}\|\mathbf{Y}-\mathbf{X} \beta\|^{2}+\underbrace{\lambda}_{\geq 0} \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p}\left|\beta_{j}\right|})
$$

\sim convex optimization problem

- Lasso does variable selection some of the $\hat{\beta}_{j}(\lambda)=0$ (because of " ℓ_{1}-geometry")
- $\hat{\beta}(\lambda)$ is a shrunken LS-estimate

more about " ℓ_{1}-geometry"

equivalence to primal problem

$$
\hat{\beta}_{\text {primal }}(R)=\operatorname{argmin}_{\beta ;\|\beta\|_{1} \leq R}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n
$$

with a one-to-one correspondence between λ and R which depends on the data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ [such an equivalence holds since

- $\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n$ is convex in β
- convex constraint $\|\beta\|_{1} \leq R$
see e.g. Bertsekas (1995)]

$$
p=2
$$

left: ℓ_{1}-"world"
residual sum of squares reaches a minimal value (for certain constellations of the data) if its contour lines hit the ℓ_{1}-ball in its corner
$\leadsto \hat{\beta}_{1}=0$

ℓ_{2}-"world" is different

Ridge regression,

$$
\hat{\beta}_{\text {Ridge }}(\lambda)=\operatorname{argmin}_{\beta}\left(\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n+\lambda\|\beta\|_{2}^{2}\right)
$$

equivalent primal equivalent solution

$$
\hat{\beta}_{\text {Ridge;primal }}(R)=\operatorname{argmin}_{\beta ;\|\beta\|_{2} \leq R}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n
$$

with a one-to-one correspondence between λ and R

Orthonormal design

$$
\mathbf{Y}=\mathbf{X} \beta+\epsilon, \quad n^{-1} \mathbf{X}^{\top} \mathbf{X}=1
$$

Lasso $=$ soft-thresholding estimator

$$
\hat{\beta}_{j}(\lambda)=\operatorname{sign}\left(Z_{j}\right)\left(\left|Z_{j}\right|-\lambda / 2\right)_{+}, \underbrace{Z_{j}}_{=\text {OLS }}=\left(n^{-1} \mathbf{X}^{\top} \mathbf{Y}\right)_{j},
$$

$$
\hat{\beta}_{j}(\lambda)=g_{\text {soft }}\left(Z_{j}\right),
$$

Using the Lasso...

in practice: choose λ via cross-validation (e.g. 10-fold)
use cross-validation again to validate the procedure (need double cross-validation)

> binary lymph node classification using gene expressions: a high noise problem $$
n=49 \text { samples, } p=7130 \text { gene expressions }
$$

cross-validated misclassification error ($2 / 3$ training; $1 / 3$ test)

Lasso	L_{2} Boosting	FPLR	Pelora	1-NN	DLDA	SVM
21.1%	17.7%	35.25%	27.8%	43.25%	36.12%	36.88%

with variable selection
best 200 genes (Wilcoxon test)
no additional variable selection
and Lasso selects on CV-average 13.12 out of $p=7130$ genes

Theory for the Lasso: Prediction and estimation

fixed design linear model $\mathbf{Y}=\mathbf{X} \beta^{0}+\varepsilon$
Basic inequality

$$
n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\|\hat{\beta}\|_{1} \leq 2 n^{-1} \varepsilon^{T} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right)+\lambda\left\|\beta^{0}\right\|_{1}
$$

Proof:

$$
\begin{aligned}
& \quad n^{-1}\|\mathbf{Y}-\mathbf{X} \hat{\beta}\|_{2}^{2}+\lambda\|\hat{\beta}\|_{1} \leq n^{-1}\left\|\mathbf{Y}-\mathbf{X} \beta^{0}\right\|_{2}^{2}+\lambda\left\|\beta^{0}\right\|_{1} \\
& n^{-1}\|\mathbf{Y}-\mathbf{X} \hat{\beta}\|_{2}^{2}=n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+n^{-1}\|\varepsilon\|_{2}^{2}-2 n^{-1} \varepsilon^{T} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right) \\
& n^{-1}\left\|\mathbf{Y}-\mathbf{X} \beta^{0}\right\|_{2}^{2}=n^{-1}\|\varepsilon\|_{2}^{2} \\
& \leadsto \text { statement above }
\end{aligned}
$$

need a bound for $2 n^{-1} \varepsilon^{\top} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right)$

$$
2 n^{-1} \varepsilon^{T} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right) \leq 2 \max _{j=1, \ldots, p}\left|n^{-1} \sum_{i=1}^{n} \varepsilon_{i} X_{i}^{(j)}\right|\left\|\hat{\beta}-\beta^{0}\right\|_{1}
$$

consider

$$
\mathcal{T}=\mathcal{T}\left(\lambda_{0}\right)=\left\{2 \max _{j}\left|n^{-1} \sum_{i=1}^{n} \varepsilon_{i} X_{i}^{(j)}\right| \leq \lambda_{0}\right\}
$$

the probabilistic part of the problem

$$
\text { on } \mathcal{T}: 2 n^{-1} \varepsilon^{T} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right) \leq \lambda_{0}\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq \lambda_{0}\|\hat{\beta}\|_{1}+\lambda_{0}\left\|\beta^{0}\right\|_{1}
$$

and hence using the Basic inequality

$$
\text { on } \mathcal{T}: n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\left(\lambda-\lambda_{0}\right)\|\hat{\beta}\|_{1} \leq\left(\lambda_{0}+\lambda\right)\left\|\beta^{0}\right\|_{1}
$$

for $\lambda \geq 2 \lambda_{0}$:

$$
\text { on } \mathcal{T}=\mathcal{T}\left(\lambda_{0}\right): \quad 2 n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\|\hat{\beta}\|_{1} \leq 3 \lambda\left\|\beta^{0}\right\|_{1}
$$

choice of λ and probability of the set \mathcal{T}
λ as small as possible such that $\lambda \geq 2 \lambda_{0}$ (see above) λ_{0} such that $\tau=\tau\left(\lambda_{0}\right)$ has large probability

$$
V_{j}=n^{-1 / 2} \sigma^{-1} \sum_{i=1}^{n} \varepsilon_{i} X_{i}^{(j)} \leadsto \mathcal{T}\left(\lambda_{0}\right)=\left\{2 \max _{j=1, \ldots, p}\left|V_{j}\right| \leq \lambda_{0} n^{1 / 2} \sigma^{-1}\right\}
$$

Example:
Gaussian errors $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ and scaled covariates $n^{-1}\left\|\mathbf{X}^{(j)}\right\|_{2}^{2} \equiv 1$
then: $V_{j} \sim \mathcal{N}(0,1) \leadsto$

$$
\lambda_{0}=2 \sigma \sqrt{\frac{u^{2}+2 \log (p)}{n}} \Rightarrow \mathbb{P}\left[\mathcal{T}\left(\lambda_{0}\right)\right] \geq 1-2 \exp \left(u^{2} / 2\right)
$$

can generalize to non-Gaussian errors (sub-Gaussian distr., higher moments), to dependent errors, ...
for prediction with high-dimensional ℓ_{1}-penalization:

$$
\lambda \asymp \lambda_{0} \asymp \sqrt{\log (p) / n}
$$

unless the variables are very correlated
\sim would relax the $\log (p)$ factor a bit
recall for $\lambda \geq 2 \lambda_{0}$:

$$
\text { on } \mathcal{T}\left(\lambda_{0}\right): \quad 2 n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\|\hat{\beta}\|_{1} \leq 3 \lambda\left\|\beta^{0}\right\|_{1}
$$

and hence: for $\lambda\left(\right.$ and $\left.\lambda_{0}\right) \asymp \sqrt{\log (p) / n}$,

$$
n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}=\left\|\beta^{0}\right\|_{1} O_{P}(\sqrt{\log (p) / n})
$$

- consistency for prediction if $\left\|\beta^{0}\right\|_{1}=O(\sqrt{n / \log (p)})$ essentially recovering Greenshtein \& Ritov (2004) with a simple structure how to generalize to other settings
- convergence rate $O_{P}(\sqrt{\log (p) / n})$ is "far from optimal"
- no assumptions on the (fixed) design matrix

$$
\operatorname{aim}: n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}=s_{0} O_{P}(\log (p) / n), s_{0}=\left|S_{0}\right|=\left|\left\{j ; \beta_{j}^{0} \neq 0\right\}\right|
$$

unfortunately, for the Lasso and other computationally feasible methods: need conditions on \mathbf{X}
idea: recall the basic inequality

$$
n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\|\hat{\beta}\|_{1} \leq 2 n^{-1} \varepsilon^{T} \mathbf{X}\left(\hat{\beta}-\beta^{0}\right)+\lambda\left\|\beta^{0}\right\|_{1}
$$

simple re-writing (triangle inequality) on $\mathcal{T}\left(\lambda_{0}\right)$, with $\lambda \geq 2 \lambda_{0}$,

$$
2\left\|\left(\hat{\beta}-\beta^{0}\right) \hat{\Sigma}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\left\|\hat{\beta}_{S_{0}^{0}}\right\|_{1} \leq 3 \lambda\left\|\hat{\beta}_{S_{0}}-\beta_{S_{0}}^{0}\right\|_{1}
$$

where $\hat{\Sigma}=n^{-1} \mathbf{X}^{\top} \mathbf{X}$
relate $\left\|\hat{\beta}_{S_{0}}-\beta_{S_{0}}^{0}\right\|_{1}$ to (with \leq relation) $\left(\hat{\beta}-\beta^{0}\right) \hat{\Sigma}\left(\hat{\beta}-\beta^{0}\right)$
(and bring it to the left hand side)
this is a kind of restricted ℓ_{1}-eigenvalue problem
reminder:
$\|\beta\|_{2}^{2} \leq \frac{\beta^{\top} \hat{\Sigma} \beta}{\Lambda_{\text {min }}^{2}}$ where $\Lambda_{\text {min }}^{2}$ is the smallest eigenvalue of $\hat{\Sigma}$
here: Compatibility condition (van de Geer, 2007)
smallest restricted ℓ_{1}-eigenvalue:
active set S_{0} with $s_{0}=\left|S_{0}\right|$ compatibility constant $\phi_{0}^{2}>0$ such that for all β satisfying $\left\|\beta_{S_{0}^{c}}\right\|_{1} \leq 3\left\|\beta_{S_{0}}\right\|_{1}$, it holds that

$$
\left\|\beta_{S_{0}}\right\|_{1}^{2} \leq \frac{\left(\beta^{T} \hat{\Sigma} \beta\right) s_{0}}{\phi_{0}^{2}}
$$

(appearance of s_{0} due to $\left\|\beta_{s_{0}}\right\|_{1}^{2} \leq s_{0}\left\|\beta_{S_{0}}\right\|_{2}^{2}$)
oracle inequality
for $\lambda \geq 2 \lambda_{0}$:

$$
\text { on } \mathcal{T}\left(\lambda_{0}\right): \quad n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2}+\lambda\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq 4 \lambda^{2} s_{0} / \phi_{0}^{2}
$$

asymptotics: $\lambda \asymp \sqrt{\log (p) / n}$,

$$
\begin{aligned}
& n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} \leq \frac{s_{0}}{\phi_{0}^{2}} O_{P}(\log (p) / n) \\
& \left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq \frac{s_{0}}{\phi_{0}^{2}} O_{P}(\sqrt{\log (p) / n})
\end{aligned}
$$

just make the appropriate assumptions to prove what you like... real question:
how restrictive is compatibility condition (smallest restricted ℓ_{1}-eigenvalue)?
it is (slightly) weaker than the restricted eigenvalue assumption (Bickel, Ritov \& Tsybakov, 2009)
oracle inequalities for prediction and estimation

just make the appropriate assumptions to prove what you like... real question:
how restrictive is compatibility condition (smallest restricted ℓ_{1}-eigenvalue)?
it is (slightly) weaker than the restricted eigenvalue assumption (Bickel, Ritov \& Tsybakov, 2009)
more generally: (van de Geer \& PB, 2009)
oracle inequalities for prediction and estimation

Does compatibility condition hold in practice?

it is non-checkable (in contrast to checkable but restrictive conditions Juditsky \& Nemirovski (2008) ... which presumably would often fail in e.g. genomic data-sets)
assume that X_{1}, \ldots, X_{n} i.i.d. with $\mathbb{E}[X]=0, \operatorname{Cov}(X)=\Sigma$

- compatibility constant $\phi_{0, \Sigma}^{2}$ for Σ is bounded away from zero (maybe even the smallest eigenvalue of Σ is bounded away from zero)
- moment conditions for X (including e.g. Gaussian case)
- sparsity $s_{0}=O(\sqrt{n / \log (p)})$

$$
\phi_{0, \hat{\Sigma}}^{2} \geq \phi_{0, \Sigma}^{2} / 2 \text { with high probability }
$$

(van de Geer \& PB, 2009)
for sparse problems, the compatibility condition is "likely to hold"

Summary I (for Lasso)

for fixed design linear models:
fact 1:
no design conditions and mild assumption on error distribution:

- "slow" rate $n^{-1}\left\|\mathbf{X}\left(\widehat{\beta}-\beta^{0}\right)\right\|_{2}^{2}=\left\|\beta^{0}\right\|_{1} O_{P}(\sqrt{\log (p) / n})$ consistency for prediction if $\left\|\beta^{0}\right\|_{1}=o(\sqrt{n / \log (p)})$

fact 2:

compatibility condition (or restricted eigenvalue condition) and mild assumption on error distribution:

- fast rate $n^{-1}\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} \leq \frac{s_{0}^{0}}{\phi_{0}^{2}} O_{P}(\log (p) / n)$
- $\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq \frac{s_{0}}{\phi_{0}^{2}} O_{P}(\sqrt{\log (p) / n})$
"myth": design assumptions for Lasso (in fact 2) are restrictive "not really true" in the regime $s_{0}=O(\sqrt{n / \log (p)})$

Remark:

fast convergence rate for prediction is possible without design conditions using

- ℓ_{0}-penalization (Barron, Birgé \& Massart, 1999) computationally infeasible
- exponential weighting (Dalalyan \& Tsybakov, 2008) computationally "cumbersome"
theory and methodology generalizes to non-convex loss functions (GLMs), additive models (Group Lasso), multitask models, ... and "similar findings" with Dantzig selector, orthogonal matching pursuit, boosting,...

Variable selection

Example: Motif regression for finding HIF1 α transcription factor binding sites in DNA seq. Müller, Meier, PB \& Ricci

$Y_{i} \in \mathbb{R}$: univariate response measuring binding intensity of HIF1 α on coarse DNA segment i (from CHIP-chip experiments) $X_{i}=\left(X_{i}^{(1)}, \ldots, X_{i}^{(p)}\right) \in \mathbb{R}^{p}:$
$X_{i}^{(j)}=$ abundance score of candidate motif j in DNA segment i (using sequence data and computational biology algorithms, e.g. MDSCAN)
question: relation between the binding intensity Y and the abundance of short candidate motifs?
\leadsto linear model is often reasonable
"motif regression" (Conlon, X.S. Liu, Lieb \& J.S. Liu, 2003)

$$
\mathbf{Y}=\mathbf{X} \beta+\epsilon, n=287, p=195
$$

goal: variable selection
\leadsto find the relevant motifs among the $p=195$ candidates

$$
\begin{aligned}
& \quad \hat{S}(\lambda)=\left\{j ; \hat{\beta}_{j}(\lambda) \neq 0\right\} \\
& \text { for } \quad S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\} \\
& \text { no significance testing involved } \\
& \text { it's convex optimization only! }
\end{aligned}
$$

(and that can be a problem... see later)

Motif regression

for finding HIF1 α transcription factor binding sites in DNA seq.
$Y_{i} \in \mathbb{R}$: univariate response measuring binding intensity on coarse DNA segment i (from CHIP-chip experiments)
$X_{i}^{(j)}=$ abundance score of candidate motif j in DNA segment i

$$
\begin{aligned}
& \text { variable selection in linear model } Y_{i}=\mu+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\varepsilon_{i} \\
& i=1, \ldots, n=287, p=195
\end{aligned}
$$

\sim Lasso selects 26 covariates and $R^{2} \approx 50 \%$
i.e. 26 interesting candidate motifs

Theory for the Lasso: Part II (variable selection)

for (fixed design) linear model $\mathbf{Y}=\mathbf{X} \beta^{0}+\varepsilon$ with active set $S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ two key assumptions

1. neighborhood stability condition for design \mathbf{X} \Leftrightarrow irrepresentable condition for design \mathbf{X}
2. beta-min condition

$$
\min _{j \in S_{0}}\left|\beta_{j}^{0}\right| \geq C \sqrt{\log (p) / n}, C \text { suitably large }
$$

both conditions are sufficient and "essentially" necessary for $\hat{S}(\lambda)=S_{0}$ with high probability, $\quad \lambda \gg \quad \underbrace{\sqrt{\log (p) / n}}$ larger than for pred. already proved in Meinshausen \& PB, 2004 (publ: 2006)

Theory for the Lasso: Part II (variable selection)

for (fixed design) linear model $\mathbf{Y}=\mathbf{X} \beta^{0}+\varepsilon$ with active set $S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ two key assumptions

1. neighborhood stability condition for design \mathbf{X}
\Leftrightarrow irrepresentable condition for design \mathbf{X}
2. beta-min condition

$$
\min _{j \in S_{0}}\left|\beta_{j}^{0}\right| \geq C \sqrt{\log (p) / n}, C \text { suitably large }
$$

both conditions are sufficient and "essentially" necessary for $\hat{S}(\lambda)=S_{0}$ with high probability, $\quad \lambda \gg \quad \underbrace{\sqrt{\log (p) / n}}$ larger than for pred.
already proved in Meinshausen \& PB, 2004 (publ: 2006) and both assumptions are restrictive!
neighborhood stability condition \Leftrightarrow irrepresentable condition

$$
n^{-1} \mathbf{X}^{\top} \mathbf{X}=\hat{\Sigma}
$$

active set $S_{0}=\left\{j ; \beta_{j} \neq 0\right\}=\left\{1, \ldots, s_{0}\right\}$ consists of the first s_{0} variables; partition

$$
\hat{\Sigma}=\left(\begin{array}{cc}
\hat{\Sigma}_{S_{0}, S_{0}} & \hat{\Sigma}_{S_{0}, S_{0}^{c}} \\
\hat{\Sigma}_{S_{0}^{c}, S_{0}} & \hat{\Sigma}_{S_{0}^{c}, S_{0}^{c}}
\end{array}\right)
$$

irrep. condition : $\left\|\hat{\Sigma}_{S_{0}^{c}, S_{0}} \hat{\Sigma}_{S_{0}, S_{0}}^{-1} \operatorname{sign}\left(\beta_{1}^{0}, \ldots, \beta_{S_{0}}^{0}\right)^{T}\right\|_{\infty}<1$

various design conditions (van de Geer \& PB, 2009)

oracle inequalities for prediction and estimation

irrepresentable condition is (much more) restrictive than the compatibility condition (and irrepresentable condition is necessary for recovery of S_{0} with the Lasso)

not very realistic assumptions... what can we expect?

recall: under compatibility condition and mild assumption on error distribution

$$
\left\|\hat{\beta}-\beta^{0}\right\|_{1} \leq C \frac{S_{0}}{\phi_{0}^{2}} \sqrt{\log (p) / n}
$$

consider the relevant active variables

$$
S_{\mathrm{relev}}=\left\{j ;\left|\beta_{j}^{0}\right|>C \frac{S_{0}}{\phi_{0}^{2}} \sqrt{\log (p) / n}\right\}
$$

then, clearly,

$$
\hat{S} \supseteq S_{\text {relev }} \text { with high probability }
$$

screening for detecting the relevant variables is possible! without beta-min condition and assuming compatibility condition only
in addition: assuming beta-min condition

$$
\min _{j \in S_{0}}\left|\beta_{j}^{0}\right|>C \frac{S_{0}}{\phi_{0}^{2}} \sqrt{\log (p) / n}
$$

$\hat{S} \supseteq S_{0}$ with high probability
screening for detecting the true variables

Tibshirani (1996):
LASSO = Least Absolute Shrinkage and Selection Operator
new translation PB (2010):
LASSO = Least Absolute Shrinkage and Screening Operator

Practical perspective

choice of $\lambda: \hat{\lambda}_{C V}$ from cross-validation empirical and theoretical indications (Meinshausen \& PB, 2006) that

$$
\hat{S}\left(\hat{\lambda}_{C V}\right) \supseteq S_{0} \quad\left(\text { or } S_{\text {relev }}\right)
$$

moreover

$$
\left|\hat{S}\left(\hat{\lambda}_{C V}\right)\right| \leq \min (n, p)(=n \text { if } p \gg n)
$$

\leadsto huge dimensionality reduction (in the original covariates)
recall:

$$
\hat{S}\left(\hat{\lambda}_{C V}\right) \supseteq S_{0} \quad\left(\text { or } S_{\text {relev }}\right)
$$

and we would then use a second-stage to reduce the number of false positive selections
\leadsto re-estimation on much smaller model with variables from \hat{S}

- OLS on \hat{S} with e.g. BIC variable selection
- thresholding coefficients and OLS re-estimation (Zhou,
- adaptive Lasso (Zou, 2006)
recall:

$$
\hat{S}\left(\hat{\lambda}_{C V}\right) \supseteq S_{0} \quad\left(\text { or } S_{\text {relev }}\right)
$$

and we would then use a second-stage to reduce the number of false positive selections
\leadsto re-estimation on much smaller model with variables from \hat{S}

- OLS on \hat{S} with e.g. BIC variable selection
- thresholding coefficients and OLS re-estimation (Zhou, 2009)
- adaptive Lasso (Zou, 2006)
- ...

Summary II (for Lasso)

variable selection: estimation of $S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ requires (necessarily)

- irrepresentable condition for design
- beta-min condition on the coefficients
both of them are restrictive
but variable Screening is more realistic assuming compatibility condition on the design (smallest restricted ℓ_{1}-eigenvalue)

$$
\hat{S}(\lambda) \supseteq S_{\text {relev }},
$$

$$
\text { assuming beta-min cond.: } \quad \hat{S}(\lambda) \supseteq S_{0}
$$

also here: mainly focused on the Lasso in linear models
many extensions have been worked out:
Group Lasso, Fused Lasso, sparsity-smoothness penalty, Dantzig-selector,...
concave penalties: SCAD, MC+, and related adaptive Lasso,... Orthogonal matching pursuit, boosting,... marginal screening (sure independence screening),...
empirical and theoretical results are "similar"

- prediction is "easy"
- estimation of parameters and variable screening is often "reasonably accurate"
- variable selection is "hard"

Gaussian graphical models

$$
X_{1}, \ldots, X_{n} \text { i.i.d. } \sim \mathcal{N}_{p}(0, \Sigma)
$$

goal: infer zeroes of Σ^{-1} :
$\Sigma_{j k}^{-1} \neq 0 \quad \Leftrightarrow \quad X^{(j)} \not \perp X^{(k)} \mid X^{(\{1, \ldots, p\} \backslash\{j, k\})} \quad \Leftrightarrow \quad$ edge $j-k$ nodewise regression can do the job:

$$
X^{(j)}=\sum_{k \neq j} \beta_{k}^{(j)} X^{(k)}+\varepsilon^{(j)}, \quad j=1, \ldots, p
$$

$$
\beta_{k}^{(j)} \neq 0, \beta_{j}^{(k)} \neq 0 \Leftrightarrow \Sigma_{j k}^{-1} \neq 0 \Leftrightarrow \text { edge } j-k
$$

Meinshausen \& PB (2006):
p Lasso regressions $\leadsto \hat{\beta}^{(j)}$
estimate edge $j-k$

$$
\Leftrightarrow \quad \hat{\beta}_{k}^{(j)} \neq 0 \text { and/or } \hat{\beta}_{j}^{(k)} \neq 0
$$

does not use the constraint of positive definiteness for Σ
but for inferring edge set (support estimation): uncoupled nodewise regression requires substantially weaker irrepresentable condition than simultaneous GLasso approach based on multivariate Gaussian likelihood
(Friedman et al., 2007; Banerjee et al., 2008)
see Meinshausen (2004; publ. 2008)

Back to variable selection in regression

Motif regression for finding HIF1 α transcription factor binding sites in DNA sequences
$Y_{i} \in \mathbb{R}$: univariate response measuring binding intensity on coarse DNA segment i (from CHIP-chip experiments) $X_{i}^{(j)}=$ abundance score of candidate motif j in DNA segment i

$$
\text { variable selection in linear model } Y_{i}=\mu+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\varepsilon_{i}
$$

$$
i=1, \ldots, n=287, p=195
$$

\sim Lasso selects 26 covariates and $R^{2} \approx 50 \%$
i.e. 26 interesting candidate motifs and hence report these findings to the biologists...

Back to variable selection in regression

Motif regression for finding HIF1 α transcription factor binding sites in DNA sequences
$Y_{i} \in \mathbb{R}$: univariate response measuring binding intensity on coarse DNA segment i (from CHIP-chip experiments) $X_{i}^{(j)}=$ abundance score of candidate motif j in DNA segment i

$$
\text { variable selection in linear model } Y_{i}=\mu+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\varepsilon_{i}
$$

$$
i=1, \ldots, n=287, p=195
$$

\sim Lasso selects 26 covariates and $R^{2} \approx 50 \%$
i.e. 26 interesting candidate motifs and hence report these findings to the biologists...
really?

Back to variable selection in regression

Motif regression for finding HIF1 α transcription factor binding sites in DNA sequences
$Y_{i} \in \mathbb{R}$: univariate response measuring binding intensity on coarse DNA segment i (from CHIP-chip experiments) $X_{i}^{(j)}=$ abundance score of candidate motif j in DNA segment i

$$
\begin{aligned}
& \text { variable selection in linear model } Y_{i}=\mu+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\varepsilon_{i} \\
& i=1, \ldots, n=287, p=195
\end{aligned}
$$

\sim Lasso selects 26 covariates and $R^{2} \approx 50 \%$
i.e. 26 interesting candidate motifs and hence report these findings to the biologists...
really?
how stable are the findings?
estimated coefficients $\hat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$

stability check: subsampling with subsample size $\lfloor n / 2\rfloor$

$~$ only 2 "stable" findings $(\neq 26)$

one variable (॰): corresponds to true, known motif
 other variable (०): good additional support for relevance (nearness to transcriptional start-site of important genes, ...)

- using $\hat{S}(\lambda)=\left\{j ; \hat{\beta}_{j}(\lambda) \neq 0\right\}$ for S_{0} is questionable

- from theoretical point of view, many things can go wrong as I explained for Lasso (and also true for many other methods)
- assigning uncertainty is completely missing

Stability Selection (Meinshausen \& PB, 2010) using subsampling (or bootstrapping)

 consider (first) linear model setting$$
Y_{i}=(\mu+) \sum_{j=1}^{p} \beta_{j}^{0} X_{i}^{(j)}+\varepsilon_{i}, i=1, \ldots, n(\ll p)
$$

set of active variables: $S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\}$
variable selection procedure:

$$
\hat{s}^{\lambda} \subseteq\{1, \ldots, p\},
$$

λ a tuning parameter
prime example: Lasso (Tibshirani, 1996)
subsampling:

- draw sub-sample of size $\lfloor n / 2\rfloor$ without replacement, denoted by $I^{*} \subseteq\{1, \ldots, n\},\left|I^{*}\right|=\lfloor n / 2\rfloor$
- run the selection algorithm $\hat{S}^{\lambda}\left(I^{*}\right)$ on I^{*}
- do these steps many times and compute the relative selection frequencies

$$
\hat{\Pi}_{j}^{\lambda}=P^{*}\left(j \in \hat{S}^{\lambda}\left(I^{*}\right)\right), j=1, \ldots, p
$$

P^{*} is w.r.t. sub-sampling (and maybe other sources of randomness if a randomized selection algorithm is invoked)
could also use bootstrap sampling with replacement...
subsampling:

- draw sub-sample of size $\lfloor n / 2\rfloor$ without replacement, denoted by $I^{*} \subseteq\{1, \ldots, n\},\left|I^{*}\right|=\lfloor n / 2\rfloor$
- run the selection algorithm $\hat{S}^{\lambda}\left(I^{*}\right)$ on I^{*}
- do these steps many times and compute the relative selection frequencies

$$
\hat{\Pi}_{j}^{\lambda}=P^{*}\left(j \in \hat{S}^{\lambda}\left(I^{*}\right)\right), j=1, \ldots, p
$$

P^{*} is w.r.t. sub-sampling (and maybe other sources of randomness if a randomized selection algorithm is invoked)
could also use bootstrap sampling with replacement...

Stability selection

$$
\hat{S}^{\text {stable }}=\left\{j ; \hat{\Pi}_{j}^{\lambda} \geq \pi_{\mathrm{thr}}\right\}
$$

depends on λ via $\hat{\Pi}_{j}^{\lambda}=P^{*}\left(j \in \hat{S}^{\lambda}\left(\iota^{*}\right)\right)$
choice of $\pi_{\text {thr }} \leadsto$ see later
if we consider many regularization parameters:

$$
\left\{\hat{S}^{\lambda} ; \lambda \in \Lambda\right\}
$$

Λ can be discrete, a singleton or continuous

$$
\hat{S}^{\text {stable }}=\left\{j ; \max _{\lambda \in \Lambda} \hat{\Pi}_{j}^{\lambda} \geq \pi_{\text {thr }}\right\}
$$

see also Bach (2009) for a related proposal

The Lasso and its corresponding stability path

$Y=$ riboflavin production rate in Bacillus Subtilis (log-scale)
$X: p=4088$ gene expressions (log-scale),
sparsity $p_{\text {eff }}$ "=" 6 (6 "relevant" genes;
all other variables permuted)
sample size $n=115$
Lasso

with stability selection: the 4-6 "true" variables are sticking out much more clearly from noise covariates
stability selection cannot be reproduced by simply selecting the right penalty with Lasso
stability selection provides a fundamentally new solution

Choice of threshold $\pi_{\text {thr }} \in(0,1)$?

How to choose the threshold $\pi_{\text {thr }}$?

consider a selection procedure which selects q variables (e.g. top 50 variables when running Lasso over many λ 's) denote by $V=\left|S_{0}^{c} \cap \hat{S}^{\text {stable }}\right|=$ number of false positives
Theorem (Meinshausen \& PB, 2010) main assumption: exchangeability condition in addition: \hat{S} has to be better than "random guessing" Then:

$$
E(V) \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q^{2}}{p}
$$

i.e. finite sample control, even if $p \gg n$
\leadsto choose threshold $\pi_{\text {thr }}$ to control e.g. $E[V] \leq 1$ or $P[V>0] \leq E[V] \leq \alpha$
note the generality of the Theorem...

- it works for any method which is better than "random guessing"
- it works not only for regression but also for "any" discrete structure estimation problem (whenever there is a include/exclude decision)
\leadsto variable selection, graphical modeling, clustering, ...
and hence there must be a fairly strong condition...
Exchangeability condition:
note: only some requirement for noise variables
note the generality of the Theorem...
- it works for any method which is better than "random guessing"
- it works not only for regression but also for "any" discrete structure estimation problem (whenever there is a include/exclude decision)
\leadsto variable selection, graphical modeling, clustering, ...
and hence there must be a fairly strong condition...
Exchangeability condition:
the distribution of $\left\{I_{\left\{j \in \hat{S}^{\star}\right\}} ; j \in S_{0}^{C}\right\}$ is exchangeable note: only some requirement for noise variables

Discussion of the conditions in case of random design linear model $\mathbf{Y}=\mathbf{X} \beta^{0}+\varepsilon$:

- no beta-min condition (but the Theorem is only about false positives)
- exchangeability condition is restrictive: example where it holds: $\Sigma=\operatorname{Cov}(X)$ from equicorrelation
the theory is (as of now) too rough and does not indicate better
theoretical behavior for variable selection than for adaptive
Lasso (or thresholded Lasso)

Discussion of the conditions in case of random design linear model $\mathbf{Y}=\mathbf{X} \beta^{0}+\varepsilon$:

- no beta-min condition (but the Theorem is only about false positives)
- exchangeability condition is restrictive: example where it holds: $\Sigma=\operatorname{Cov}(X)$ from equicorrelation
the theory is (as of now) too rough and does not indicate better theoretical behavior for variable selection than for adaptive Lasso (or thresholded Lasso)

Some numerical experiments

Variable selection in linear models using Lasso a range of scenarios:
$p=660$ with design from a real data set about motif regression $n \in\{450,750\}$, sparsity $p_{\text {eff }} \in\{4,8, \ldots, 40\}$ (using artificial β) signal to noise ratio $\in\{0.25,1,4\}$

$$
\text { control for } E[V] \leq 2.5
$$

control for $E[V] \leq 2.5$

stability selection yields:

- accurate control (as proved in theory)
- drastic reduction of false positives in comparison to CV-tuned solution
- not much loss in terms of power (true positives)

Motif regression

stability selection with $\mathbb{E}[V] \leq 1$
\sim two stably selected variables/motifs
one of them is a known binding site

Graphical modeling using GLasso

(Rothman, Bickel, Levina \& Zhu, 2008; Friedman, Hastie \& Tibshirani, 2008)
infer conditional independence graph using ℓ_{1}-penalization i.e. infer zeroes of Σ^{-1} from X_{1}, \ldots, X_{n} i.i.d. $\sim \mathcal{N}_{p}(0, \Sigma)$
$\Sigma_{j k}^{-1} \neq 0 \quad \Leftrightarrow \quad X^{(j)} \not \perp X^{(k)} \mid X^{(\{1, \ldots, p\} \backslash\{j, k\})} \quad \Leftrightarrow \quad$ edge $j-k$

gene expr. data

zero-pattern of Σ^{-1}
sub-problem of riboflavin production with bacillus subtilis
$p=160, n=115$
stability selection with $E[V] \leq 5$
varying the regularization parameter λ in ℓ_{1}-penalization

with stability selection: choice of initial λ-tuning parameter does not matter much (as proved by our theory) just need to fix the finite-sample control

permutation of variables

 varying the regularization parameter for the null-case
with stability selection: the number of false positives is indeed controlled (as proved by our theory)

permutation of variables

 varying the regularization parameter for the null-case
with stability selection: the number of false positives is indeed controlled (as proved by our theory) and here: exchangeability condition holds
stability selection is
Bagging the selection outcomes (instead of prediction)

Leo Breiman

and providing error control
in terms of $E[V]$ (\sim conservative FWER control)

Conclusions Part I

for the Lasso (and other computationally feasible methods) in linear models (and other models):

property	design condition	size of non-zero coeff.
slow converg. rate	no requirement	no requirement
fast converg. rate	restricted eigenvalue	no requirement
variable screening	restricted eigenvalue	beta-min condition
variable selection	neighborhood stability \Leftrightarrow irrepresentable cond.	beta-min condition

for more reliable results in practice, in particular for variable/feature selection: need something on top of it \leadsto e.g. stability selection

Variable selection for causal target

regression is for quantifying association
for some applications we need something else

Gene knock-downs in yeast

$p=5360$ genes
question:
if we would knock-down a single gene, what would be its effect on all other genes?
goal:
want to infer/predict such effects without actually doing the intervention
i.e. from observational data

Figure 1

\sim look beyond penalized regression／classification！

$$
\text { 4ロ>4司 }>4 \text { 三 }>4 \text { 三 }
$$

Figure 1

\sim look beyond penalized regression/classification!

Effects of single gene knock-downs on all other genes (yeast)

 (Maathuis, Colombo, Kalisch \& PB, 2010)- $p=5360$ genes (expression of genes)
- 231 gene knock downs $\sim 1.2 \cdot 10^{6}$ intervention effects
- the truth is "known in good approximation" (thanks to intervention experiments)
goal: prediction of the true large intervention effects based on observational data with no knock-downs
$n=63$
observational data

... "causal inference from purely observed data could have practical value in the prioritization and design of perturbation experiments"

Editorial in Nature Methods (April 2010)

intervention = causality
 (defined in mathematical terms)

A bit more specifically

- univariate response Y
- p-dimensional covariate X
question:
what is the effect of setting the j th component of X to a certain value x :

$$
\operatorname{do}\left(X^{(j)}=x\right)
$$

\leadsto this is a question of intervention type; not association
in contrast to: (high-dimensional) regression

$$
\begin{aligned}
& Y=\sum_{j=1}^{p} \beta_{j} X^{(j)}+\varepsilon \\
& \operatorname{Var}\left(X^{(j)}\right) \equiv 1 \text { for all } j
\end{aligned}
$$

$\left|\beta_{j}\right|$ measures the importance of variable $X^{(j)}$ in terms of "association"
i.e. change of Y as a function of $X^{(j)}$ when keeping all other variables $X^{(k)}$ fixed
not very realistic for intervention problem
if we change e.g. one gene, some others wil also change and these are not (cannot be) kept fixed
in contrast to: (high-dimensional) regression

$$
\begin{aligned}
& Y=\sum_{j=1}^{p} \beta_{j} X^{(j)}+\varepsilon \\
& \operatorname{Var}\left(X^{(j)}\right) \equiv 1 \text { for all } j
\end{aligned}
$$

$\left|\beta_{j}\right|$ measures the importance of variable $X^{(j)}$ in terms of "association"
i.e. change of Y as a function of $X^{(j)}$ when keeping all other variables $X^{(k)}$ fixed
\leadsto not very realistic for intervention problem if we change e.g. one gene, some others will also change and these are not (cannot be) kept fixed

Intervention calculus

"dynamic" notion of importance:
if we set a variable $X^{(j)}$ to a value x (intervention)
\leadsto some other variables $X^{(k)}(k \neq j)$ and maybe Y will change
we want to quantify the "total" effect of $X^{(j)}$ on Y including "all changed" $X^{(k)}$ on Y
a graph or influence diagram will be very useful

for simplicity: just consider DAGs (ancestral graphs with hidden variables: more involved)
for DAGs: recursive factorization of joint distribution

$$
P\left(Y, X^{(1)}, \ldots, X^{(p)}\right)=P\left(Y \mid X^{(\mathrm{pa}(Y))}\right) \prod_{j=1}^{p} P\left(X^{(j)} \mid X^{(\mathrm{pa}(j))}\right)
$$

for intervention calculus: use truncated factorization (e.g. Pearl)
non-intervention
intervention at $X^{(2)}$

independent errors \& autonom strcl. eqns.
\Leftrightarrow Markov assump:
$P\left(Y, X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}\right)=P\left(Y, X^{(1)}, X^{(3)}, X^{(4)} \mid \operatorname{do}\left(X^{(2)}=x\right)\right)=$
$P\left(Y \mid X^{(1)}, X^{(3)}\right) \times$
$P\left(X^{(1)} \mid X^{(2)}\right) \times$
$P\left(X^{(2)} \mid X^{(3)}, X^{(4)}\right) \times$
$P^{(3)} \times$
$P\left(Y \mid X^{(1)}, X^{(3)}\right) \times$
$P\left(X^{(1)} \mid X^{(2)}=x\right) \times$
$P^{(3)} \times$
$P^{(4)}$
independent errors \& autonom strcl. eqns:
truncated factorization for $\operatorname{do}\left(X^{(2)}=x\right)$,
i.e. intervention at $X^{(2)}$ by setting it to the value x :

$$
\begin{aligned}
& P\left(Y, X^{(1)}, X^{(3)}, X^{(4)} \mid \operatorname{do}\left(X^{(2)}=x\right)\right) \\
= & P\left(Y \mid X^{(1)}, X^{(3)}\right) P\left(X^{(1)} \mid X^{(2)}=x\right) P\left(X^{(3)}\right) P\left(X^{(4)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(Y \mid \operatorname{do}\left(X^{(2)}=x\right)\right) \\
= & \int P\left(Y, X^{(1)}, X^{(3)}, X^{(4)} \mid \operatorname{do}\left(X^{(2)}=x\right)\right) d X^{(1)} d X^{(3)} d X^{(4)}
\end{aligned}
$$

the truncated factorization is a mathematical consequence of the Markov condition (with respect to the causal DAG) for the probability distribution P
the intervention distribution $P\left(Y \mid \operatorname{do}\left(X^{(2)}=x\right)\right)$ can be calculated from

- observational data
\sim need to estimate conditional distributions
- an influence diagram (causal DAG)
\leadsto need to estimate structure of a graph/influence diagram
intervention effect: for example

$$
\begin{aligned}
& \mathbb{E}\left[Y \mid \operatorname{do}\left(X^{(2)}=x\right)\right]=\int y P\left(y \mid \operatorname{do}\left(X^{(2)}=x\right)\right) d y \\
& \text { intervention effect at } x_{0}:\left.\frac{\partial}{\partial x} \mathbb{E}\left[Y \mid \operatorname{do}\left(X^{(2)}=x\right)\right]\right|_{x=x_{0}}
\end{aligned}
$$

in the Gaussian case: $Y, X^{(1)}, \ldots, X^{(p)} \sim \mathcal{N}_{p+1}(\mu, \Sigma)$,

$$
\frac{\partial}{\partial x} \mathbb{E}\left[Y \mid \operatorname{do}\left(X^{(2)}=x\right)\right] \equiv \theta_{2} \text { for all } x
$$

when having no unmeasured confounder (variable):
intervention effect (as defined) = causal effect

when having no unmeasured confounder (variable):
intervention effect (as defined) = causal effect
causal effect = effect from a randomized trial (but we want to infer it without a randomized study... because often we cannot do it, or it is too expensive)

An important characterization
recap, Gaussian case: $\frac{\partial}{\partial x} \mathbb{E}\left[Y \mid \operatorname{do}\left(X^{(j)}=x\right)\right] \equiv \theta_{j}$ for all x for $Y \notin \mathrm{pa}(j)$:
θ_{j} is the regression parameter in

$$
Y=\theta_{j} X^{(j)}+\sum_{k \in \mathrm{pa}(j)} \theta_{k} X^{(k)}+\text { error }
$$

only need parental set and regression
$j=2, \mathrm{pa}(j)=\{3,4\}$

in the Gaussian case:
causal inference = regression when conditioning on the right variables

Inferring intervention effects from observational data

main problem: inferring DAG from observational data
\leadsto impossible: can only infer equivalence class of DAGs (several DAGs can encode exactly the same conditional independence relationships)
the usual statistical inference principle doesn't work: observational probability distribution/data $P \Rightarrow$ parameter $\theta(P)$
here:
P and graph $\mathcal{G} \Rightarrow$ parameter $\theta(P, \mathcal{G})$
impossible to estimate causal/intervention effects from observational data
but we will be able to estimate lower bounds of causal effects conceptual "procedure"
prohability distrihution P from a DAG, generating the data $~$ true underlying equivalence class of DAG's find all DAG-members of true equivalence class: \mathcal{G}_{1} for avery DAG-member G, and avary variahle single intervention effect $\theta_{r i}$ summarize them by
impossible to estimate causal/intervention effects from observational data
but we will be able to estimate lower bounds of causal effects
conceptual "procedure":

- probability distribution P from a DAG, generating the data \sim true underlying equivalence class of DAG's
- find all DAG-members of true equivalence class: $\mathcal{G}_{1}, \ldots, \mathcal{G}_{m}$
- for every DAG-member \mathcal{G}_{r}, and every variable $X^{(j)}$: single intervention effect $\theta_{r, j}$ summarize them by

$$
\underbrace{\Theta=\left\{\theta_{r, j} ; r=1, \ldots, m ; j=1, \ldots, p\right\}}_{\text {population quantity }}
$$

IDA (oracle version)

If you want a single number for every variable ...
instead of the multi-set

$$
\Theta=\left\{\theta_{r, j} ; r=1, \ldots, m ; j=1, \ldots, p\right\}
$$

minimal absolute value

$$
\begin{aligned}
& \alpha_{j}=\min _{r}\left|\theta_{r, j}\right| \quad(j=1, \ldots, p) \\
& \left|\theta_{\text {true }, j}\right| \geq \alpha_{j}
\end{aligned}
$$

minimal absolute effect α_{j} is a lower bound for true absolute intervention effect

\exists Computationally tractable algorithm

searching for all DAGs is computationally infeasible if p is large (we actually can do this up to $p \approx 15$)
instead of finding all m DAG's within an equivalence class \leadsto compute all intervention effects without finding all DAG's Maathuis, Kalisch \& PB (2009):

- algorithm which works on local aspects of the graph only
- proof that such a local algorithm is computing Θ

IDA (local sample version)

Estimation from finite samples

difficult part: estimation of CPDAG (equivalence class of DAG's)
\leadsto estimation of structure
$P \Rightarrow \quad \underbrace{\text { CPDAG }}$
equiv. class of DAG's

this can be inferred (statistical testing) from a list of conditional independence statements:

$$
X^{(j)} \not \perp X^{(k)} \mid X^{(S)} \text { for all subsets } S \subseteq\{1, \ldots, p\} \backslash\{j, k\}
$$

or

$$
X^{(j)} \perp X^{(k)} \mid X^{(S)} \text { for some subset } S \subseteq\{1, \ldots, p\} \backslash\{j, k\}
$$

so-called faithfulness assumption allows to reduce to "some subsets S"

Faithfulness assumption

A distribution P is called faithful to a DAG G if all conditional independencies can be inferred from the graph
(can infer some conditional independencies from a Markov assumption; but we require here "all" conditional independencies)

What does it mean?

$$
\begin{aligned}
& X^{(1)} \leftarrow \varepsilon^{(1)} \\
& X^{(2)} \leftarrow \alpha X^{(1)}+\varepsilon^{(2)} \\
& X^{(3)} \leftarrow \beta X^{(1)}+\gamma X^{(2)}+\varepsilon^{(3)} \\
& \varepsilon^{(1)}, \varepsilon^{(2)}, \varepsilon^{(3)} \text { i.i.d. } \sim \mathcal{N}(0,1)
\end{aligned}
$$

enforce marginal independence of $X^{(1)}$ and $X^{(3)}$
$\beta+\alpha \gamma=0$, e.g. $\alpha=\beta=1, \gamma=-1$

$$
\Sigma=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right), \Sigma^{-1}=\left(\begin{array}{rrr}
3 & -2 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

failure of faithfulness due to cancellation of regression coefficients

The PC-algorithm (Spirtes \& Glymour, 1991)

- crucial assumption: distribution P is faithful to the true underlying DAG
i.e. all conditional (in-)dependencies can be read-off from the DAG (using the Markov property)
- less crucial but convenient: Gaussian assumption for $Y, X^{(1)}, \ldots, X^{(p)} \leadsto$ can work with partial correlations
strategy of the algorithm:
- estimate the skeleton first
- estimate some of the directions (using some special rules)

PC-algorithm: a rough outline
for estimating the skeleton of underlying DAG

1. start with the full graph (all edges present)
2. remove edge $i-j$ if standard sample correlation $\widehat{\operatorname{Cor}}\left(X^{(i)}, X^{(j)}\right)$ is small by using Fisher's Z-transform and exact null-distribution of zero correlation
3. move up to partial correlations of order 1: remove edge $i-j$ if standard sample partial correlation $\widehat{\operatorname{Parcor}}\left(X^{(i)}, X^{(j)} \mid X^{(k)}\right)$ is small for some k in the current neighborhood of i or j (thanks to faithfulness)
4. move up to partial correlations of order 2: remove edge $i-j$ if standard sample partial correlation $\widehat{\operatorname{Parcor}}\left(X^{(i)}, X^{(j)} \mid X^{(k)}, X^{(\ell)}\right)$ is small for some k, ℓ in the current neighborhood of i or j (thanks to faithfulness)
5. until removal of edges is not possible anymore
additional step of the algorithm needed for estimating directions yields an estimate of the CPDAG (equivalence class of DAG's)
one tuning parameter (cut-off parameter) α for truncation of estimated Z-transformed partial correlations
if the graph is "sparse" (few neighbors) \sim few iterations only and only low-order partial correlations play a role
and thus: the estimation algorithm works for $p \gg n$ problems
the trick is:

Local computations on graphs

Theorem (Kalisch \& PB, 2007; Maathuis, Kalisch \& PB, 2009) triangular scheme of observations

- $Y, X^{(1)}, \ldots, X^{\left(p_{n}\right)} \sim \mathcal{N}_{p_{n}+1}\left(\mu_{n}, \Sigma_{n}\right)$ faithful to a DAG $\forall n$
- $p_{n}=O\left(n^{\alpha}\right)(0 \leq \alpha<\infty)$ (high-dimensional)
- $d_{n}=\max _{j} \mid$ ne($\left.j\right) \mid=o(n)$ (sparsity)
- non-zero (partial) correlations $\gg n^{-1 / 2}$ ("signal strength") $\min \left\{\left|\rho_{n ; i, j \mid S}\right| ; \rho_{n ; i, j \mid S} \neq 0, i \neq j,|S| \leq d_{n}\right\} \gg n^{-1 / 2}$
- maximal (partial) correlations $\leq C<1$ ("coherence") $\max _{i \neq j ;|S| \leq d_{n}}\left|\rho_{n ; i, j \mid S}\right| \leq C<1$
Then: for some suitable $\alpha=\alpha_{n}$

$$
\begin{aligned}
& \mathbb{P}[\widehat{\operatorname{CPDAG}}(\alpha)=\text { true CPDAG }]=1-O\left(\exp \left(C n^{1-\delta}\right)\right) \\
& \mathbb{P}\left[\hat{\Theta}_{\text {local }}(\alpha) \text { as set } \Theta\right]=1-O\left(\exp \left(C n^{1-\delta}\right)\right)
\end{aligned}
$$

(i.e. consistency of lower bounds for causal effects)

Criticisms

two main conditions:

- faithfulness assumption is it restrictive?
- non-zero partial correlations sufficiently large this is the analogue of the beta-min condition in regression

The role of sparsity in causal inference

as usual, sparsity is useful/necessary for estimation in presence of noise
but here: sparsity is crucial for identifiability as well

X causes Y

cannot tell from observational data the direction of the arrow
the same situation arises with a full graph with more than 2 nodes
\leadsto
causal identification really needs sparsity the better the sparsity the tighter the bounds for causal effects

How well can we do?

the real success is the prediction of causal effects on gene interactions in yeast
where the true causal effects are "known" thanks to intervention experiments
Maathuis, Colombo, Kalisch \& PB (2010)

Arabidopsis thaliana

response Y : days to bolting (flowering) of the plant (aim: fast flowering plants)
X : gene-expression profile
observational data with $n=47$ and $p=21^{\prime} 326$ A. thaliana ecotypes (D. Weigel, Tübingen) and L. Hennig/W. Gruissem (ETH Zürich)
lower bound estimate $\hat{\alpha}_{j}$ for causal effect of gene j on Y apply stability selection for lower bounds $\hat{\alpha}_{j}$'s

Causal gene ranking

	Gene	summary rank	median effect	expression	$\begin{aligned} & \text { error } \\ & \text { (PCER) } \end{aligned}$	name
1	AT2G45660	1	0.60	5.07	0.0017	AGL20 (SOC1)
2	AT4G24010	2	0.61	5.69	0.0021	ATCSLG1
3	AT1G15520	2	0.58	5.42	0.0017	PDR12
4	AT3G02920	5	0.58	7.44	0.0024	replication protein-related
5	AT5G43610	5	0.41	4.98	0.0101	ATSUC6
6	AT4G00650	7	0.48	5.56	0.0020	FRI
7	AT1G24070	8	0.57	6.13	0.0026	ATCSLA10
8	AT1G19940	9	0.53	5.13	0.0019	AtGH9B5
9	AT3G61170	9	0.51	5.12	0.0034	protein coding
10	AT1G32375	10	0.54	5.21	0.0031	protein coding
11	AT2G15320	10	0.50	5.57	0.0027	protein coding
12	AT2G28120	10	0.49	6.45	0.0026	protein coding
13	AT2G16510	13	0.50	10.7	0.0023	AVAP5
14	AT3G14630	13	0.48	4.87	0.0039	CYP72A9
15	AT1G11800	15	0.51	6.97	0.0028	protein coding
16	AT5G44800	16	0.32	6.55	0.0704	CHR4
17	AT3G50660	17	0.40	7.60	0.0059	DWF4
18	AT5G10140	19	0.30	10.3	0.0064	FLC
19	AT1G24110	20	0.49	4.66	0.0059	peroxidase, putative
20	AT1G27030	20	0.45	10.1	0.0059	unknown protein

- biological validation by gene knockout experiments in progress.
we performed validation experiment with mutants corresponding to these top $20-3=17$ genes
- 14 mutants easily available \leadsto only test for 14 genes
- more than usual: mutants showed low germination or survival...
- 9 among the 14 mutants survived (sufficiently strongly), i.e. 9 mutants for which we have an outcome
- 3 among the 9 mutants (genes) showed a significant effect on Y relative to the wildtype (non-mutated plant)
\leadsto besides the three known genes, we find three additional genes which exhibit a significant effect in terms of "time to flowering"

Beware of over-interpretation!

so far, based on current data:

- we can not reliably infer the causal network despite theory... and because of theory stability selection yields rather unstable networks
- but we often(?) can do better ranking/prediction for intervention/causal effects than sophisticated but conceptually wrong regression methods
intervention/perturbation experiments can be very informative in progress: combined estimation for observational and interventional data (Hauser \& PB, in progress)

Conclusions

high-dimensional statistics: possibilities/limitations if

$$
s_{0} \sqrt{\log (p) / n} \text { small/large; } \quad\left(\text { or } s_{0} \log (p) / n \text { small/large }\right)
$$

often subtle conditions on the "design" and "signal strength": they matter in practice!

- prediction is "relatively easy"
- variable selection or structure estimation is much harder top priority: efficiently guard against false positives (age-old problem in statistics!) stability selection, p-values based on sample splitting,...
- trick of convex relaxation (e.g. convex loss function and convex penalty) is beautiful and powerful
- linear models, GLMs,...
- not (easily) possible for many models
e.g. mixture models, mixed-effects models,...,

DAGs and causal inference

- particularly challenging but important for many scientific problems: causal inference
- severe identifiability issues
- nonconvex optimization but fairly efficient local computations on graphs

Thank you!

References:

- Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methodology, Theory and Applications. Springer (forthcoming)

- Meinshausen, N. and Bühlmann, P. (2010). Stability selection (with discussion). Journal of the Royal Statistical Society: Series B, 72, 417-473
- Maathuis, M.H., Kalisch, M. and Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics 37, 3133-3164.
- Maathuis, M.H., Colombo, D., Kalisch, M. and Bühlmann, P. (2010). Predicting causal effects in large-scale systems from observational data. Nature Methods 7, 247-248.

Convex relaxation?

I don't know the answer... but
when parameterizing the (CP)DAG via structural equation models
\leadsto corresponding parameter space is non-convex!
Example:

$$
\begin{aligned}
& X^{(1)} \leftarrow \beta_{1} X^{(2)}+\varepsilon^{(1)} \\
& X^{(2)} \leftarrow \beta_{2} X^{(1)}+\varepsilon^{(2)}
\end{aligned}
$$

and hence: no straightforward way to do convex relaxation

