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ETH Zürich

December 2010



Sara van de Geer
ETH Zurich

Nicolai Meinshausen
Oxford University

Marloes Maathuis
ETH Zurich

Markus Kalisch
ETH Zurich



High-dimensional data
1. Classification of tumor samples based on gene expression

microarray data, e.g. p = 7130,n = 49 (p � n)

M.Dettling and P.Bühlmann

Table 1. Test set error rates based on leave one out cross validation for leukemia, colon, estrogen, nodal, lymphoma and NCI data with gene subsets from
feature selection ranging between 10 to all genes for several classifiers. LogitBoost error rates are reported with optimal stopping (minimum cross-validated
error across iterations), after a fixed number of 100 iterations as well as with the estimated stopping parameter. The cross validation with estimated stopping
parameters for the lymphoma and NCI data with all genes was not feasible

Leukemia 10 25 50 75 100 200 3571

LogitBoost, optimal 4.17% 2.78% 4.17% 2.78% 2.78% 2.78% 2.78%
LogitBoost, estimated 6.94% 5.56% 5.56% 4.17% 4.17% 5.56% 5.56%
LogitBoost, 100 iterations 5.56% 2.78% 4.17% 2.78% 2.78% 2.78% 2.78%
AdaBoost, 100 iterations 4.17% 4.17% 4.17% 4.17% 4.17% 2.78% 4.17%
1-nearest-neighbor 4.17% 1.39% 4.17% 5.56% 4.17% 2.78% 1.39%
Classification tree 22.22% 22.22% 22.22% 22.22% 22.22% 22.22% 23.61%

Colon 10 25 50 75 100 200 2000

LogitBoost, optimal 14.52% 16.13% 16.13% 16.13% 16.13% 14.52% 12.90%
LogitBoost, estimated 22.58% 19.35% 22.58% 20.97% 22.58% 19.35% 19.35%
LogitBoost, 100 iterations 14.52% 22.58% 22.58% 19.35% 17.74% 16.13% 16.13%
AdaBoost, 100 iterations 16.13% 24.19% 24.19% 17.74% 20.97% 17.74% 17.74%
1-nearest-neighbor 17.74% 14.52% 14.52% 20.97% 19.35% 17.74% 25.81%
Classification tree 19.35% 22.58% 29.03% 32.26% 27.42% 14.52% 16.13%

Estrogen 10 25 50 75 100 200 7129

LogitBoost, optimal 4.08% 4.08% 2.04% 2.04% 2.04% 4.08% 2.04%
LogitBoost, estimated 6.12% 6.12% 6.12% 6.12% 6.12% 6.12% 6.12%
LogitBoost, 100 iterations 8.16% 6.12% 6.12% 4.08% 4.08% 8.16% 6.12%
AdaBoost, 100 iterations 8.16% 8.16% 2.04% 2.04% 6.12% 4.08% 4.08%
1-nearest-neighbor 4.08% 8.16% 18.37% 12.24% 14.29% 14.29% 16.33%
Classification tree 4.08% 4.08% 4.08% 4.08% 4.08% 4.08% 4.08%

Nodal 10 25 50 75 100 200 7129

LogitBoost, optimal 16.33% 18.37% 22.45% 22.45% 22.45% 18.37% 20.41%
LogitBoost, estimated 22.45% 30.61% 30.61% 34.69% 28.57% 26.53% 24.49%
LogitBoost, 100 iterations 18.37% 20.41% 26.53% 42.86% 42.86% 18.37% 22.45%
AdaBoost, 100 iterations 18.37% 16.33% 28.57% 40.82% 36.73% 22.45% 28.57%
1-nearest-neighbor 18.37% 30.61% 30.61% 42.86% 36.73% 36.73% 48.98%
Classification tree 22.45% 20.41% 20.41% 20.41% 20.41% 20.41% 20.41%

Lymphoma 10 25 50 75 100 200 4026

LogitBoost, optimal 1.61% 3.23% 1.61% 1.61% 1.61% 3.23% 8.06%
LogitBoost, estimated 3.23% 3.23% 3.23% 1.61% 3.23% 3.23% -%
LogitBoost, 100 iterations 1.61% 3.23% 1.61% 1.61% 1.61% 3.23% 8.06%
AdaBoost, 100 iterations 4.84% 3.23% 1.61% 1.61% 1.61% 1.61% 3.23%
Nearest neighbor 1.61% 0.00% 0.00% 0.00% 0.00% 1.61% 1.61%
Classification tree 22.58% 22.58% 22.58% 22.58% 22.58% 22.58% 25.81%

NCI 10 25 50 75 100 200 5244

LogitBoost, optimal 32.79% 31.15% 27.87% 22.95% 26.23% 24.59% 31.15%
LogitBoost, estimated 36.07% 44.26% 36.07% 39.34% 44.26% 47.54% -%
LogitBoost, 100 iterations 37.70% 44.26% 34.43% 29.51% 26.23% 24.59% 36.07%
AdaBoost, 100 iterations 50.82% 37.70% 34.43% 29.51% 32.79% 29.51% 36.07%
Nearest neighbor 36.07% 29.51% 27.87% 24.59% 22.95% 22.95% 27.87%
Classification tree 70.49% 68.85% 65.57% 65.57% 60.66% 62.30% 62.30%
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2. Riboflavin production with Bacillus Subtilis
(in collaboration with DSM (Switzerland))

goal: improve riboflavin production rate of Bacillus Subtilis
using clever genetic engineering

response variables Y ∈ R: riboflavin (log-) production rate
covariates X ∈ Rp: expressions from p = 4088 genes
sample size n = 115, p � n

gene expression data

Y versus 9 “reasonable” genes
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High-dimensional linear models

Yi = (µ+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . ,n

p � n
in short: Y = Xβ + ε

goals:
I prediction, e.g. w.r.t. squared prediction error
I estimation of parameter β
I variable selection

i.e. estimating the effective variables
(having corresponding coefficient 6= 0)



Exemplifying the outline

binary lymph node classification using gene expressions

a high noise problem: n = 49 samples, p = 7130 gene expr.

despite that it is classification:
p(x) = P[Y = 1|X = x ] = E[Y |X = x ]
; p̂(x) via linear model; can then do classification

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM

21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

with variable selection best 200 genes (Wilcoxon test)
no additional variable selection

from a practical perspective:
if you trust in cross-validation: can “validate” how good we are
i.e. prediction may be a black box, but we can “evaluate” it



Exemplifying the outline

binary lymph node classification using gene expressions

a high noise problem: n = 49 samples, p = 7130 gene expr.

despite that it is classification:
p(x) = P[Y = 1|X = x ] = E[Y |X = x ]
; p̂(x) via linear model; can then do classification

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM

21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

with variable selection best 200 genes (Wilcoxon test)
no additional variable selection

from a practical perspective:
if you trust in cross-validation: can “validate” how good we are
i.e. prediction may be a black box, but we can “evaluate” it



“however”

I cross-validation has large variability...
still want to know whether a method is good or optimal for
prediction

I if concerned about ‖β̂ − β0‖ (estimation error)
; no easy (cross-) validation available

I if concerned about the active set S0 = {j ; β0
j 6= 0} and

variable selection
; no easy (cross-) validation available

and this is the outline:
• prediction, estimation, variable selection

in regression/classification
• and then graphical modeling and intervention/causal analysis



The Lasso (Tibshirani, 1996)

Lasso for linear models

β̂(λ) = argminβ(n−1‖Y− Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

; convex optimization problem

I Lasso does variable selection
some of the β̂j(λ) = 0
(because of “`1-geometry”)

I β̂(λ) is a shrunken LS-estimate



more about “`1-geometry”

equivalence to primal problem

β̂primal(R) = argminβ;‖β‖1≤R‖Y− Xβ‖22/n,

with a one-to-one correspondence between λ and R which
depends on the data (X1,Y1), . . . , (Xn,Yn)
[such an equivalence holds since

I ‖Y− Xβ‖22/n is convex in β
I convex constraint ‖β‖1 ≤ R

see e.g. Bertsekas (1995)]



p=2

left: `1-“world”
residual sum of squares reaches a minimal value (for certain
constellations of the data) if its contour lines hit the `1-ball in its
corner
; β̂1 = 0



`2-“world” is different

Ridge regression,

β̂Ridge(λ) = argminβ

(
‖Y− Xβ‖22/n + λ‖β‖22

)
,

equivalent primal equivalent solution

β̂Ridge;primal(R) = argminβ;‖β‖2≤R‖Y− Xβ‖22/n,
with a one-to-one correspondence between λ and R



Orthonormal design

Y = Xβ + ε, n−1XT X = I

Lasso = soft-thresholding estimator
β̂j(λ) = sign(Zj)(|Zj | − λ/2)+, Zj︸︷︷︸

=OLS

= (n−1XT Y)j ,

β̂j(λ) = gsoft(Zj),
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Using the Lasso...

in practice: choose λ via cross-validation (e.g. 10-fold)

use cross-validation again to validate the procedure
(need double cross-validation)

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

with variable selection best 200 genes (Wilcoxon test)
no additional variable selection

and Lasso selects on CV-average 13.12 out of p = 7130 genes



Theory for the Lasso: Prediction and estimation

fixed design linear model Y = Xβ0 + ε

Basic inequality

n−1‖X(β̂ − β0)‖22 + λ‖β̂‖1 ≤ 2n−1εT X(β̂ − β0) + λ‖β0‖1

Proof:

n−1‖Y− Xβ̂‖22 + λ‖β̂‖1 ≤ n−1‖Y− Xβ0‖22 + λ‖β0‖1

n−1‖Y−Xβ̂‖22 = n−1‖X(β̂−β0)‖22 + n−1‖ε‖22− 2n−1εT X(β̂−β0)
n−1‖Y− Xβ0‖22 = n−1‖ε‖22
; statement above 2

need a bound for 2n−1εT X(β̂ − β0)



2n−1εT X(β̂ − β0) ≤ 2 max
j=1,...,p

|n−1
n∑

i=1

εiX
(j)
i |‖β̂ − β

0‖1

consider

T = T (λ0) = {2 max
j
|n−1

n∑
i=1

εiX
(j)
i | ≤ λ0}

the probabilistic part of the problem

on T : 2n−1εT X(β̂ − β0) ≤ λ0‖β̂ − β0‖1 ≤ λ0‖β̂‖1 + λ0‖β0‖1

and hence using the Basic inequality

on T : n−1‖X(β̂ − β0)‖2
2 + (λ− λ0)‖β̂‖1 ≤ (λ0 + λ)‖β0‖1

for λ ≥ 2λ0:

on T = T (λ0): 2n−1‖X(β̂ − β0)‖22 + λ‖β̂‖1 ≤ 3λ‖β0‖1



choice of λ and probability of the set T

λ as small as possible such that λ ≥ 2λ0 (see above)
λ0 such that τ = τ(λ0) has large probability

Vj = n−1/2σ−1
n∑

i=1

εiX
(j)
i ; T (λ0) = {2 max

j=1,...,p
|Vj | ≤ λ0n1/2σ−1}

Example:
Gaussian errors ε1, . . . , εn i.i.d. N (0, σ2)
and scaled covariates n−1‖X(j)‖22 ≡ 1
then: Vj ∼ N (0,1) ;

λ0 = 2σ

√
u2 + 2 log(p)

n
⇒ P[T (λ0)] ≥ 1− 2 exp(u2/2)

can generalize to non-Gaussian errors (sub-Gaussian distr.,
higher moments), to dependent errors, ...



for prediction with high-dimensional `1-penalization:

λ � λ0 �
√

log(p)/n

unless the variables are very correlated
; would relax the log(p) factor a bit



recall for λ ≥ 2λ0:

on T (λ0): 2n−1‖X(β̂ − β0)‖22 + λ‖β̂‖1 ≤ 3λ‖β0‖1

and hence: for λ (and λ0) �
√

log(p)/n,

n−1‖X(β̂ − β0)‖22 = ‖β0‖1OP(
√

log(p)/n)

;

• consistency for prediction if ‖β0‖1 = o(
√

n/ log(p))
essentially recovering Greenshtein & Ritov (2004)
with a simple structure how to generalize to other settings
• convergence rate OP(

√
log(p)/n) is “far from optimal”

• no assumptions on the (fixed) design matrix



aim: n−1‖X(β̂ − β0)‖22 = s0OP(log(p)/n), s0 = |S0| = |{j ; β0
j 6= 0}|

unfortunately, for the Lasso and other computationally feasible
methods: need conditions on X

idea: recall the basic inequality

n−1‖X(β̂ − β0)‖22 + λ‖β̂‖1 ≤ 2n−1εT X(β̂ − β0) + λ‖β0‖1

simple re-writing (triangle inequality) on T (λ0), with λ ≥ 2λ0,

2‖(β̂ − β0)Σ̂(β̂ − β0)‖22 + λ‖β̂Sc
0
‖1 ≤ 3λ‖β̂S0 − β

0
S0
‖1

where Σ̂ = n−1XT X

relate ‖β̂S0 − β
0
S0
‖1 to (with ≤ relation) (β̂ − β0)Σ̂(β̂ − β0)

(and bring it to the left hand side)
this is a kind of restricted `1-eigenvalue problem



reminder:
‖β‖22 ≤

βT Σ̂β
Λ2

min
where Λ2

min is the smallest eigenvalue of Σ̂

here: Compatibility condition (van de Geer, 2007)
smallest restricted `1-eigenvalue:
active set S0 with s0 = |S0|
compatibility constant φ2

0 > 0 such that for all β satisfying
‖βSc

0
‖1 ≤ 3‖βS0‖1, it holds that

‖βS0‖
2
1 ≤

(βT Σ̂β)s0

φ2
0

(appearance of s0 due to ‖βS0‖
2
1 ≤ s0‖βS0‖

2
2)



oracle inequality
for λ ≥ 2λ0:

on T (λ0): n−1‖X(β̂ − β0)‖22 + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0

asymptotics: λ �
√

log(p)/n,

n−1‖X(β̂ − β0)‖22 ≤
s0

φ2
0

OP(log(p)/n),

‖β̂ − β0‖1 ≤
s0

φ2
0

OP(
√

log(p)/n)



just make the appropriate assumptions to prove what you like...

real question:
how restrictive is compatibility condition (smallest restricted
`1-eigenvalue)?

it is (slightly) weaker than the restricted eigenvalue assumption
(Bickel, Ritov & Tsybakov, 2009)

more generally: (van de Geer & PB, 2009)

weak (S,2s)- RIPRIP adaptive (S, 2s)-
restricted regression

(S,2s)-restricted 
eigenvalue

S-compatibility

coherence adaptive (S, s)-
restricted regression

(S,s)-restricted 
eigenvalue

(S,s)-uniform
irrepresentable

(S,2s)-irrepresentableweak (S, 2s)-
irrepresentable

|S \S| =0*

|S \S| ≤ s*

oracle inequalities for prediction and estimation

8

6

6

4

3

3

2

6

5

7

96

S =S*

6

6



just make the appropriate assumptions to prove what you like...

real question:
how restrictive is compatibility condition (smallest restricted
`1-eigenvalue)?

it is (slightly) weaker than the restricted eigenvalue assumption
(Bickel, Ritov & Tsybakov, 2009)

more generally: (van de Geer & PB, 2009)

weak (S,2s)- RIPRIP adaptive (S, 2s)-
restricted regression

(S,2s)-restricted 
eigenvalue

S-compatibility

coherence adaptive (S, s)-
restricted regression

(S,s)-restricted 
eigenvalue

(S,s)-uniform
irrepresentable

(S,2s)-irrepresentableweak (S, 2s)-
irrepresentable

|S \S| =0*

|S \S| ≤ s*

oracle inequalities for prediction and estimation

8

6

6

4

3

3

2

6

5

7

96

S =S*

6

6



Does compatibility condition hold in practice?

it is non-checkable (in contrast to checkable but restrictive
conditions Juditsky & Nemirovski (2008) ... which presumably
would often fail in e.g. genomic data-sets)

assume that X1, . . . ,Xn i.i.d. with E[X ] = 0, Cov(X ) = Σ

I compatibility constant φ2
0,Σ for Σ is bounded away from

zero
(maybe even the smallest eigenvalue of Σ is bounded
away from zero)

I moment conditions for X (including e.g. Gaussian case)
I sparsity s0 = O(

√
n/ log(p))

;

φ2
0,Σ̂ ≥ φ

2
0,Σ/2 with high probability

(van de Geer & PB, 2009)
for sparse problems, the compatibility condition is “likely to hold”



Summary I (for Lasso)

for fixed design linear models:

fact 1:
no design conditions and mild assumption on error distribution:
• “slow” rate n−1‖X(β̂ − β0)‖22 = ‖β0‖1OP(

√
log(p)/n)

consistency for prediction if ‖β0‖1 = o(
√

n/ log(p))

fact 2:
compatibility condition (or restricted eigenvalue condition) and
mild assumption on error distribution:
• fast rate n−1‖X(β̂ − β0)‖22 ≤

s0
φ2

0
OP(log(p)/n)

• ‖β̂ − β0‖1 ≤ s0
φ2

0
OP(

√
log(p)/n)

“myth”: design assumptions for Lasso (in fact 2) are restrictive
“not really true” in the regime s0 = O(

√
n/ log(p))



Remark:
fast convergence rate for prediction is possible without design
conditions using
• `0-penalization (Barron, Birgé & Massart, 1999)

computationally infeasible
• exponential weighting (Dalalyan & Tsybakov, 2008)

computationally “cumbersome”

theory and methodology generalizes to
non-convex loss functions (GLMs),
additive models (Group Lasso), multitask models, ...
and “similar findings” with Dantzig selector, orthogonal
matching pursuit, boosting,...



Variable selection

Example: Motif regression
for finding HIF1α transcription factor binding sites in DNA seq.
Müller, Meier, PB & Ricci

Yi ∈ R: univariate response measuring binding intensity of
HIF1α on coarse DNA segment i (from CHIP-chip experiments)
Xi = (X (1)

i , . . . ,X (p)
i ) ∈ Rp:

X (j)
i = abundance score of candidate motif j in DNA segment i

(using sequence data and computational biology algorithms,
e.g. MDSCAN)



question: relation between the binding intensity Y and the
abundance of short candidate motifs?

; linear model is often reasonable
“motif regression” (Conlon, X.S. Liu, Lieb & J.S. Liu, 2003)

Y = Xβ + ε, n = 287, p = 195

goal: variable selection
; find the relevant motifs among the p = 195 candidates



Lasso for variable selection

Ŝ(λ) = {j ; β̂j(λ) 6= 0}
for S0 = {j ;β0

j 6= 0}

no significance testing involved
it’s convex optimization only!

(and that can be a problem... see later)



Motif regression

for finding HIF1α transcription factor binding sites in DNA seq.

Yi ∈ R: univariate response measuring binding intensity on
coarse DNA segment i (from CHIP-chip experiments)
X (j)

i = abundance score of candidate motif j in DNA segment i

variable selection in linear model Yi = µ+

p∑
j=1

βjX
(j)
i + εi ,

i = 1, . . . ,n = 287, p = 195

; Lasso selects 26 covariates and R2 ≈ 50%
i.e. 26 interesting candidate motifs



Theory for the Lasso: Part II (variable selection)

for (fixed design) linear model Y = Xβ0 + ε with
active set S0 = {j ; β0

j 6= 0}
two key assumptions

1. neighborhood stability condition for design X
⇔ irrepresentable condition for design X

2. beta-min condition

min
j∈S0
|β0

j | ≥ C
√

log(p)/n, C suitably large

both conditions are sufficient and “essentially” necessary for

Ŝ(λ) = S0 with high probability, λ�
√

log(p)/n︸ ︷︷ ︸
larger than for pred.

already proved in Meinshausen & PB, 2004 (publ: 2006)
and both assumptions are restrictive!
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neighborhood stability condition⇔ irrepresentable condition
(Zhao & Yu, 2006)

n−1XT X = Σ̂

active set S0 = {j ; βj 6= 0} = {1, . . . , s0} consists of the first s0
variables; partition

Σ̂ =

(
Σ̂S0,S0 Σ̂S0,Sc

0

Σ̂Sc
0 ,S0 Σ̂Sc

0 ,Sc
0

)

irrep. condition : ‖Σ̂Sc
0 ,S0

Σ̂−1
S0,S0

sign(β0
1 , . . . , β

0
s0

)T‖∞ < 1



various design conditions (van de Geer & PB, 2009)

weak (S,2s)- RIPRIP adaptive (S, 2s)-
restricted regression
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irrepresentable condition is (much more) restrictive than the
compatibility condition
(and irrepresentable condition is necessary for recovery of S0
with the Lasso)



not very realistic assumptions... what can we expect?

recall: under compatibility condition and mild assumption on
error distribution

‖β̂ − β0‖1 ≤ C
s0

φ2
0

√
log(p)/n

consider the relevant active variables

Srelev = {j ; |β0
j | > C

s0

φ2
0

√
log(p)/n}

then, clearly,

Ŝ ⊇ Srelev with high probability

screening for detecting the relevant variables is possible!
without beta-min condition and assuming compatibility
condition only



in addition: assuming beta-min condition

min
j∈S0
|β0

j | > C
s0

φ2
0

√
log(p)/n

Ŝ ⊇ S0 with high probability

screening for detecting the true variables



Tibshirani (1996):
LASSO = Least Absolute Shrinkage and Selection Operator

new translation PB (2010):
LASSO = Least Absolute Shrinkage and Screening Operator



Practical perspective

choice of λ: λ̂CV from cross-validation
empirical and theoretical indications (Meinshausen & PB, 2006)
that

Ŝ(λ̂CV ) ⊇ S0 (or Srelev)

moreover

|Ŝ(λ̂CV )| ≤ min(n,p)(= n if p � n)

; huge dimensionality reduction (in the original covariates)



recall:

Ŝ(λ̂CV ) ⊇ S0 (or Srelev)

and we would then use a second-stage to reduce the number
of false positive selections

; re-estimation on much smaller model with variables from Ŝ
I OLS on Ŝ with e.g. BIC variable selection
I thresholding coefficients and OLS re-estimation (Zhou,

2009)
I adaptive Lasso (Zou, 2006)
I ...
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Summary II (for Lasso)

variable selection: estimation of S0 = {j ; β0
j 6= 0} requires

(necessarily)
I irrepresentable condition for design
I beta-min condition on the coefficients

both of them are restrictive

but variable Screening is more realistic
assuming compatibility condition on the design (smallest
restricted `1-eigenvalue)

Ŝ(λ) ⊇ Srelev,

assuming beta-min cond.: Ŝ(λ) ⊇ S0



also here: mainly focused on the Lasso in linear models

many extensions have been worked out:
Group Lasso, Fused Lasso, sparsity-smoothness penalty,
Dantzig-selector,...
concave penalties: SCAD, MC+, and related adaptive Lasso,...
Orthogonal matching pursuit, boosting,...
marginal screening (sure independence screening),...

empirical and theoretical results are “similar”
I prediction is “easy”
I estimation of parameters and variable screening is often

“reasonably accurate”
I variable selection is “hard”



Gaussian graphical models

X1, . . . ,Xn i.i.d. ∼ Np(0,Σ)

goal: infer zeroes of Σ−1:

Σ−1
jk 6= 0 ⇔ X (j) 6⊥ X (k)|X ({1,...,p}\{j,k}) ⇔ edge j − k

nodewise regression can do the job:

X (j) =
∑
k 6=j

β
(j)
k X (k) + ε(j), j = 1, . . . ,p

;

β
(j)
k 6= 0, β(k)

j 6= 0⇔ Σ−1
jk 6= 0⇔ edge j − k



Meinshausen & PB (2006):
p Lasso regressions ; β̂(j)

estimate edge j − k

⇔ β̂
(j)
k 6= 0 and/or β̂(k)

j 6= 0

does not use the constraint of positive definiteness for Σ

but for inferring edge set (support estimation):
uncoupled nodewise regression requires substantially weaker
irrepresentable condition than simultaneous GLasso approach
based on multivariate Gaussian likelihood
(Friedman et al., 2007; Banerjee et al., 2008)
see Meinshausen (2004; publ. 2008)



Back to variable selection in regression
Motif regression for finding HIF1α transcription factor binding
sites in DNA sequences

Yi ∈ R: univariate response measuring binding intensity on
coarse DNA segment i (from CHIP-chip experiments)
X (j)

i = abundance score of candidate motif j in DNA segment i

variable selection in linear model Yi = µ+

p∑
j=1

βjX
(j)
i + εi ,

i = 1, . . . ,n = 287, p = 195

; Lasso selects 26 covariates and R2 ≈ 50%
i.e. 26 interesting candidate motifs

and hence report these findings to the biologists...

really?
how stable are the findings?
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estimated coefficients β̂(λ̂CV)
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stability check: subsampling with subsample size bn/2c
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; only 2 “stable” findings
( 6= 26)
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one variable (◦):
corresponds to true, known motif
other variable (◦): good additional support for relevance
(nearness to transcriptional start-site of important genes, ...)



“learning” from the example:

• using Ŝ(λ) = {j ; β̂j(λ) 6= 0}
for S0 is questionable
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• from theoretical point of view, many things can go wrong
as I explained for Lasso (and also true for many other methods)

• assigning uncertainty is completely missing



Stability Selection (Meinshausen & PB, 2010)
using subsampling (or bootstrapping)

consider (first) linear model setting

Yi = (µ+)

p∑
j=1

β0
j X (j)

i + εi , i = 1, . . . ,n (� p)

set of active variables: S0 = {j ; β0
j 6= 0}

variable selection procedure:

Ŝλ ⊆ {1, . . . ,p},
λ a tuning parameter

prime example: Lasso (Tibshirani, 1996)



subsampling:
I draw sub-sample of size bn/2c without replacement,

denoted by I∗ ⊆ {1, . . . ,n}, |I∗| = bn/2c
I run the selection algorithm Ŝλ(I∗) on I∗

I do these steps many times and compute the
relative selection frequencies

Π̂λ
j = P∗(j ∈ Ŝλ(I∗)), j = 1, . . . ,p

P∗ is w.r.t. sub-sampling (and maybe other sources of
randomness if a randomized selection algorithm is invoked)

could also use bootstrap sampling with replacement...
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randomness if a randomized selection algorithm is invoked)
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Stability selection

Ŝstable = {j ; Π̂λ
j ≥ πthr}

depends on λ via Π̂λ
j = P∗(j ∈ Ŝλ(I∗))

choice of πthr ; see later



if we consider many regularization parameters:

{Ŝλ; λ ∈ Λ}

Λ can be discrete, a singleton or continuous

Ŝstable = {j ; maxλ∈ΛΠ̂λ
j ≥ πthr}

see also Bach (2009) for a related proposal



The Lasso and its corresponding stability path

Y = riboflavin production rate in Bacillus Subtilis (log-scale)
X : p = 4088 gene expressions (log-scale),
sparsity peff “=” 6 (6 “relevant” genes;

all other variables permuted)
sample size n = 115

Lasso Stability selection

with stability selection: the 4-6 “true” variables are sticking out
much more clearly from noise covariates



stability selection cannot be reproduced by simply selecting the
right penalty with Lasso

stability selection provides a fundamentally new solution



Choice of threshold πthr ∈ (0,1)?



How to choose the threshold πthr?

consider a selection procedure which selects q variables
(e.g. top 50 variables when running Lasso over many λ’s)

denote by V =|Sc
0 ∩ Ŝstable| = number of false positives

Theorem (Meinshausen & PB, 2010)
main assumption: exchangeability condition
in addition: Ŝ has to be better than “random guessing”
Then:

E(V ) ≤ 1
2πthr − 1

q2

p

i.e. finite sample control, even if p � n
; choose threshold πthr to control e.g. E [V ] ≤ 1 or
P[V > 0] ≤ E [V ] ≤ α



note the generality of the Theorem...

I it works for any method which is better than “random
guessing”

I it works not only for regression but also for “any” discrete
structure estimation problem (whenever there is a
include/exclude decision)
; variable selection, graphical modeling, clustering, ...

and hence there must be a fairly strong condition...
Exchangeability condition:
the distribution of {I{j∈Ŝλ}; j ∈ Sc

0} is exchangeable
note: only some requirement for noise variables
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Discussion of the conditions in case of
random design linear model Y = Xβ0 + ε:

• no beta-min condition
(but the Theorem is only about false positives)

• exchangeability condition is restrictive:
example where it holds: Σ = Cov(X ) from equicorrelation

the theory is (as of now) too rough and does not indicate better
theoretical behavior for variable selection than for adaptive
Lasso (or thresholded Lasso)
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Some numerical experiments
Variable selection in linear models using Lasso
a range of scenarios:
p = 660 with design from a real data set about motif regression
n ∈ {450,750}, sparsity peff ∈ {4,8, . . . ,40} (using artificial β)
signal to noise ratio ∈ {0.25,1,4}

control for E [V ] ≤ 2.5
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control for E [V ] ≤ 2.5

number of wrongly selected variables
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stability selection yields:
I accurate control (as proved in theory)
I drastic reduction of false positives in comparison to

CV-tuned solution
I not much loss in terms of power (true positives)



Motif regression

stability selection with E[V ] ≤ 1
; two stably selected variables/motifs

one of them is a known binding site



Graphical modeling using GLasso
(Rothman, Bickel, Levina & Zhu, 2008; Friedman, Hastie & Tibshirani, 2008)

infer conditional independence graph using `1-penalization
i.e. infer zeroes of Σ−1 from X1, . . . ,Xn i.i.d. ∼ Np(0,Σ)

Σ−1
jk 6= 0 ⇔ X (j) 6⊥ X (k)|X ({1,...,p}\{j,k}) ⇔ edge j − k

gene expr. data
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sub-problem of riboflavin production with bacillus subtilis
p = 160, n = 115
stability selection with E [V ] ≤ 5

varying the regularization parameter λ in `1-penalization
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with stability selection: choice of initial λ-tuning parameter does
not matter much (as proved by our theory)
just need to fix the finite-sample control



permutation of variables
varying the regularization parameter for the null-case
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with stability selection: the number of false positives is indeed
controlled (as proved by our theory)
and here: exchangeability condition holds
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with stability selection: the number of false positives is indeed
controlled (as proved by our theory)
and here: exchangeability condition holds



stability selection is
Bagging the selection outcomes (instead of prediction)

Leo Breiman

and providing error control
in terms of E [V ] (; conservative FWER control)



Conclusions Part I

for the Lasso (and other computationally feasible methods)
in linear models (and other models):

property design condition size of non-zero coeff.
slow converg. rate no requirement no requirement
fast converg. rate restricted eigenvalue no requirement
variable screening restricted eigenvalue beta-min condition
variable selection neighborhood stability beta-min condition

⇔ irrepresentable cond.

for more reliable results in practice, in particular for
variable/feature selection: need something on top of it
; e.g. stability selection



Variable selection for causal target

regression is for quantifying association

for some applications we need something else



Gene knock-downs in yeast

p = 5360 genes
question:
if we would knock-down a single gene, what would be its effect
on all other genes?

goal:
want to infer/predict such effects without actually doing the
intervention
i.e. from observational data
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Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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... “causal inference from purely observed data could have
practical value in the prioritization and design of perturbation
experiments”

Editorial in Nature Methods (April 2010)



intervention = causality
(defined in mathematical terms)



A bit more specifically

I univariate response Y
I p-dimensional covariate X

question:
what is the effect of setting the j th component of X to a certain
value x :

do(X (j) = x)

; this is a question of intervention type; not association



in contrast to: (high-dimensional) regression

Y =

p∑
j=1

βjX (j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the importance of variable X (j) in terms of
“association”

i.e. change of Y as a function of X (j) when keeping all other
variables X (k) fixed

; not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these are not (cannot be) kept fixed
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Y =

p∑
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βjX (j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the importance of variable X (j) in terms of
“association”

i.e. change of Y as a function of X (j) when keeping all other
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if we change e.g. one gene, some others will also change
and these are not (cannot be) kept fixed



Intervention calculus
“dynamic” notion of importance:
if we set a variable X (j) to a value x (intervention)
; some other variables X (k) (k 6= j) and maybe Y will change

we want to quantify the “total” effect of
X (j) on Y including “all changed” X (k) on Y

a graph or influence diagram will be very useful

X1

X2

X3X4

Y

quantify total effect of X (2) to Y



for simplicity: just consider DAGs
(ancestral graphs with hidden variables: more involved)

for DAGs: recursive factorization of joint distribution

P(Y ,X (1), . . . ,X (p)) = P(Y |X (pa(Y )))

p∏
j=1

P(X (j)|X (pa(j)))

for intervention calculus: use truncated factorization (e.g. Pearl)



non-intervention

X(1)

X(2)

X(3)X(4)

Y

intervention at X (2)

X(1)

X(2) = x

X(3)X(4)

Y

independent errors &
autonom strcl. eqns.
⇔ Markov assump:

P(Y ,X (1),X (2),X (3),X (4)) =
P(Y |X (1),X (3))×
P(X (1)|X (2))×
P(X (2)|X (3),X (4))×
P(3)×
P(4)

independent errors &
autonom strcl. eqns:

P(Y ,X (1),X (3),X (4)|do(X (2) = x)) =
P(Y |X (1),X (3))×
P(X (1)|X (2) = x)×
P(3)×
P(4)



truncated factorization for do(X (2) = x),
i.e. intervention at X (2) by setting it to the value x :

P(Y ,X (1),X (3),X (4)|do(X (2) = x))

= P(Y |X (1),X (3))P(X (1)|X (2) = x)P(X (3))P(X (4))

P(Y |do(X (2) = x))

=

∫
P(Y ,X (1),X (3),X (4)|do(X (2) = x))dX (1)dX (3)dX (4)



the truncated factorization is a mathematical consequence of
the Markov condition (with respect to the causal DAG) for the
probability distribution P



the intervention distribution P(Y |do(X (2) = x)) can be
calculated from

I observational data
; need to estimate conditional distributions

I an influence diagram (causal DAG)
; need to estimate structure of a graph/influence diagram

intervention effect: for example

E[Y |do(X (2) = x)] =

∫
yP(y |do(X (2) = x))dy

intervention effect at x0 :
∂

∂x
E[Y |do(X (2) = x)]|x=x0

in the Gaussian case: Y ,X (1), . . . ,X (p) ∼ Np+1(µ,Σ),

∂

∂x
E[Y |do(X (2) = x)]≡ θ2 for all x



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

causal effect = effect from a randomized trial
(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

causal effect = effect from a randomized trial
(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)



An important characterization

recap, Gaussian case:
∂

∂x
E[Y |do(X (j) = x)] ≡ θj for all x

for Y /∈ pa(j):

θj is the regression parameter in

Y = θjX (j) +
∑

k∈pa(j)

θkX (k) + error

only need parental set and regression
X(1)

X(2)

X(3)X(4)

Y

j = 2, pa(j) = {3,4}



in the Gaussian case:

causal inference =
regression when conditioning on the right variables



Inferring intervention effects from observational data

main problem: inferring DAG from observational data
; impossible: can only infer equivalence class of DAGs
(several DAGs can encode exactly the same conditional
independence relationships)

the usual statistical inference principle doesn’t work:
observational probability distribution/data P ⇒ parameter θ(P)

here:

P and graph G ⇒ parameter θ(P,G)



impossible to estimate causal/intervention effects from
observational data

but we will be able to estimate lower bounds of causal effects

conceptual “procedure”:
I probability distribution P from a DAG, generating the data

; true underlying equivalence class of DAG’s
I find all DAG-members of true equivalence class: G1, . . . ,Gm

I for every DAG-member Gr , and every variable X (j):
single intervention effect θr ,j
summarize them by

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}︸ ︷︷ ︸
population quantity
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IDA (oracle version)

17

oracle CPDAG

PC-algorithm

DAG 1

DAG 2

...

...

DAG m

do-calculus

effect 1

effect 2

...

...

effect m

multi-set Θ



If you want a single number for every variable ...

instead of the multi-set

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}

minimal absolute value

αj = min
r
|θr ,j | (j = 1, . . . ,p),

|θtrue,j | ≥ αj

minimal absolute effect αj is a lower bound for true absolute
intervention effect



∃ Computationally tractable algorithm

searching for all DAGs is computationally infeasible if p is large
(we actually can do this up to p ≈ 15)

instead of finding all m DAG’s within an equivalence class ;

compute all intervention effects without finding all DAG’s
Maathuis, Kalisch & PB (2009):
• algorithm which works on local aspects of the graph only
• proof that such a local algorithm is computing Θ



IDA (local sample version)

33

data CPDAG

PC-algorithm do-calculus

effect 1

effect 2

...

...

effect q

multi-set ΘL



Estimation from finite samples
difficult part: estimation of CPDAG (equivalence class of DAG’s)
; estimation of structure

P ⇒ CPDAG︸ ︷︷ ︸
equiv. class of DAG’s

pcAlgo(dm = d, alpha = 0.05)

1

2

3

45

6

7

8 9

10

this can be inferred (statistical testing) from a list of conditional
independence statements:

X (j) 6⊥ X (k)|X (S) for all subsets S ⊆ {1, . . . ,p} \ {j , k}
or

X (j) ⊥ X (k)|X (S) for some subset S ⊆ {1, . . . ,p} \ {j , k}

so-called faithfulness assumption allows to reduce to “some
subsets S”



Faithfulness assumption

A distribution P is called faithful to a DAG G if all conditional
independencies can be inferred from the graph

(can infer some conditional independencies from a Markov
assumption; but we require here “all” conditional
independencies)



What does it mean?

1

2 3

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. ∼ N (0,1)

enforce marginal independence of X (1) and X (3)

β + αγ = 0, e.g. α = β = 1, γ = −1

Σ =

 1 1 0
1 2 −1
0 −1 2

 , Σ−1 =

 3 −2 −1
−2 2 1
−1 1 1

 .

failure of faithfulness due to cancellation of regression
coefficients



The PC-algorithm (Spirtes & Glymour, 1991)

I crucial assumption:
distribution P is faithful to the true underlying DAG
i.e. all conditional (in-)dependencies can be read-off from
the DAG (using the Markov property)

I less crucial but convenient:
Gaussian assumption for Y ,X (1), . . . ,X (p) ; can work with
partial correlations

strategy of the algorithm:
• estimate the skeleton first
• estimate some of the directions (using some special rules)



PC-algorithm: a rough outline
for estimating the skeleton of underlying DAG

1. start with the full graph (all edges present)
2. remove edge i − j if standard sample correlation

Ĉor(X (i),X (j)) is small
by using Fisher’s Z-transform and exact null-distribution of
zero correlation

3. move up to partial correlations of order 1:
remove edge i − j if standard sample partial correlation
P̂arcor(X (i),X (j)|X (k)) is small for some k in the current
neighborhood of i or j (thanks to faithfulness)



4. move up to partial correlations of order 2:
remove edge i − j if standard sample partial correlation
P̂arcor(X (i),X (j)|X (k),X (`)) is small for some k , ` in the
current neighborhood of i or j (thanks to faithfulness)

5. until removal of edges is not possible anymore

additional step of the algorithm needed for estimating directions
yields an estimate of the CPDAG (equivalence class of DAG’s)



one tuning parameter (cut-off parameter) α for truncation of
estimated Z -transformed partial correlations

if the graph is “sparse” (few neighbors) ; few iterations only
and only low-order partial correlations play a role

and thus: the estimation algorithm works for p � n problems



the trick is:

Local computations on graphs



Theorem (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2009)
triangular scheme of observations

I Y ,X (1), . . . ,X (pn) ∼ Npn+1(µn,Σn) faithful to a DAG ∀n
I pn = O(nα) (0 ≤ α <∞) (high-dimensional)
I dn = maxj |ne(j)| = o(n) (sparsity)
I non-zero (partial) correlations� n−1/2 (“signal strength”)

min{|ρn;i,j|S|; ρn;i,j|S 6= 0, i 6= j , |S| ≤ dn} � n−1/2

I maximal (partial) correlations ≤ C < 1 (“coherence”)
maxi 6=j;|S|≤dn |ρn;i,j|S| ≤ C < 1

Then: for some suitable α = αn

P[ĈPDAG(α) = true CPDAG] = 1−O(exp(Cn1−δ))

P[Θ̂local(α)
as set

= Θ] = 1−O(exp(Cn1−δ))

(i.e. consistency of lower bounds for causal effects)



Criticisms

two main conditions:
I faithfulness assumption

is it restrictive?
I non-zero partial correlations sufficiently large

this is the analogue of the beta-min condition in regression



The role of sparsity in causal inference
as usual, sparsity is useful/necessary for estimation in
presence of noise

but here: sparsity is crucial for identifiability as well

X XY Y

X causes Y Y causes X

cannot tell from observational data the direction of the arrow

the same situation arises with a full graph with more than 2
nodes
;

causal identification really needs sparsity
the better the sparsity the tighter the bounds for causal effects



How well can we do?

Figure 1

False positives
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the real success is the prediction of
causal effects on
gene interactions in yeast

where the true causal effects are
“known” thanks to intervention exper-
iments
Maathuis, Colombo, Kalisch & PB (2010)



Arabidopsis thaliana

response Y : days to bolting (flowering) of the plant
(aim: fast flowering plants)

X : gene-expression profile

observational data with n = 47 and p = 21′326 A. thaliana
ecotypes (D. Weigel, Tübingen) and L. Hennig/W. Gruissem
(ETH Zürich)

lower bound estimate α̂j for causal effect of gene j on Y
apply stability selection for lower bounds α̂j ’s



Causal gene ranking

summary median error
Gene rank effect expression (PCER) name

1 AT2G45660 1 0.60 5.07 0.0017 AGL20 (SOC1)
2 AT4G24010 2 0.61 5.69 0.0021 ATCSLG1
3 AT1G15520 2 0.58 5.42 0.0017 PDR12
4 AT3G02920 5 0.58 7.44 0.0024 replication protein-related
5 AT5G43610 5 0.41 4.98 0.0101 ATSUC6
6 AT4G00650 7 0.48 5.56 0.0020 FRI
7 AT1G24070 8 0.57 6.13 0.0026 ATCSLA10
8 AT1G19940 9 0.53 5.13 0.0019 AtGH9B5
9 AT3G61170 9 0.51 5.12 0.0034 protein coding

10 AT1G32375 10 0.54 5.21 0.0031 protein coding
11 AT2G15320 10 0.50 5.57 0.0027 protein coding
12 AT2G28120 10 0.49 6.45 0.0026 protein coding
13 AT2G16510 13 0.50 10.7 0.0023 AVAP5
14 AT3G14630 13 0.48 4.87 0.0039 CYP72A9
15 AT1G11800 15 0.51 6.97 0.0028 protein coding
16 AT5G44800 16 0.32 6.55 0.0704 CHR4
17 AT3G50660 17 0.40 7.60 0.0059 DWF4
18 AT5G10140 19 0.30 10.3 0.0064 FLC
19 AT1G24110 20 0.49 4.66 0.0059 peroxidase, putative
20 AT1G27030 20 0.45 10.1 0.0059 unknown protein

• biological validation by gene knockout experiments in progress.

red: biologically known genes responsible for flowering



we performed validation experiment with mutants
corresponding to these top 20 - 3 = 17 genes

I 14 mutants easily available ; only test for 14 genes
I more than usual: mutants showed low germination or

survival...
I 9 among the 14 mutants survived (sufficiently strongly), i.e.

9 mutants for which we have an outcome
I 3 among the 9 mutants (genes) showed a significant effect

on Y relative to the wildtype (non-mutated plant)

; besides the three known genes, we find three additional
genes which exhibit a significant effect in terms of “time to
flowering”



Beware of over-interpretation!

so far, based on current data:
I we can not reliably infer the causal network

despite theory... and because of theory
stability selection yields rather unstable networks

I but we often(?) can do better ranking/prediction for
intervention/causal effects
than sophisticated but conceptually wrong regression
methods

intervention/perturbation experiments can be very informative
in progress: combined estimation for observational and
interventional data (Hauser & PB, in progress)



Conclusions

high-dimensional statistics: possibilities/limitations if

s0
√

log(p)/n small/large; (or s0 log(p)/n small/large)

often subtle conditions on the “design” and “signal strength”:
they matter in practice!



I prediction is “relatively easy”
I variable selection or structure estimation is much harder

top priority: efficiently guard against false positives
(age-old problem in statistics!)
stability selection, p-values based on sample splitting,...

I trick of convex relaxation (e.g. convex loss function and
convex penalty) is beautiful and powerful
• linear models, GLMs,...
• not (easily) possible for many models

e.g. mixture models, mixed-effects models,...,
DAGs and causal inference

I particularly challenging but important for many scientific
problems: causal inference
• severe identifiability issues
• nonconvex optimization

but fairly efficient local computations on graphs



Thank you!
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Convex relaxation?
I don’t know the answer... but

when parameterizing the (CP)DAG via structural equation
models
; corresponding parameter space is non-convex!

Example:
X (1) ← β1X (2) + ε(1)

X (2) ← β2X (1) + ε(2)

X1 X2

(0,0)

beta1

beta2

and hence: no straightforward way to do convex relaxation


