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Overview of lectures

• Lecture 1:  Computational Creativity
๏ What is it?

๏ How can we do it?

๏ How can we study it?

๏ A Framework for Studying Creativity

๏ Examples (from musical CC)



Overview of lectures

• Lecture 2 (double):  Cognitive Modelling of Musical Creativity
๏ How can we begin to study music(al creativity) in an objective way?

๏ The case for music as a psychological construct

๏ The idea of Cognitive Modelling

๏ Statistical Models, which come in (at least) two flavours 

๏ Implicit musical learning and a statistical model thereof

๏ How cognitive modelling can contribute to music analysis

๏ How Shannon information theory can apply to a cognitive model

๏ How to add evidence for the correctness of a model

๏ What does it mean to evaluate “creativity”?

๏ What else should we evaluate?

๏ How do we evaluate it?



Overview of lectures

• Lecture 3:   Creativity in the Global Workspace
‣ A general cognitive architecture that may account for creative thought



Example:   Automated Composition

• Computer composition was first suggested by Ada, Lady Lovelace

• First recorded attempt:  
‣ Illiac Suite for string quartet (Hiller & Isaacson, 1957)

๏ stochastic, rule-based generation

๏ not very successful, musically (but still impressive)

• Many subsequent attempts
‣ often concerned with style replication (Bach...)

‣ often concerned with genre replication (jazz...)

‣ rarely (almost never) evaluated scientifically



Some computational creativity

• A notable success in automated composition is the work of Kemal 
Ebcioğ̆lu (1980, etc.)

• Ebcioğ̆lu’s system CHORAL is capable of harmonising a given 
chorale theme according to some 350-odd rules and constraints 
which, it is claimed, capture the style of J S Bach

Chorale 48 (Bach)

Chorale 48 (CHORAL)

1.

2.



An AI model of creativity

• Margaret Boden was the first artificial intelligence (AI) researcher 
to approach creativity seriously
‣ in Artificial Intelligence and Natural Man, Boden, 1977

• Her 1990 book, The Creative Mind, outlines a broad characterisation 
of creative behaviour

• However, the characterisation is rather vague, since the discussion 
is more philosophical than scientific

• The aim here is to cast Boden’s characterisation in more precise 
terms



The conceptual space

• Creative activity is cast as the discovery of concepts in a conceptual space

• The conceptual space contains all the possible concepts available to the 
creative agent

• The space is defined/constrained by rules

• Exploratory creativity is defined as the action of searching the conceptual 
space for a new concept

• This is an abstraction - no strong claim that it works this way in minds/
brains

start
complete 
concept

complete 
concept



Transformational creativity

• An alternative kind of Boden creativity is transformational creativity

• This is where the rules defining the conceptual space are changed 
so as to create a different (but presumably related) space

• Boden suggests that transformational creativity is more significant 
than exploratory creativity, because it is in a sense “bigger thinking”

• Bundy (1998) and Wiggins (2006b) argue against this, as an overly 
simple definition



Reasons why not

• “A symbolic system cannot create new concepts”
‣ weighted semantic networks allow us freely to define new concepts in 

terms of old ones

‣ conceptual blending allows us to create new semantic structures directly

‣ geometrical representations of meaning allow arbitrary interpolation 
between concepts (e.g., Gärdenfors, 2000)
๏ though we do need to think carefully about what the resulting representations 

mean!!



Reasons why not

• “A system which is exploring a search space defined by a 
representation is not being creative”
‣ not necessarily true:  it depends on the expressive power of the 

representation

‣ creating an artefact by explicit mechanistic inference doesn’t make doing so 
any less creative

‣ cognitively speaking, creative insight does not “feel” like enumeration
๏ but such introspection is misleading



Reasons why not

• “Non-symbolic systems generalise via a simple mathematical 
process, which is not creative”
‣ There is no evidence that the human mind does not create in this way

‣ There are suggestions (e.g., Kanerva’s sparse distributed memory) that this 
is exactly how the human mind creates

‣ Anyway, interpolation and generalisation may be a perfectly good model of 
creativity



Formalising Boden’s model

• Let us represent the conceptual space as a multidimensional 
(possibly metric) space

• Partial and complete concepts are represented as points in the 
space

• Each dimension of the space represents a feature of the domain

• (So each point denotes a set of property/value pairs)



Defining a conceptual space

• Suppose now that we have a set of rules, R, which defines a 
conceptual space, C

• The existence of transformational creativity implies that there must 
be a larger set, U, containing C

• So R is a set of rules which picks the elements of C from U

• C ⊂ U



Defining a conceptual space

• In order to give our rules, R, we need a language, L, and an 
interpreter for it

• Let ⟦.⟧ be an interpreter which maps its argument (a set of rules in 
L) to an effective procedure for selecting elements of U

• C = ⟦R⟧(U) 

• We also need a null concept, ⊤



Exploring a conceptual space

• Let us also allow another set of rules, T, describing our creative 
agent’s method for exploring C

• One more ingredient of Boden’s model remains:  it is necessary to 
be able to choose the better concepts from the less good ones

• We introduce a set of rules, E, written in L, which may be used to 
accept or reject concepts in terms of their quality

• We will need a more complex interpreter, ⟪.,.,.⟫, which, given three 
sets of rules in L, will return an effective procedure for computing 
an ordered set of (partial) concepts, cout, from another, cin

cout = ⟪R,T,E⟫(cin)



Exploring a conceptual space

• It will be useful to add the operator ◊ which will allow us to 
compute the set defined by repeated applications of a function

F◊(X) = ⋃n=0,∞ Fn(X)

• We can now define the enumeration of the conceptual space, C, by 
our creative agent:

eC = ⟪R,T,E⟫◊({⊤})



Exploring a conceptual space

• Note that eC may be a subset of C

• This is because a creative agent’s exploratory technique, as 
captured by T, need not be strong enough to discover all the 
concepts which are actually admissible under R

• Or eC may intersect C, producing some acceptable and some 
unacceptable concepts



An exploratory creative system

• We are now able to describe an exploratory creative system with the 
following septuplet:

⟨U, L, ⟦.⟧, ⟪.,.,.⟫, R, T, E⟩

U" The universe of all concepts
L" A language for expressing rules and concepts
⟦.⟧" A testing interpreter (for R)
⟪.,.,.⟫" An enumerating interpreter (for R, T and E)
R" A set of rules defining a conceptual space, C, in U
T" A set of rules allowing traversal of U (around C)
E" A set of rules evaluating concepts found using ⟪.,.,.⟫"



Transformational creativity

• Boden describes transformational creativity as changing the rules, R, 
which define the conceptual space

• In our formulation, there are two sets of rules which can be 
transformed

• Transforming R is transforming what is allowed as the output of the 
creativity process

• Transforming T is transforming the creative agent’s personal 
method



Transformational creativity

• There is a search space of rule sets, which is itself a conceptual 
space

• That search space is the power set of the language, L: L*

• So L* is now the universe in which we are searching

• We can describe L (and L*) with a metalanguage LL



Transformational creativity

• To capture the exploration of the rule space, we need some 
constraints on what is syntactically well-formed, RL

• We also need to define the search strategy, TL

• If we use the metalanguage LL as before for these specifications, we 
can use the same interpreters as before, ⟦.⟧ and ⟪.,.,.⟫



Transformational creativity

• The only thing outstanding is the evaluation of the transformation, 
which can be done with a set of rules, EL

• We now have another exploratory septuple:

⟨ L*, LL, ⟦.⟧, ⟪.,.,.⟫, RL, TL, EL ⟩

• So transformational creativity is exploratory creativity at the meta-level 
of conceptual spaces

• EL may be characterised in terms of E (see Wiggins, 2006a, for how)



• We are now in a position to examine the behaviour of creative systems

• The different components of the descriptions interact, and how they 
interact can tell us useful information

• Now, we discuss ways in which a system can fail to create

• Therefore, a creative system can introspect about how to improve itself

On failing to create...



• Uninspiration is the inability to produce valued outputs

• There are three kinds of uninspiration:
‣ Hopeless

‣ Conceptual

‣ Generative

• It is useful to know about uninspiration, because it can act as 
‣ a “well-formedness” check

‣ a trigger to transform a creative system in one way or another

Uninspiration



• The simplest case of uninspiration is where there are no valued 
concepts in the universe:

⟦E⟧(U) = Ø

• This means that no creative agent in this universe can ever produce 
anything valued

• It is a property which we should attempt to disprove of any 
creative system, a priori

Hopeless Uninspiration



• Conceptual uninspiration is where there are no valued concepts in a 
given conceptual space:

⟦E⟧(C) = ⟦E⟧(⟦R⟧(U)) = Ø

• This means that no creative agent exploring this conceptual space 
can ever produce anything valued

• It is a property which we should attempt to disprove of any 
exploratory-creative system, a priori

• Conceptual uninspiration can be used as a cue to encourage 
aberrant behaviour

Conceptual Uninspiration



• Generative uninspiration is where a creative agent’s technique, T, 
causes it to miss the valued members of the conceptual space:

⟦E⟧(⟪R,T,E⟫◊({⟙})) = Ø

• This means that the agent will never produce anything valued

• It is a property which we should attempt to disprove of any 
exploratory-creative system, a priori

• It can act as a trigger for transformation of T (or R)

Generative Uninspiration



• Aberration is the production of new concepts which are not in the 
existing conceptual space (that is, deviation from the expected)

• There are three kinds of aberration:
‣ Perfect

‣ Productive

‣ Pointless

Aberration



• Aberration happens when a creative agent finds concepts which are 
valued, but which are not in the conceptual space

• This is why value (E) needs to be represented distinctly from 
acceptability (R)

• In the CSF, this means that

⟪R,T,E⟫◊({⟙}) \ ⟦R⟧(U) ≠ Ø

Aberration



• Perfect aberration is the case where

⟪R,T,E⟫◊({⟙}) \ ⟦R⟧(U) = ⟦E⟧(⟪R,T,E⟫◊({⟙}) \ ⟦R⟧(U) )

that is, where all the aberrant concepts are valued

• This, in most cases, will be a cue to transform R so that it includes 
the new concepts

Perfect Aberration



• Productive aberration is the case when

⟦E⟧(⟪R,T,E⟫◊({⟙}) \ ⟦R⟧(U)) ≠ ∅

that is, where some aberrant concepts are valued

• This, in many cases, may be a cue to transform R or T or both

Productive Aberration



• Pointless aberration is characterised by

⟦E⟧(⟪R,T,E⟫◊({⟙}) \ ⟦R⟧(U)) = ∅

that is, where no aberrant concepts are valued

• This is a cue to transform T but not R

Pointless Aberration



• These ideas pave the way towards creative agents which can reason 
about their own performance, in terms of both value and 
productivity

• In particular, these analyses, which were not possible in Boden’s 
original framework, allow a system which is essentially exploratory 
to cue occasional transformational behaviour

• Is this what artists/musicians/scientists do when they (eg) 
consciously change style?

• Just because we can use the CSF to model creative systems, it 
doesn’t mean that all creative systems have to work by search

• We can usefully conceptualise/model a process as a search 
mechanism in the abstract even if that is not how it actually works

Reflection and transformational 
creativity



• What is the difference between Good Old-Fashioned AI Search 
and Computational Creativity based on the Boden/Wiggins 
model?

An important question



• Given an agenda S (a sequence of states):

1." If head(S) is a solution, stop.

2." Remove head(S) from S giving remainder S’

3." expand(head(S)) giving S”

4." merge(S”,S’) giving (new) S

5." Repeat from 1

• For Depth-First Search, merge = prepend

• For Breadth-First Search, merge = append

• For Best-First Search, Hill-climbing, A, A*, merge = append+sort

GOFAI Search



GOFAI Search

• Key Features:
‣ Representation: can represent all and only output configurations of 

problem (closed world)

‣ Solution detector: Boolean test for (a representation of) a solution

‣ Heuristics allow control of search for best one(s)
๏ calculate “quality” of solutions

๏ calculate “distance” from nearest solution

๏ combination of these



• GOFAI search vs. CSF

‣ Representation syntax ≃ Rules of R
‣ Search space ≃ Conceptual space

‣ Algorithmic framework ≃ Algorithmic framework

‣ Heuristics ≃ Traversal (T) and/or Value (E) Rules

‣ Agenda (S) ≃ Current expansion of space (cin)

Similarities



Differences

• Representation:  closed vs. open world (C vs U)
‣ admits “discovery” of solutions not envisaged by system designer

• Algorithmic framework:  single vs. multiple operands
‣ admits more complex (powerful?) search algorithms, e.g., GA, blending



CSF > GOFAI Search

• GOFAI search can be implemented in the CSF

• The CSF cannot be implemented as GOFAI search
‣ (unless, in both cases, we disingenuously jump to a meta-level)

‣ The CSF is therefore more expressive than the GOFAI search framework

‣ So Boden’s notion of creativity is not “just AI search”



Summary

• Introduced Creative Systems Framework
‣ Conceptual Space and Rule Set R
‣ Traversal of Space to find Concepts and Rule Set T
‣ Evaluation and Rule Set E

• Transformational Creativity is Exploratory Creativity at the meta-level

• The CSF is more expressive than the standard search framework of AI

• We can use the CSF to help conceptualise creative systems...

• ...and that’s what we’ll do in Lectures 2 and 3



Lecture 2:
Modelling musical 
creativity
Geraint A. Wiggins
Professor of Computational Creativity
CCLab
Queen Mary University of London



Overview

• Aims:

‣ to motivate the scientific study of musical creativity

‣ to provide an approach to doing so

‣ to demonstrate the approach

‣ to place the model in the context of the Creative Systems Framework



A Science of Music?

•Why would we want to study a science of music?

•Music is

‣ an art form

‣ a cultural construct

‣ precious, even sacrosanct, to many people

•What can science tell us that musicology cannot?

‣ Place of music in general cognition

‣ Contibution of musical behaviour to human developement
๏ individual

๏ cultural



A Science of Music?

•Music seems to be uniquely a human faculty

‣ There is no known human culture without music

‣ Music is everywhere in every human culture

‣ Music is irresistible to the majority of people

‣ No other species has been shown to exhibit musical behaviour in the sense 
that humans do

• Yet, no known bio-evolutionary advantage is given by music

‣ This needs to be explained, and not just wondered at!

•What is more, musical behaviour is a fundamental part of being human

‣ So we need to understand music if we want to understand ourselves



Milton Babbitt’s
representational domains

•Milton Babbitt (1965) proposed three domains of music representation

Auditory

Acoustic Graphemic
recording

playback
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Music and meaning - a bonus for CC

•Music is all about meaning

‣ associations

‣ emotional responses

• but it (usually) has no semantic content

‣ so a musical creative system has a massively reduced framing problem

‣ the frame is syntactic, not semantic

‣ ie it’s about style, intrinsic to music, not about an extrinsic world model



Feeling the beat



Feeling the beat



Feeling the beat



Feeling the beat

• The pulse train demonstration shows that human listeners tend to 
hear rhythmic structure in sound...

...even when it isn’t there

•When we know it isn’t there, we can manipulate our own perception, 
to hear either twos or threes



Why is there grouping?

•Our senses are subject to a constant barrage of information

•One way to help deal with this information is to break it into more 
easily manageable lumps

• Broadly speaking, this is what is happening in grouping phenomena 
(and others)

• “Chunking” is a general phenomenon at all levels throughout 
cognition



Grouping for music?

•We make smaller and larger scale groupings too

‣ Small scale:  harmonics fuse together to make notes

‣ Medium scale:  notes fuse together to make chords

‣ Larger scale: chords work in sequence to make progressions

• And some authors define music as “Organised Sound”



Grouping for music?

• But why?

• It seems unlikely that we evolved the ability to group sounds because 
music was useful in evolutionary terms

‣ Music does not help find food

‣ Music does not protect against predators



Grouping for music?

• But the things that contribute to music perception do contribute to 
evolutionary fitness in other ways:

‣ perceiving complex sound as tone colour
Is that the sound of a lion (lute)?

‣ location of sound sources
Where is that tiger (trombone)?

‣ grouping of separated rhythmic sounds
Do I hear footsteps (fandango)?

‣ perceiving expressed emotion in sound
Is the other hominid pleased to see me?



Entrainment

• Entrainment (in music) is the ability to perceive and duplicate a 
sequence of events in real time

‣ Chimpanzees and other primates are not capable of entrainment

‣ Until recently, it was thought that only humans could entrain, but...

• Entrainment is fundamental to musical behaviour

‣ Musicians need to anticipate and reciprocate rhythm

•What is more, humans really really like to entrain:

‣ tapping a foot to a beat

‣ clapping along with a song

‣ walking together in step



Hypothesis on entrainment

• If entrainment and the associated affect was an early development (in 
human history),...

...then pairs and groups of humans would have enjoyed entraining 
together

• In turn, this would be likely to increase social bonding...

...which is an evolutionary advantage for weak organisms like 
hominids...

...and which would in turn reinforce the genetic basis of the entraining 
behaviour



What is computational modelling of 
cognition?

• It is difficult to study minds

‣ you can’t see them

‣ you can’t stick electrodes in them

‣ their relationship with brains is almost completely unclear

‣ it is unethical to distort/deform them for testing purposes

‣ etc

• Before the advent of computers, psychologists had two means of study:

‣ look at what happened when things went wrong

‣ make predictions from theory about what would happen in certain precise 
circumstances (hypotheses), and test them (experiments)

• This is very time-consuming (decades, not hours), error-prone, and (in the 
first case) dependent on chance



What is computational modelling of 
cognition?

•With computers, however, new things become possible

•We can write computer programs which embody theories and then 
test them to destruction (ethically!)

•We can also make predictions by computer which can then be tested 
in experiments with humans

• This can be much faster than the human-driven approach

• It is more objective than the human-driven approach (so long as the 
program is written objectively) 



What’s the point?

• This is really the only (ethical) way to understand how a cognitive 
phenomenon actually works

‣ duplicate it in an artificial system and test that to destruction

‣ if it matches human behaviour in all circumstances, it is a good model

‣ it’s important to choose and stick to your level of abstraction

• If you can write a program which embodies your theory, then your 
theory is fully worked through (a Very Good Thing)



How do we build a cognitive model?

• Apply reductionist science!

‣ accept that most phenomena are too complex to understand all at once

‣ identify part(s) of the phenomenon that are (as) separable (as possible)

‣ be careful to use stimuli (music) that do not go beyond these boundaries

‣ remember that the resulting model is probably an oversimplification

‣ when you have understood the parts of the phenomenon, put them together, study 
the interactions between them, and test them in concert

• This is quite different from, and antagonistic to, the holistic view usually 
taken in the humanities, but it is not incompatible

•Human (musical) behaviour must be at the start and end of this process:

‣ theories behind the models come from observation of musical behaviour

‣ results from models are tested against musical behaviour



What are the limitations of cognitive 
modelling?

• A model is only as good as

‣ the theory it embodies

‣ the computational implementation

‣ the input data

‣ the input and output data representation

•We must always question and test (and re-test) results because of 
these potential sources of error



What are the limitations of cognitive 
modelling?

•We can only take one small step at a time

‣ this science is in its infancy:  we must not rush ahead and make mistakes

• Therefore, we have to be satisfied with small, focused, isolated results

‣ we look at how a given aspect of something changes, given that everything else 
stays the same – an artificial situation

• The results are only ever approximations

‣ we continue to refine models as our understanding improves



What are the requirements of a 
cognitive model?

•We must be careful to make the right abstraction of our data

‣ A representation based on a 12-note octave will not be able to model phenomena 
related to microtonal music

‣ A representation based on a 12-note octave will not be able to model phenomena 
related to conventional tonal tuning (eg playing into the key)

• And that leads to thinking carefully about the abstraction of the model

‣ (NB cf: define universe or define conceptual space?)

• A very good abstraction of Western Common Practice music:  the score

‣ models categorical pitch and time perception (and tonality if need be)

‣ evolved over about 1,000 years to do this well

‣ not good for everything (eg no means of representing instrumental timbre)

‣ but very good at quite a lot!

•Many cognitive models of music use (an equivalent of) score notation



Two kinds of cognitive model

• Some models are descriptive (Wiggins, 2007, 2011)

‣ they say what happens when stimuli are applied in each circumstance

‣ the predict results in terms only of the application of rules

‣ these rules may be complicated

‣ these models do not explain WHY a cognitive effect is the way it is

‣ they do explain WHAT the cognitive effect is, at the same level of abstraction 
as the representation they use

• Some models are explanatory (Wiggins, 2007, 2011)

‣ they give a general underlying mechanism by which a phenomenon 
occurs

‣ they predict results using this mechanism

‣ they explain WHY a cognitive effect is the way it is (possibly at some level of 
abstraction different from the representation)



Example 1:  GTTM

•Generative Theory of Tonal Music (Lerdahl & Jackendoff, 1983)

‣ “complete” theory of tonal music (actually not – still being updated)

‣ has 4 components, each being a set of rules, written in English
๏ grouping

๏metre

๏ time-span reduction

๏ prolongation

‣ within each, there are two kinds of rule
๏ fixed rules

๏ preference rules

‣ “preference” rules without conditions for application mean that GTTM is not 
a computerisable theory

‣ therefore, it is not a rigorously objective model

‣ it is only a descriptive model, because no mechanism is given



Towards an explanatory model

• Choice of domain

‣ We have to apply reductionist methodology (creativity, or even just music, is 
too complicated to model in one go)

‣ We should aim for ecological validity - so stimuli are as natural as possible

‣ We should aim to reduce “with the grain” of the domain

• Choice of model

‣ Programmed, rule-based - probably not explanatory

‣ Learning based - possibly explanatory, depending on how it works
๏Needs to be unsupervised

‣ Therefore we need an underlying theory motivating how the model works



Learning-based models of music

• There is plenty of evidence (all around us) that the ability to behave 
musically is universal(ly valued)

•However, different (sub-)cultures have different musics

•Music from other (sub-)cultures is often incomprehensible

‣ but it’s based mostly on the same constructs
๏ rhythm/meter

๏ notes

๏ patterns

๏ repetition

๏ timbre (tone colour)



Learning-based models of music

• All this suggests a collection of evolved perceptual mechanisms which 
combined to create music cognition

• There is no reason at all why these things need to be otherwise 
connected

• Then, we hypothesise, the musical experience is derived from the 
processing of percepts at this level by some general mechanism

•However, the musical culture is learned implicitly

• That is to say that a good model will not require explicit training

‣ in other words, we don’t tell it what the outputs we expect are



A general perceptual computation

• Problem:  information is everywhere

• There is too much information for even a brain to process

• Possible solution:  compress it as it arrives

•We hypothesise that brains use structural compression to help manage 
the continuous information overload

• So, for example, a chair is perceived as a chair, and not as a set 
comprising a seat, four legs and a back

• Then, when we see many chairs, it is more efficient to represent them 
all as references to a definition of chairness, rather than as a detailed 
description of each one individually



Evolutionary perspective

• Key evolutionary points

‣ organisms survive better if they can learn

‣ organisms survive better if they can anticipate

‣ organisms survive better if they can anticipate from what they learn 

‣ organisms cannot be merely reactive
๏ anticipation must be proactive – it must result in embodied action

‣ organisms must regulate cognitive resource – attention is expensive

•Need to evolve a mechanism where organisms can learn without damage

‣ gives rise to “tension”:  emotional warning of uncertainty in the organism’s world 
model

‣ cf. musical tension; narrative tension



Managing information in time

• The same principle applies to things arranged in time as to things 
arranged in space

•Music is often called “a time-based art” because it has no 
instantaneous existence (except perhaps in the minds of some highly 
skilled musicans)

• And there are many other situations where the ability to react to 
sequences of events in time at a perceptual level is evolutionarily 
useful

• The key property that admits this is...



• Expectation allows us to deal with the world

‣ there is too much data out there to process in real time

‣ we need to manage it by predicting what comes next, so we have a chance to get 
ahead

• Expectation works in many domains

‣ vision

‣ movement

‣ speech

‣ music

EXPECTATION

Managing information in time



Managing information in time

• There must be a mechanism that

‣ learns from data

‣ predicts from data

‣ generalises from data (so it can deal with data it hasn’t seen before)

• It will also be able to enlist cognitive resources

‣ so that unexpected things can be dealt with

EXPECTATION

3



• In speech and language understanding

‣ it’s easy to wreck a nice beach

Managing information in time

EXPECTATION



Managing information in time

• Knowing things can reduce the amount of information required to 
transmit information

• Claude Shannon (1948) proposed a mathematical model of this idea, 
which he called “information theory”, in the context of 
telecommunications engineering

• It turns out that Shannon information theory works very well in a 
model of human perception based on (advanced) Markov Models

Skip Markov demo



Markov models

• A very neat way to do this is by Markov Modelling

• Each possible symbol in a stream of symbols is recorded, along with 
each of the contexts in which it is experienced (n-grams; n=2)

a | b c | b b | d d | e

a | bc | a b | ea | b b | c

a b c b d e

a b c a b e

a b d b d e a | b b | d d | b b | d d | e

* | a b | c

* | a

* | a



Markov models

• A very neat way to do this is by Markov Modelling

• Each possible symbol in a stream of symbols is recorded, along with 
each of the contexts in which it is experienced (n-grams; n=2)

a | b c | b b | d d | e

a | b

c | a b | ea | b b | c

a b c b d e

a b c a b e

a b d b d e a | b b | d d | b b | d d | e

* | a b | c

* | a

* | a



Markov models

• A very neat way to do this is by Markov Modelling

• Each possible symbol in a stream of symbols is recorded, along with 
each of the contexts in which it is experienced (n-grams; n=2)

a | b

c | b

b | d

d | e

a | b
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Markov models

• A very neat way to do this is by Markov Modelling

• Each possible symbol in a stream of symbols is recorded, along with 
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Markov models

•Now, given a partial leftmost string, we can estimate the probability 
distribution of the next unseen symbol
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Markov models

•Now, given a partial leftmost string, we can estimate the probability 
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Markov models

•Now, given a partial leftmost string, we can estimate the probability 
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Ingredients for the model

•We have

‣ an underlying mechanism (Markov models & Shannon information theory)

‣ a hypothesis to motivate it

‣ a creative subdomain (musical melody)

‣ a representation (essentially, the musical score)

•We need

‣ data (The Essen Folksong Collection:  907 tonal folk melodies)

‣ a computational implementation (Pearce, 2005)



IDyOM:  unexpectedness

• Shannon (1948) defines a measure of entropy, which has been 
interpreted in several ways in the literature

•We interpret it in two ways here:

‣ the entropy of a given note is a measure of its unexpectedness in context

‣ the entropy of the distribution of an unseen note is a measure of the model’s 
uncertainty in context

• unexpectedness, or information content, of a note with probability p is 
defined as

– log2 p

• Does this quantity model human listeners’ estimates of their own 
perception of expectedness when listening?



Information Dynamics of Music

•Middle layer of cognitive model of conscious 
musical experience

• Unsupervised, implicit learning

• Inputs are sequences of basic percepts

‣ notes, with pitch & time features

‣ derived percepts, e.g.,
๏ interval

๏ tonal centre

•Outputs are

‣ distributions of predicted pitches

‣ information-theoretic derivatives of distributions

Learning system

Expectations

Segmentation

Pitch/time percepts
in sequence

.

.

.

Audio stimulus

.

.

.

.

.

.

Conscious experience

Figure 1: An abstract layered map, locating our model in a larger cognitive system, showing processes in squared
boxes, observable phenomena in round boxes, and information flow as arrows. Solid lines indicate those parts
which are part of our enquiry; dotted ones are ancillary, for the purposes of the present discussion.
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The IDyOM model

• IDyOM = Information Dynamics of Music

•Model assembled and evaluated by Marcus Pearce (2005)

• Uses Markov models as a simulation of perception of 
events in time-sequence

• Clever implementation using suffix trees

• Implicit learning:  learns the likelihood of each symbol appearing in a 
sequence from mere exposure, then predicts from this information

• Estimates the likelihood of unseen symbols (uniform distribution)

• Uses Shannon information theory to weight different components of 
the model as they contribute to a combined distribution



Information Dynamics of Music

• Efficient 
implementation of 
simple Markov chains

‣ but with multi-
dimensional symbols

‣ select feature sequences 
(viewpoints)
๏ basic

๏ derived

‣ calculus of viewpoints
๏ differentiation (delta)

๏ cross-product (pairing)

๏ thread (sub-sequence 
selection)
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Information Dynamics of Music

• Predictions made by

‣ matching current context 
with strings in memory

‣ all orders between 0 and 
maximum available

‣ all contribute to final 
distribution

‣ Feature predictions 
combined as linear sum 
weighted by entropy



Information Dynamics of Music

• Combined outputs of 
two models

‣ one exposed to corpus 
of “enculturation” data

‣ one exposed only to 
current melody

‣ Combination is by 
entropic weighting, as 
before

•Model is “optimised”

‣ inefficient viewpoints are 
discarded

‣ model with lowest 
average information 
content is used
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Information Dynamics of Music

• IDyOM predicts

‣ listener’s expectations of 
next note in melody 
๏ 4 studies;  up to r=.91 

correlation

๏ 1 study;  very high 
correlation with 
musicologists’ predictions
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Information Dynamics of Music

• IDyOM predicts

‣ listener’s expectations of 
next note in melody 
๏ 4 studies;  up to r=.91 

correlation

๏ 1 study;  very high 
correlation with 
musicologists’ predictions

‣ melodic segmentation
๏ 2 studies;  κ = 0.58

๏ vs musicologist judgements
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Information Dynamics of Music

• IDyOM predicts

‣ listener’s expectations of 
next note in melody 
๏ 4 studies;  up to r=.91 

correlation

๏ 1 study;  very high 
correlation with 
musicologists’ predictions

‣ melodic segmentation
๏ 2 studies;  κ = 0.58

๏ vs musicologist judgements

‣ neural activation with 
unexpectedness
๏ centro-parietal region

๏ strong sync. in beta-band

Expected Pitch

Unexpected Pitch
Unexpected – Expected



Interim conclusions!

• IDyOM accounts for the vast majority of the data

‣ with no programmed musical knowledge

‣ with no training

‣ without advanced musical concepts, like harmony

• This is evidence not only for IDyOM as a model of pitch perception 
but also for the Markovian idea of statistical perception in general

‣ there is similar evidence in computational linguistics

• But it is possible to give further, stronger evidence



Meta-model

•We introduce the concept of a meta-model

• This is a model

‣ which reuses an existing model

‣ without changing it

‣ to do something related but different

‣ (meta = “beyond”)

• Such a meta-model constitutes strong evidence that the original 
model is doing something veridical

‣ the model can do more than one thing

‣ if these things are related, then this evidence that the model has captured the 
process involved in a strong way



IDyOM:  boundary detection

•Narmour (1990) hypothesises that musical phrasing is derived from 
the expectations generated and then realised or denied as a melody 
proceeds

• As a phrase ends, notes become more expected; when a new phrase 
starts, there are only weak expectations of what is to come next

• So peak-picking in unexpectedness should allow us to predict 
boundaries



IDyOM:  boundary detection

Precision
(1 - specificity)

Recall 
(sensitivity)

F1 d’ K

Grouper 0.67 0.87 0.76 2.94 0.73

GPR2a 0.95 0.55 0.70 2.93 0.68

LBDM2001 0.86 0.57 0.69 2.61 0.67

IDyOM 0.60 0.63 0.61 2.15 0.58

SimpleSeg. 0.25 0.35 0.29 0.99 0.22

GPR3a 0.16 0.37 0.22 0.69 0.12

always 0.08 1 0.15 - -0.86

GPR2b 0.13 0.19 0.15 0.38 0.07

saffran.p.pitch 0.10 0.04 0.06 0.14 0.01

never 0 0 - - -0.04
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Summary



Summary

• Learned model and sequence retrieval method form R

•Metropolis sampling forms T

• Can perceptual models be expected reliably only to generate the 
things they perceive? (Relationship between R and T)

‣ No

•How can the quality of such generation be rigorously evaluated?

•NB. Difference between

‣ our evaluation of the scientific contribution

‣ the system’s evaluation of its own outputs (E)



Context

• The models we are studying focus on the conceptual space, defined 
by the notional rule set R
‣ in IDyOM this is learned, and stored in the LTM

‣ the advanced features of the retrieval system enhance the basic likelihoods 
with a kind of generalisation

• This work does not attempt to address E, the capacity of a creative 
system to introspect on its own output quality

• The traversal strategy, T, not really addressed in IDyOM

‣ uses a standard statistical optimisation method, metropolis sampling



Evaluation

• A study of IDyOM’s melody generation

‣ Motivation:  Evaluating outputs of creative systems

‣ Method:  Consensual Assessment Technique

‣ Question 1:  Can a model of expectation be reliably used as a generative 
model?

‣ Question 2:  How can quality of output be improved?



Motivation

•How can we objectively evaluate the outputs of creative systems?

“Evaluation
We listened to a large number of the generated tunes, and they sounded quite 
good.” (********, 1998)

•We need to be much more rigorous than this



Motivation

• Aesthetic evaluation is (often) primary

• But we can evaluate scientifically too, and if we can, we should

•We can evaluate our generative systems in terms of engineering:

‣ are they reactive enough?

‣ are they reliable? 

• But what does it mean to evaluate an aesthetic output scientifically?



Motivation

•We need to say what we mean by “good”

• For example:

‣ how well does the music generator keep in time (if that’s what it’s meant to 
do)

‣ how well does the music generator match the implied harmony of the input 
melody (if that’s what it’s meant to do)



Motivation

• This means that we need to understand 

‣ the music we are generating

‣ its context

‣ its purpose

• Just like mono-disciplinary science, we need to formulate precise 
research questions (which may be as much aesthetic as scientific) 
and precise tests to evaluate them

• An artefact’s (e.g., music) not being precisely specified does not 
mean that we can’t ask precise questions about it



Motivation

• But how?

• Creative judgements are (desirably)

‣ subjective

‣ context-dependent

•How, then, can we be rigorous in evaluating the success or otherwise 
of creative systems output?

• The Consensual Assessment Technique (Amabile, 1998)



Consensual Assessment

• Technique originally used for assessing the creative content of outputs

• Used here to assess stylistic success of outputs

• The task must be open-ended enough to permit considerable 
flexibility and novelty in the response

• Response must be an observable product which can be rated by 
judges



Consensual Assessment

• Judges must

‣ be experienced in the relevant domain;

‣ make independent assessments;

‣ assess other aspects of the products, such as technical accomplishment, 
aesthetic appeal or originality;

‣ make relative judgements of each product in relation to the rest of the stimuli;

‣ be presented with stimuli and provide ratings in orders randomised differently 
for each judge.



Consensual Assessment

•Most importantly, in analysing the collected data, the inter-judge 
reliability of the subjective rating scales must be determined

• If and only if reliability is high, we may correlate creativity ratings with 
other objective or subjective features of creative products

• In our version, we replace “creativity” ratings with “stylistic success” 
ratings



Study - Background

• Can this perceptual model generate music, as some researchers (eg 
Baroni, 1999) suggest it should?

•Model’s primary data is pitch, not rhythm, so

‣ create new melodies in existing rhythmic frameworks

• Use human experts to rate outputs

‣ work in a well-established, formally-studied style

‣ analyse success of generation in terms of stylistic success

• Use Consensual Assessment Technique to produce reliable consensus 
judgements



Study - Hypotheses

• Three generation systems:

A. pitch only;

B. interval from 1st note of piece;  scale degree x note duration;  1st note in 
phrase

C. complex representation, including harmonic implications of melody

• Three null hypotheses:

‣ Each system can generate melodies rated as equally stylistically successful in 
the target style as existing, human-composed melodies.



Study - Participants

• Judges were 16 music researchers or students

• 5 were male and 11 female

• Their age range was 20–46 years (mean 25.9, SD 6.5)

• They had been formally musically trained for 2–40 years (mean 13.8, 
SD 9.4)

• 7 judges reported high familiarity with the chorale genre and nine 
were moderately familiar

• All judges received a nominal payment, and worked for approximately 
an hour



Study - Stimuli

 J. S. Bach:  Jesu, meiner Seelen Wonne (BWV 359) chor106-original

System  A:  Jesu, meiner Seelen Wonne chor106-cpitch-metro5000



Study - Questions

•Questions:

‣ “How successful is this as a chorale melody?”

‣ Judges were advised to reflect such factors as 
๏ conformity to important stylistic features;

๏ tonal organisation;

๏melodic shape and interval structure;

๏melodic form. 

‣ and required to explain their answers

‣ “Do you recognise the melody?”

•NB:  participants not told that a computer was involved

‣ Moffat & Kelly (2006) demonstrate systematic bias against computers



Study - Results

• All but 2 of the 120 pairwise correlations between judges were 
significant (p<0.05) with a mean coefficient of r(26)=0.65 (p<0.01)

• This high consistency warrants averaging the ratings for each stimulus 
across individual judges in subsequent analyses



Study - Results

• Friedman’s Test shows significant intrasubject effect of system on ratings 
(X2(3)=32, p < 0.01)

•Wilcoxon rank sum test with Holm’s Bonferroni correction show 
“original” ratings differ significantly from IDyOM’s (p < 0.03)
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Using the results

•We examined the judges’ explanations of their judgements

•We developed a corresponding set of objective descriptors

•We applied the descriptors in a multiple regression analysis

‣ dependent variable:  the rating scheme averaged across stimuli



Using the results

•Objective features:

‣ Pitch Range

‣ Melodic Structure

‣ Tonal Structure

‣ Phrase Structure

‣ Rhythmic Structure

• Redundant descriptors removed by backwards stepwise elimination



Using the results

Predictor � Std. Error t p
Pitch Range �0.29 0.08 �3.57 < 0.01
Pitch Centre �0.21 0.10 �2.01 < 0.1
Interval Dissonance �0.70 0.28 �2.54 < 0.05
Chromaticism �0.27 0.03 �8.09 < 0.01
Phrase Length �0.53 0.28 �1.91 < 0.1
Overall model: R = 0.92, R2

adj = 0.81,
F (5, 22) = 25.04, p < 0.01

Table 4: Multiple regression results for the mean success
ratings of each test melody.

Stage Feature Added H
1 Interval⇥Duration 2.214
2 ScaleDegree⇥Mode 2.006
3 ScaleDegree 1.961

⇥Int1stInPiece
4 Pitch⇥Duration 1.943
5 Thread1stInPhrase 1.933
6 ScaleDegree 1.925

⇥LastInPhrase
7 Interval⇥DurRatio 1.919
8 Interval⇥InScale 1.917
9 ScaleDegree⇥Duration 1.912

10 Int1stInPhrase 1.911

Table 5: Results of feature selection for reduced informa-
tion content over the dataset using an extended feature set.

provide better fits, this criterion balances model size, rep-
resented by p, with the fit of the model to the dependent
variable, RSS.

More positive values of the predictors indicate greater
deviation from the standards of the dataset (for pitch range
and centre) or increased melodic complexity (for the re-
maining predictors), so we expect each predictor to show a
negative relationship with the success ratings. The results
of the multiple regression analysis with the mean success
ratings as the dependent variable are shown in Table 4.
The overall model accounts for approximately 85% of the
variance in the mean success ratings. Apart from rhyth-
mic structure, at least one predictor from each category
made at least a marginally significant contribution to the
fit of the model. Coefficients of all the selected predictors
are negative as predicted. Overall, the model indicates
that the judged success of a stimulus decreases as its pitch
range and centre depart from the mean range and centre of
the dataset, with increasing numbers of dissonant intervals
and chromatic tones and if it has unequal phrase lengths.

4.2 Improving the Computational Systems

The constraints identified above mainly concern pitch
range, intervallic structure and tonal structure. It seems
likely that the confusion of relative minor and ma-
jor modes is due to the failure of any of the Sys-
tems to represent mode. To examine this hypothe-
sis, a linked feature ScaleDegree⇥Mode was added
to the feature space. Furthermore, we hypothesise
that the skewed distribution of pitch classes at phrase
beginnings and endings can be better modelled by
two linked features ScaleDegree⇥1stInPhrase
and ScaleDegree⇥LastInPhrase. On the hy-
pothesis that intervallic structure is constrained by
tonal structure, we included another linked feature
Interval⇥InScale.

System D: Jesu, meiner Seelen Wonne
chor106-compositional+-metro5000

Figure 2: Melody generated by System D, based on the
same chorale as Figure 1.

To examine whether the Systems can be improved
to respect such constraints, we added the four selected
features to the feature selection set used for System
C. We ran the same feature selection algorithm over
this extended feature space to select feature subsets
which improve prediction performance; the results are
shown in Table 5. In general, the resulting multiple-
feature System, D, shows a great deal of overlap with
System C. Just three of the nine features present in
System C were not selected for inclusion in System D:
ScaleDegree⇥1stInBar; ThreadTactus; and
Int1stInPiece. This is probably because three of
the four new features selected for inclusion in System
D, were strongly related: ScaleDegree⇥Mode;
ScaleDegree⇥LastInPhrase; and
Interval⇥InScale. The first two of these, in
particular, were selected early in the selection process;
the existing feature Int1stInPhrase was added in
the final stage. Ultimately, System D exhibits a lower
average information content (H = 1.91) than System
C (H = 1.95) in predicting unseen compositions in
the dataset. The significance of this difference was
confirmed by paired t tests over all 185 chorale melodies:
t(184) = 6.00, p < 0.01, and averaged for each 10-fold
partition of the dataset: t(9) = 12.00, p < 0.01.

4.3 A Melody Generated by System D

We now present preliminary results on System D’s capac-
ity to generate stylistically successful chorale melodies.
System D uses the features in Table 5; it exhibits signifi-
cantly lower entropy than System C in predicting unseen
melodies. We used it to generate several melodies, as de-
scribed above, with the same base melodies.

Figure 2 shows System D’s most successful melody,
based on Chorale 365. Its tonal and melodic structure are
much more coherent than System C’s melodies. Our mul-
tiple regression model, developed above to account for
the judges’ ratings of stylistic success, predicts that this
melody would receive a rating of 6.4 on a seven-point
scale of success as a chorale melody. While this result
is positive, other melodies were less successful; System D
must be analysed using our method to examine its ability
to consistently compose stylistically successful melodies.

5 Discussion and Conclusions
Our statistical finite context grammars did not meet
the computational demands of chorale melody composi-
tion, regardless of the representational primitives used.
Since we attempted to address the limitations of previous
context-modelling approaches to generating music, we

System D:   Jesu, meiner Seelen Wonne

•Much more coherent example than earlier systems

• But System D must be rigorously analysed in further cycles

•What is going on here is transformational creativity:

‣ the experimental results are being used to modify R



Summary of Results

• Systems A-D all fail to compare with original melodies

• System D is, however, significantly better than Systems A-C

• The CAT provides a rigorous way to assess the stylistic success of 
outputs of computational creative systems

• Statistically significant agreement between expert judges is crucial in 
supporting the conclusions of the work

Skip to  Summary



Summary

• Two methods for establishing the quality of automated musical composition 
systems

‣ expert judgements on style

‣ non-expert judgements on meaning

• Both are precisely specified (not just “good”)

• Two different techniques

‣ focused on particular knowledge, with articulate feedback on what is not right

‣ hidden amongst many different possible dimensions of quality, so as not to prime 
participants

• It is up to researchers to establish what the dimensions of quality are for 
their own systems and their own work and to use them rigorously

• In this way, perhaps we can also reach a more objective view of aesthetics



The Future

•Many more models and many more studies are needed

• Studying T is paramount (see, e.g., Guilford, Chikszentmihalyi for 
starting points)

•Models that learn their rules are likely to be more credibly creative 
than programmed models

•Music is a good domain for this study because it is uncluttered by 
semantics (in the language sense) so it can be looked at on the 
perceptual/cognitive level only



Summary

• In this lecture we have looked at

‣ a way of characterising creativity that is amenable to computational systems

‣ a reason for, and a way of, studying music scientifically and objectively

‣ a way of doing that study computationally, and getting more out of it in 
consequence

‣ ways of evaluating what we do rigorously

•We have now looked at

‣ R:  IDyOM perceptual model

‣ E:  Human evaluators;  feedback in form of revised perceptual model

•We have used a temporary make-do

‣ T: Metropolis sampling
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creativity in Baars' Global Workspace
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Outline

• What I mean by “spontaneous creativity”

• Background
‣ Taine’s Theatre of Consciousness, the Society of Mind and Global Workspace 

Theory
๏ The Threshold Paradox

‣ Statistical models of cognitive process

‣ Information theory

• A hypothetical model of cognitive selection that accounts for 
spontaneous creativity

• Evaluation – a difficult problem

• Motivation:   WHERE DO (MUSICAL) IDEAS COME FROM?



Two kinds of creativity

• One aspect of creativity is SPONTANEOUS
‣ ideas appear, spontaneously, in consciousness

‣ cf. Mozart (Holmes, 2009, p. 317)
๏ When I am, as it were, completely myself, entirely alone, and of good cheer – say 

traveling in a carriage, or walking after a good meal, or during the night when I cannot 
sleep; it is on such occasions that my ideas flow best and most abundantly. 

• Compare with the composer working to build (e.g.) a new version of a 
TV theme, on schedule, and with constraints on “acceptable style”
‣ this is a different kind of activity:  CREATIVE REASONING

• Most creative acts of any size are a mixture of both

• Here, I focus on SPONTANEOUS CREATIVITY only



Background:  societies of mind

• Hippolyte Taine (1871) proposed the first (?) multi-agent theory of 
mind, based in a Theatre of Consciousness
‣ narrow theatre stage, with actors appearing, disappearing, and planning off-set

• Marvin Minsky (1987) proposed the Society of Mind
‣ computational knowledge-rich agents, communicating & collaborating 

hierarchically to achieve goals

• Bernard Baars (1988) proposed the Global Workspace Theory
‣ agents, generating cognitive structures, communicating via a shared blackboard

‣ agnostic as to nature of agent-generators

• The three theories are not incompatible
‣ Baar’s agents/representations are underspecified, and don’t contradict Minsky’s

‣ The key difference is in the communication mechanism
๏ but even that may not be contradictory...



Background:  societies of mind

• Society of Mind uses a hierarchical structure of control
‣ agents recruit other agents according to task

‣ communication passes up and down hierarchy

‣ locus of consciousness is explicitly excluded

• Global Workspace Theory uses a central communication exchange, the 
Global Workspace
‣ corresponds with Taine’s “theatre” of consciousness

‣ can hold one item at a time (some researchers suggest this should be 2 or 2.5)

‣ all agents have read-access to Global Workspace

‣ in later developments, Baars proposes a hierarchical system of “local” 
workspaces feeding into the Global Workspace, reducing information overload

‣ there is a “threshold” to be “crossed” to get write-access to the GW

‣ granting access can be viewed as assignment of conscious attention



Background:  the threshold paradox

• Baars writes (somewhat metaphorically) about agents “recruiting” 
others to support a given cognitive structure
‣ when enough agents support the structure it is “loud” enough to pass the 

threshold and enter consciousness
๏ I’ll use this analogy of “volume” later;  Baars proposes synchrony as the implementing 

mechanism and Shanahan (2010) identifies the necessary neural substrate

• However, there is a problem:  The Threshold Paradox
‣ To communicate in the global workspace, an agent needs to recruit supporters

‣ To recruit supporters, an agent must communicate in the global workspace
๏ because that is the only medium of communication

• This talk is about an alternative view of access to the Global 
Workspace



Background: the threshold paradox
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Background:  information theory

• I use two versions of Shannon’s entropy measure (MacKay, 2003)
๏ the number of bits required to transmit data between a hearer and a listener given a 

shared data model

‣ information content:  estimated number of bits required to transmit a given 
symbol as it is received:

h = –log2 ps

๏ models unexpectedness

‣ entropy:  expected value of the number of bits required to transmit a symbol 
from a given distribution, prior to sending/receipt:  

H = –∑i pi log2 pi

๏ models uncertainty

‣ ps, pi are probabilities of symbols;  i ranges over all symbols in the alphabet



Background: statistical cognitive models

• Organisms need to be able to anticipate the world
‣ use (mental) models to predict what is coming next

‣ use learned models, trained by observed likelihood

‣ use temporal association (implication/consequence)

‣ use co-occurrence (conjunction)

• Can model music and language (and other things) in this way
‣ currently using IDyOM model (Pearce, 2005;  Pearce & Wiggins, 2006)

๏ predicts human melodic expectation (R2=.81;  Pearce & Wiggins, 2006)

๏ predicts human melodic segmentation (F1=.61;  Pearce,  Müllensiefen & Wiggins, 2010)

๏ predicts language (phoneme) segmentation (F1=.67;  Wiggins, 2011)

• Claim is that mental process is literally statistical
๏ statistical nature means we can apply information theory (Shannon, 1948)



Instantiating the Global Workspace

• Agent generators (not specified by Baars;  simpler than Minsky’s?)
‣ statistical samplers predicting next in sequence from shared learned models of 

perceptual and other domains

‣ many agents, working in massive parallel
๏ at all times, the likelihood of a given prediction is proportional to the number of 

generators producing it (this isn’t in Baars’ theory, but it will be important later)

‣ receive perceptual input from sensory systems
๏ continually compare previous predictions with current world state

‣ continually predict next world state from current matched predictions
๏ sensory input does not enter memory directly

๏ the expectation that matches best is recorded

‣ consider state n (current) and state n+1 (next)
๏ at state n, we can calculate hn, Hn, and Hn+1 (but not hn+1, because it hasn’t happened yet)



Baars’ (1988) Global Workspace Theory
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Baars’ (1988) Global Workspace Theory

GeneratorGenerator Generator Generator Generator

Access competition

Global Workspace

• “Aha” moment = passage into consciousness

• Threshold 
paradox

•Big question:  what does “recruitment” mean???
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Likelihood/Information Content
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• Agents produce (musical) structure representations

• Probability of structure (in learned model) increases “volume”
‣ likely structures are generated more often

‣ multiple identical predictions are “additive”

‣ avoid “recruitment” question in model
๏ need fewer agents?

• Unexpectedness increases “volume”
‣ information content predicts unexpectedness

• Uncertainty decreases “volume”
‣ entropy predicts uncertainty

Selecting agent outputs
Competitive access to Global Workspace
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• Agents produce (musical) structure representations

• Probability of structure (in learned model) increases “volume”
‣ likely structures are generated more often

‣ multiple identical predictions are “additive”

‣ avoid “recruitment” question in model
๏ need fewer agents?

• Unexpectedness increases “volume”
‣ information content predicts unexpectedness

• Uncertainty decreases “volume”
‣ entropy predicts uncertainty

• Predictions matched with sensory input, but can compete without it

Selecting agent outputs
Competitive access to Global Workspace

v ∝ 
ph

v ∝ H



Spontaneous creativity to order

• In the absence of distracting perceptual input, generators freewheel

• Predictions are produced from memory, spontaneously

• Some may be prioritised enough to enter consciousness as “ideas”
‣ cf.  Wallas (1926) “illumination”

‣ the “Aha!” moment

• Such ideas can be selected...



Where to find more

• Full (long) paper:
‣ Wiggins, G. (2012) The Mind’s Chorus: Creativity before Consciousness. 

Cognitive Computation. Special issue on Computational Creativity, Intelligence 
and Autonomy, 4(3):306–319



Final example

• Example:   harmony by Raymond Whorley’s autonomous composer
‣ NB statistical model alone - no GW, no feedback, no deep learning



Mozart’s explanation (Holmes, 2009)

When I am, as it were, completely myself, entirely alone, and of good cheer – 
say traveling in a carriage, or walking after a good meal, or during the night 
when I cannot sleep;  it is on such occasions that my ideas flow best and most 
abundantly.   Whence and how they come, I know not;  nor can I force them. 
Those ideas that please me I retain in memory, and am accustomed, as I have 
been told, to hum them to myself.

All this fires my soul, and provided I am not disturbed, my subject enlarges 
itself, becomes methodized and defined, and the whole, though it be long, 
stands almost completed and finished in my mind, so that I can survey it, like a 
fine picture or a beautiful statue, at a glance.   Nor do I hear in my imagination 
the parts successively, but I hear them, as it were, all at once.   What a delight 
this is I cannot tell!   All this inventing, this producing takes place in a pleasing 
lively dream.   Still the actual hearing of the toutensemble is after all the best. 
What has been thus produced I do not easily forget, and this is perhaps the 
best gift I have my Divine Maker to thank for.
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