PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

Optimization of a Dual Band Slot Antenna using ANSYS® HFSS and optiSLang®

Christian Römelsberger

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Antenna Simulation

- Tricky business to adjust antennas:
 - Minimize return loss
 - Radiation pattern: Main lobe, side lobes
 - Polarization
 - Band width
 - Several bands
 - Impedance matching: Smooth transition from 50Ω to 377Ω
- Use simulation to
 - Validate that antenna design meets requirements.
 - Gain understanding of the design.
 - Optimize the design.

Antennas: Simulation Setup

- Boundary conditions:
 - Radiation, perfectly matched layers
 - Conducting surfaces
 - Symmetry
- Excitations:
 - Wave ports → Infinitely long wave guides
 - Incident waves

HFSS – High Frequency Structure Simulator

- 3D Field Solver
 - 3D Finite Element Method (FEM)
 - Boundary Integral (IE)
 - Mesh Process: Adaptive
- Advanced Boundary Types
 - Radiation and Perfectly Matched Layers
 - Symmetry, Finite Conductivity, Infinite Planes, RLC, and Layered Impedance
- Advanced Material Types
 - Frequency dependent
 - Anisotropic
- Post Processing and Report Type
 - SYZ parameters
 - Field display
 - Near Field/Far Field

- 4 -

 The geometry of the conducting surfaces of the PCB is parametrized by 12 parameters

- I ne distances of the U-snaped conductors in the ground plane to the boundary of the slot on x- and y- direction (gap1, gap2)
- The distance of the two U-shaped conductors in the ground plane to each other (*dd*)
- The width of the U-shaped conductors in the ground plane in x- and y-direction (*w1, w2*)
- The length and the width of the microstrip feed line (*If, wf*)
- [1] S. Gai, Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong: 'DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS', Progress In Electromagnetics Research Letters, Vol. 13, 75-81, 2010

Goal: minimize the return loss at both frequencies

- Set up region
- Set up the simulation for a single design point:
 - Boundaries
 - Radiation on the boundary of the region
 - Finite conductivity at metalized surfaces
 - Excitation
 - Lumped port at the end of the microstrip
 - Analysis Setup
 - 5.8GHz
 - 2.4GHz with mesh linked to the 5.8GHz setup
 - Frequency sweep 1.5GHz 7GHz
- Solve
- Postprocessing
 - Return Loss
 - Currents
 - Gain

- 7 -

- Remove the frequency sweep and the 2.4GHz setup
- Add a discrete frequency sweep with a single frequency point at 2.4GHz
- Ensure that the parameters are handed down to the workbench and that the return loss at 2.4GHz and at 5.8GHz are handed down to the workbench
- Add the optimization setup with optiSLang.
- Ensure that the RSM options are set properly!
- Solve

- Do a validation check
- Much improved Return Loss

Resonances

