Vibroacoustic Simulation

 of
Claw Pole Generator

Dr. Martin Hanke Jens Otto
Daniel Bachinski Pinhal
PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Maxwell: Motor Simulation Overview

- Motor performance analysis by Maxwell, RMxprt
- Coupled with Simplorer for Motor Control
- DC Motor
- Induction Motor
- PM Motor
- SR Motor
- Claw Pole Alternator
- Linear Motor

ANSYS Maxwell: PM Motor

- dq axis Inductance vs Torque

Ld, Lq vs iq (id=0, Thet=0)

$$
=P_{n} \psi_{a} I_{a} \cos \beta
$$

Ld, Lq vs Thet (id=0, le=40)

$$
T=T_{m}+T_{r}
$$

$$
+\frac{P_{n}}{2}\left(L_{q}-L_{d}\right) I_{a}{ }^{2} \sin 2 \beta
$$

© 2013 CADFEM GmbH

ANSYS Maxwell: Claw-Pole Alternator

Shota Takayama, Takashi Abe, Tsuyoshi Higuchi (Nagasaki University), '22 Institute of Electrical Engineers Industry Applications Iarge Heisei, Vol. 1 No.Y-101

Object of Interest

- Claw pole alternator
- Used widely in automotive sector
- Low cost
- Starter generator/ power for electronics
- Some machine parameters
- 5 phase
- 16 poles
- 80 slots
- Integer-slot winding (single layered)
- 5-phase rectifier (full wave)
- Connects generator to supply system
- 13.5 V voltage level

Source: Wikipedia

Source: CADFEM

HANDS-ON

Starter-Generator-Simulation with ANSYS ${ }^{\circledR}$ Maxwell 3D

HANDS-ON-Starter-Generator-Simulation-with-Maxwell3D.docx

Goal of Analysis

- Predict vibration at the outer housing during operation
- Vibration behavior depends heavily on assembled condition
- Housing is modeled
- 2 fixed supports

Source: CADFEM

Insight in Theory of Linear Dynamics

- Output depends on two quantities
- Excitation (input)
- System characteristics (transfer function)
- Calculation in frequency domain (obtained from Fourier transform)

Source: CADFEM

Tacoma Narrows Bridge (07.11.1940)

- Output obtained from multiplication of excitation spectrum and transfer function spectrum
- High output values results of:
- High value of input spectrum
- High value of transfer function
- Highest values when both (e.g. resonance)

Simulation Approach (3 Step-Workflow)

- Transient electromechanical simulation
- Extraction of excitation forces on stator's teeth
- Modal analysis of stator and housing
- Corresponds to transfer function extraction
- Harmonic analysis
- Mode superposition
- Using Extracted excitation forces

Workflow Implementation in Workbench

- Workflow steps are implemented in Workbench environment
- Visualization
- Easy geometry share
- Consistent parameterization
- ANSYS Design Modeler (B) is used to add housing to geometry from Maxwell

Transient Electromagnetic Simulation inside Maxwell

- 3D geometry of machine
- axis of rotation: global Z-axis
- Simulation setup should include 1 stationary period for force evaluation

- Period not necessarily always electric period (e.g. fractional slot winding)
- Objective: Extract periodic excitation of stator's teeth during stationary period
- Available data from simulation: electromagnetic field distribution

Maxwell Stress Tensor

- Calculation of forces from EM fields Matrix Notation
- Simple situations: Lorentz force law
- In continua, (2D/3D) becomes more complex
- Maxwell stress tensor is a powerful tool
- $2^{\text {nd }}$ order tensor
$\underline{=}=\left(\begin{array}{ccc}\left(H_{x} \cdot B_{x}-|B| H \mid / 2\right) & H_{x} \cdot B_{y} & H_{x} \cdot B_{z} \\ H_{y} \cdot B_{x} & \left(H_{y} \cdot B_{y}-|B \| H| / 2\right) & H_{y} \cdot B_{z} \\ H_{z} \cdot B_{x} & H_{z} \cdot B_{y} & \left(H_{z} \cdot B_{z}-|B \| H| / 2\right)\end{array}\right)$
- Makes use of tensor calculus

> Index Notation

- Tensor product of σ and surface normal is force density

$$
\sigma_{\mathrm{ij}}=H_{i} \cdot B_{j}-\delta_{i j} \cdot B_{k} H_{k} / 2
$$

- Straight forward procedure:
$d \underline{F}=\underline{\underline{\sigma}} \cdot d \underline{A} \quad$ (3 equations)
- Compute B/H fields
- Program expressions for σ
- Multiplication of σ with normal vector at each point of surface
- Result: surface force density

Force Calculation

- Calculation of surface force densities not in real iron to air interface
- μ is not defined
- B and H have to be known for σ

Source: CADFEM

- Force densities on virtual surfaces in the air gap
- Air gap is usually small
- Good engineering precision
- Surfaces should be segmented to obtain more accurate results

Force Calculation

- Using force densities
- compute moments of rising order with respect to rotational axis
- e.g. for $k=0 M_{k}$ correspond to forces in x, y and z directions
- Goal is to represent force densities through discrete forces (later in Mechanical)
- Resulting in the same moments until kth order
- In Maxwell we just calculate the Moments until kth order for x, y and z for teeth

$$
\underline{M}_{k}=\int z^{k} \cdot d \underline{F}(3 \cdot \mathrm{k} \text { equations })
$$

z - coordinate of $d \underline{F}$

Source: CADFEM

Force Calculation

- kth order moments are needed for each stator tooth
- Simulation during rotation over all relevant teeth
- Number of files:

- Each tooth experiences same fields (in this example)
- Leads to same force densities
- Time i.e. phase shifted
- See animation to the right
- Moment calculation for 1 single tooth

Demonstration

Emvib.wbpz

Implementation in ANSYS Maxwell

- Steps Recap
- Define simulation model
- Define integration surface in air gap
- Compute B and H fields
- Use expressions to calculate σ
- Compute surface force densities
- Evaluate moments until kth order
- This results will be exported to be used as excitation
- Fourier Transform still needed
- done in Mechanical to apply phase shift manually
- Use forces of one tooth phase shifted for all (for cyclic cases)

Implementation in ANSYS Maxwell

－Simulation Process is controlled by one Python script
－Emag＿Vibration＿FIX．wbjn
－Some adaption can be performed at the header（e．g．file paths）
－Name of project
（＂Klauenpolmaschine＿DEMO＿V16＿1＂）
－Name design （＂Sektor＿Transient＿No＿Eddy＂）
－Name of analysis setup （＂EMVIB＂）
－Path of 2 calculator files
－Expressions for（ $\sigma, \mathrm{d} \underline{\mathrm{F}}, \mathrm{M}_{\mathrm{k}}$ ）
－Required：rotation around global z
Klauenpolmaschine＿DEMO＿V16＿1 （G）Sektor＿Transient＿No＿Eddy（Transient）
（1）． 6 Model
－ 1 Boundaries
（1）Excitations
㸷 Parameters
（ Mesh Operations
－ \mathscr{P} Analysis
이 EMVIB
Optimetrics
圆 Results
田－Field Overlays
首 Notes
．Definitions
Source：CADFEM

Implementation in ANSYS Maxwell

- Define segmented integration surface(s) at air gap
- Sheet
- Here: only for one tooth
- Add sheets corresponding to integration surface to object list
- Required name: EVAL_FORCE

Source: CADFEM

- Specify middle angle of integration surface in script's header - Here: 22.5°

Handling and Export of Moments

- Moments (up to kth order) are plotted in report
- Units differ ($\mathrm{N}, \mathrm{Nm}, \mathrm{Nm}^{2}$...)
- In this case
- Moments in z direction unchanged
- Moments in x and y direction converted
- Using sin / cos of 22.5°
- Results in Moments in radial, tangential and axial direction for tooth used for force evaluation
- Report content exported as csv file

© 2013 CADFEM GmbH

Vibration Simulation

- Description of nodal displacements
- Two possibilities
- For each node (magnitude, phase)
- For each modal shape (magnitude, phase)

$$
s_{n}=\sum_{m=1}^{\max \text { mode }} u_{m, n} \cdot s_{m}
$$

- Vibration analysis with mode superposition
- Modal analysis to extract eigenmodes
- Arbitrary periodic displacements summation of weighted eigenshapes
- First step: Modal analysis
- Calculation of frequencies/shapes

Source: CADFEM
s_{n} : nodal displacement
s_{m} : modal displacement
$u_{m, n}$: participation (projection) factor

1st normal mode

4th normal mode

Source: CADFEM

Vibration Simulation

- Velocities squared (mean value) better than displacements
- Sound power (density)

$$
s_{n}=\sum_{m=1}^{\max \operatorname{mode}} u_{m, n} \cdot s_{m}
$$

$p=c \cdot \rho \cdot v_{n, \text { normal,RMS }}^{2}$
$P=c \cdot \rho \cdot \iint \frac{v_{n, \text { normal }}^{2}}{2} \cdot d A$

- All equations already programmed in scripts
- $\mathrm{U}_{\mathrm{m}, \mathrm{m}^{\prime}}$ matrix will be computed in modal analysis for

$$
\begin{aligned}
& v_{n, \text { normal,RMS }}=\omega \cdot \sum_{m=1}^{\max \text { mode }} u_{m, n} \cdot s_{m} \\
& v_{n, n o r m a l, R M S}^{2}=\omega^{2} \cdot \sum_{m} \sum_{m^{\prime}} u_{m, n} \cdot u_{m^{\prime}, n} \cdot s_{m^{\prime}} \cdot s_{m}
\end{aligned}
$$ radiating surfaces

$$
P=\frac{c \cdot \rho \cdot \omega^{2}}{2} \sum_{m} \sum_{m^{\prime}} s_{m^{\prime}} \cdot s_{m} \cdot \iint u_{m, n} \cdot u_{m^{\prime}, n} \cdot d A
$$

$$
P=\frac{c \cdot \rho \cdot \omega^{2}}{2} \sum_{m} \sum_{m^{\prime}} s_{m^{\prime}} \cdot s_{m} \cdot U_{m m^{\prime}}
$$

Modal Analysis

－Additionally to eigenmode extraction
－Creation of remote points
－Used later for excitation of teeth
－Calculation of projection factors
－Only for surface interface with air
－Here：outer cylindrical surfaces
－ 3 APDL snippets
－Order of scripts is important
－Surface Areas
－Remote Points
－Modal＿vsqr＿Mean

－ 1 Modal（C5）

$\checkmark^{\top \rightarrow \Rightarrow}$ Pre－Stress（None）
，Analysis Settings

－ 1 II，Remote Displacement 2
，直：Surface＿Areas
，冒 Remote＿Points
－，，国 Solution（C6）
！Solution Information
Total Deformation
Total Deformation 2
（ratal Deformation 3
ratal Deformation 4
Total Deformation 5
Total Deformation 6
Total Deformation 7
，直：Modal＿vsqr＿Mean

Source：CADFEM

Modal Analysis (Snippets Functionality)

- Surface Areas
- Needs surface named selection of radiating surfaces
- Calculates normal vectors for surfaces - Magnitude is area
- Saves data in matrix

Face	$n x$	$n y$	$n z$
1	\ldots	\ldots	\ldots
2	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots
EM			

- Remote Points
- Creates excitation points on teeth
- Here: 4 point/tooth in axial direction
- Requires number of stator's teeth as argument 1
- Modal_vsqr_Mean
- Calculates participation factors (for velocities squared)
- No global expansion pass needed

$$
P=\frac{c \cdot \rho \cdot \omega^{2}}{2} \sum_{m} \sum_{m^{\prime}} s_{m^{\prime}} \cdot s_{m} \cdot U_{m m^{\prime}}
$$

Harmonic Response Analysis

－Mode superposition
－Supports are inherited from modal
－ 5 APDL snippets
－Order of scripts is important
－ 4 for setup
－Read＿Force＿Moments
－Diskrete＿Fourier＿Transformation
－Vandermonde＿Matrix
－Rotational＿Speed＿Loop
－ 1 for post processing
－SBS＿Waterfall
|
~}~\mathrm{ Total Deformation
\checkmark}~\mathrm{ Total Deformation 2
~}~~\mathrm{ Total Deformation 3
~}~\mathrm{ Total Deformation 4
~}~\mathrm{ Total Deformation 5
~}~\mathrm{ Total Deformation 6
\square`|, 直: SBS_Waterfall
Post Output
~~ Frequency Response Source: CADFEM

```
```

```
#
```

```
#
        , \vec{T=O}
        , \vec{T=O}
        ~A.Analysis Settings
        ~A.Analysis Settings
        , 危, Read_Force_Moments
        , 危, Read_Force_Moments
    ,冒; Diskrete_Fourier_Transformation
    ,冒; Diskrete_Fourier_Transformation
    , 且, Vandermonde_Matrix
    , 且, Vandermonde_Matrix
    ,冒: Rotational_Speed_Loop
    ,冒: Rotational_Speed_Loop
    \square-\cdots}\sqrt{}{\mathrm{ % % Solution (D6)}
```

 \square-\cdots}\sqrt{}{\mathrm{ % % Solution (D6)}
    ```
```

 * Tota Deformation
    ```

\section*{Calculating Excitation for all Teeth}
- Kth order Moments are periodic functions (period \(=T\) )
- Fourier series (complex notation)
\[
f(t)=\sum_{r=0}^{\infty} a_{r} \cdot \cos (r \omega t)+b_{r} \cdot \sin (r \omega t)=\sum_{r=-\infty}^{\infty} c_{r} \cdot e^{i r \cdot(2 \pi / p) t}
\]
- Different teeth exposed to shifted function
\[
f(t-s)=\sum_{r=-\infty}^{\infty} c^{\prime} \cdot e^{i \cdot r \cdot(2 \pi / T) \cdot t}=\sum_{r=-\infty}^{\infty} c_{r} \cdot e^{i \cdot r \cdot(2 \pi / T) \cdot(t-s)}=\sum_{r=-\infty}^{\infty} c_{r} \cdot e^{-i \cdot \cdot \cdot(2 \pi / T) s} \cdot e^{i \cdot \cdot \cdot(2 \pi / T) \cdot t}
\]
\[
c_{r}^{\prime}=c_{r} \cdot e^{-i \cdot r \cdot(2 \pi / p) s}
\]
\[
\binom{a_{r}^{\prime}}{b_{r}^{\prime}}=\left(\begin{array}{cc}
\cos (j \cdot(2 \pi \cdot s / T)) & -\sin (j \cdot(2 \pi \cdot s / T)) \\
\sin (j \cdot(2 \pi \cdot s / T)) & \cos (j \cdot(2 \pi \cdot s / T))
\end{array}\right) \cdot\binom{a_{r}}{b_{r}}
\]

\section*{Harmonic Response Analysis (Snippets Functionality)}
- Read_Force_Moments
- Reads kth order Moments files from Maxwell
- Diskrete_Fourier_Transformation
- Performs Fourier Transform
- Vandermonde_Matrix
- Solves equation system to the right
- Create forces on remote points
- Discrete forces lead to same moments as distributed surface force densities from Maxwell (until order k)
- Rotational_Speed_Loop
- Varies rotational speed
- Scaling of time while Fourier transforming
- Arguments
- arg1: relative \(\Omega\) step size for scaling
- arg4: rotational speed steps for scaling
- arg5: nominal rotational speed \((\Omega)\) in rpm
- arg2: \# of header lines of csv (here: 2)
- arg3: \# pole pair of machine
\[
\iint_{S} z^{k} d \underline{F}=\iint_{S} z^{k} \underline{\underline{\sigma}} d \underline{A}=\left(\begin{array}{c}
M_{x}^{k} \\
M_{y}^{k} \\
M_{z}^{k}
\end{array}\right)
\]
\[
\left(\begin{array}{ccccc}
1 & z_{1}^{1} & z_{1}^{2} & . . & z_{1}^{n-1} \\
1 & z_{2}^{1} & z_{2}^{3} & . . & z_{2}^{n-1} \\
1 & z_{3}^{1} & z_{3}^{2} & . . & z_{3}^{n-1} \\
. . & . . & . . & . . & . . \\
1 & z_{n}^{1} & z_{n}^{2} & . . & z_{n}^{n-1}
\end{array}\right)^{T} \bullet\left(\begin{array}{c}
F_{1, x} \\
F_{2, x} \\
F_{3, x} \\
. . \\
F_{n, x}
\end{array}\right)=\left(\begin{array}{c}
M_{x}^{0} \\
M_{x}^{1} \\
M_{x}^{2} \\
. . \\
M_{x}^{n-1}
\end{array}\right)
\]

\section*{Resulting Carpet Plot}
- Simulated Result:
- Harmonic response for single angular speed \(\Omega\) defined in Maxwell
- \(\Omega\) sweep:
- Through time axis scaling in Fourier transform
- Using arguments of Read_Force_Moments script
- Carpet plot:
- Locate critical modes at specific rotational speeds


Structure Bom Sound in dB, Freq in \(\mathrm{Hz} / \mathrm{n}\) in rpm
Source: CADFEM```

