

# Discover your design quicker as before with HPC

# Alexander Dopf, CADFEM

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia













### **Need for Increased Performance & Robustness** Products in the headlines

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECALI RECALI RECAL                                                                                                                      |                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1          | New User? Register   Sign In   Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Make Y! My Homepage                                                                                                                     |                                                                                                            |
| en         | YAHOO! FINANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q Search                                                                                                                                | s To Fix                                                                                                   |
| (m         | HOME INVESTING NEWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERSONAL FINANCE                                                                                                                        |                                                                                                            |
| со         | Q Enter Symbol Get Quotes Fin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ance Search                                                                                                                             | <sup>Thu, Oct 1</sup> HE WALL STREET JOURNAL.                                                              |
| Soi<br>exț |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scottrade<br>\$0 Set-Up Fees                                                                                                            | - Text ↔                                                                                                   |
| ste<br>sui | Toyota recalls 7.43 million<br>AP By YURI KAGEYAMA   Associated Press - Wed, Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vehicles globally                                                                                                                       | FRANKFURT—German<br>luxury-car maker BMW AG<br>said on Monday that it is                                   |
| mc         | ET The cost of failur<br>RELATED CONTENT even for su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | re has never been so l<br>ccessful companies                                                                                            | recalling about 1.3 million<br>nigh, vehicles world-wide for<br>repair due to potential<br>problems with a |
| Arth .     | vehicles in the U<br>world for a faulty<br>quality woes for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .S., Japan, Europe and elsewhere around the<br>y power-window switch — the latest, massive<br>Japan's top automaker.                    | battery-cable cover, one of<br>the German luxury car<br>maker's largest recalls in<br>recent years.        |
| 8          | View Photo The recall annou models produced switch on the drives and the second statement of the secon | inced Wednesday affects more than a dozen<br>d from 2005 through 2010. The power-windo<br>iver's side didn't have grease applied evenly | W "In some remote cases,<br>the battery cable cover<br>inside the boot [trunk] of                          |



# **Product Integrity via Robust Design** Building in Product Reliability



Variations in operating conditions, manufacturing processes and material properties create uncertainty in the overall success of a product design.



# Summary

**ANSYS**°

It's all about getting better insight into product behavior quicker!

### **HPC enables high-fidelity**

- Include details for reliable results
- "Getting it right the first time"
- Innovate with confidence

### **HPC enables design exploration &** optimization

- **Consider multiple design ideas**
- **Optimize the design**
- **Ensure performance across range of** conditions



are 1: Top Business Pressures Driving a Better Understanding (Product Behavior

20%

Percentage of Respondents, n=704 Source: Aberdeen Group, April 201 50%

60%

37%

40%





Realize Your Product Promise™

# **Larger Simulations**



Structural Mechanics

Electromagnetics

Systems and Multiphysics



# HPC – A Software Development Imperative

#### **A NEW ERA OF PROCESSOR PERFORMANCE**



# **ANSYS** ANSYS Mechanical Scaling Achievement @ 13.0





6 Mio Degrees of Freedom Plasticity, Contact Bolt pretension 4 load steps





# **CPUs and GPUs work in a <u>collaborative</u> fashion**





#### ANSYS Mechanical



#### GPU Acceleration can be used with Distributed ANSYS to combine the advantage of GPU technology and the power of distributed ANSYS



# **ANSYS ANSYS and NVIDIA Collaborations**

| Release                 | ANSYS Mechanical                                              | ANSYS Fluent                                              |  |
|-------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--|
| <b>13.0</b><br>Dec 2010 | SMP, Single GPU, Sparse<br>and PCG/JCG Solvers                |                                                           |  |
| <b>14.0</b><br>Dec 2011 | + Distributed ANSYS;<br>+ Multi-node Support                  | Radiation Heat<br>Transfer (beta)                         |  |
| <b>14.5</b><br>Oct 2012 | + Multi-GPU Support;<br>+ Hybrid PCG;<br>+ Kepler GPU Support | + Radiation HT;<br>+ GPU AMG Solver<br>(beta), Single GPU |  |

# **ANSYS** ANSYS Mechanical SMP – GPU Speedup @ 14.0

#### Modal analysis of a radial impeller

- Block Lanczos Eigensolver
- Cyclic symmetry model with 2 million DOF:
- 337916 nodes
- 222725 elements
- 10-node tetrahedral solid element

#### **Results (baseline is 1 core):**

- With GPU, ~6x speedup on 1 core
- <sup>~</sup> ~8.5x speedup on 4 cores
- If 2 cores is taken as baseline instead, 2 cores with GPU Accelerator results in 3.7x speedup!

#### <u>Windows workstation</u>: Two Intel Xeon 5530 processors (2.4 GHz, 8 cores total), 48 GB RAM, NVIDIA Quadro 6000











#### ANSYS Fluent





Continuous performance improvements version over version

Parallel scalability near ideal (98%+)!

#### Demonstrable ability to solve large problems on large clusters very efficiently

14 © 2012 ANSYS, Inc. September 22, 2013



Number of Cores



#### - ANSYS Fluent

Hybrid parallelism for best performance on multi-core chips within clusters

Fast Parallel I/O

Architecture-aware partitioning

Good scalability for simulations with monitors enabled



#### Improved Scaling with Hybrid Parallelism - Nehalem EX







#### - ANSYS HFSS





Domain Decomposition Method (DDM), incl. support of finite antenna arrays (R14)

Increased memory efficiency for large and very large problems allows super-scaling!

Faster solutions across multiple processors

16 © 2012 ANSYS, Inc. September 22, 2013



Realize Your Product Promise™

# **More Simulations**



Structural Mechanics

Electromagnetics

Systems and Multiphysics



- Levels of Parametric Simulation



18

- Evolution of Parametric Simulation



**ANSYS**<sup>®</sup>

# **Single Design Point**

- Solves a single simulation involving single or multiple physics
- Users are interested in solution robustness, speed, accuracy, ease of use and engineering results
- And the ease and power of the physics coupling

Is this the best design? How can I improve performance? Can I reduce weight or cost? What is limiting performance? Is this a robust design?

- Evolution of Parametric Simulation



optimum is found

**NNSYS**<sup>®</sup>

# "What If" Study

- User adjusts inputs and investigates results
- Builds on previous expectations, adds requirement of easy and robust parametric updates and comparative reports

Need a more scientific and automated way to decide which points to solve Need a way to interpolate between these points





**NNSYS**<sup>®</sup>

# **Design Exploration**

- Scientific methods to explore the design space fully
- Amplifies the importance of the previous technology
- Adds requirements for: robust efficient & affordable distributed solve, sensitivity and correlation, DOE and response surface technology, mesh morphing, charting and reporting

### Difficult to optimize a design with many inputs and goals

- Evolution of Parametric Simulation



**ANSYS**<sup>®</sup>

# Optimization

- Searches the design space for optimal candidates, given user-defined goals and priorities
- <sup>"</sup> Amplifies the importance of the previous technology
  - Adds requirements for: advanced optimization algorithms to efficiently search for candidates, comparative reporting

Real-world inputs typically have some variation and may require a more "robust design" goal



#### - Evolution of Parametric Simulation



#### **Robust Design**

Taking the variation of inputs into account, and seeking a design with a probabilistic goal



- RDO => Min standard deviation of the resultsSix Sigma => Optimal design within a safe domain
- There are other Robust Design methods/goals...
- Amplifies the importance of the underlying Workbench and solver technologies
- Adds requirements for: probabilistic parameters, specific probabilistic optimization algorithms



#### Robust Design

- •Six Sigma Analysis
- •Probabilistic Algorithms
- •Adjoint solver methods



# **ANSYS Workbench Enables...** Sequential Design Point Update



- "Until ANSYS 14.0, design points had to be solved sequentially
- <sup>"</sup> That is run dp0 through to dp *n*.
- With potentially hundreds of long-running design points, this can be *time* prohibitive.





# **ANSYS Workbench Enables...** *Simultaneous Design Point Update*





# ANSYS Workbench Enables... RSM with 3<sup>rd</sup> Party Scheduler

#### RSM has two modes:

- <sup>"</sup> It can be used as a scheduler for local jobs, or
- It can be used as a mechanism to access 3<sup>rd</sup> party schedulers for more advanced distributed solves...



RSM as a scheduler (Unit: Jobs)

You setup the compute servers and how many jobs run on each, the queues and which have priority



RSM as a transport mechanism to a 3<sup>rd</sup> party scheduler such as LSF or PBS (Unit: Cores)

> Third party tools break up the jobs and can distribute them across a network



**ANSYS Workbench Enables...** Simultaneous Design Point Update

#### License Usage

- 11 **ANSYS products "grab" licenses as each software** component is executed
- " To update n design points simultaneously you need *n* \* the licenses.
- // This makes running simultaneous design points *cost* prohibitive.

" It can also make design points prone to failure if not enough licenses were available during the update process.





### **ANSYS Workbench Enables... ANSYS HPC Parametric Pack Licensing at R14.5**

#### Scalable, like ANSYS HPC Packs

 Enhances the customer's ability to include many design points as part of a single study

#### **Amplifies complete workflow**

- Allow users to run n design points simultaneously, multiplying the "base" license(s)
- Design points can include execution of multiple products (pre, meshing, solve, HPC, post)

#### Requirements

- Parameters need to be in ANSYS Workbench
- Sequential execution of geometry updates





# **ANSYS Workbench Enables...** *"Game Changing" Time to Design Insight*





# **ANSYS Workbench Enables...** *"Game Changing" Time to Design Insight*





# **ANSYS** Optimization Partners

**ANSYS simulation software has been** effectively used in concert with many optimization partners

- **MATLAB** (Mathworks)
- " modeFRONTIER (Esteco)
- " optiSLang (Dynardo)
- " eArtius
- " **Optimus (Noesis)**
- " **RBF-Morph**
- " **Sculptor (Optimal)**
- " Sigma Technology (IOSO)
- " **TOSCA (FE-DESIGN)**
- " iSight (Dassault)
- " **Qfin (Qfinsoft)**
- " and more...







Realize Your Product Promise™

# HPC Parametric Pack Example Applications



Structural Mechanics

Electromagnetics

**Systems and Multiphysics** 



# **Rear Axle Model**

#### - Evaluating Material Properties

#### **Problem Description**

- **Large deflection non-linear static model investigating design sensitivity to material properties**
- Input parameter: material property (8 design points)

#### Detail:

- Sparse matrix solver running incore; 4 load steps
- 1,393,811 nodes, 829,701 elements (4,151,766 DOF)
- Hardware: Dell workstation with dual Intel Xeon E5-2690 (2.90 GHz, 16 cores), 256 GB memory, all jobs running 2 cores

#### **Licensing Solution**

- 1 ANSYS Mechanical
- 2 ANSYS HPC Parametric Packs

#### **Result/Benefit**

- **5x speedup over sequential execution**
- **Easier and fully automated workflow!**







# Static Analysis of Semi-submersible

Evaluating Shell Thicknesses

#### Problem

- **Static Analysis of semi-submersible using beam & shell elements, subjected to hydrostatic pressure and gravity loading**
- Design objective: minimize both total mass and equivalent stress
- Input parameters: pontoon thickness, base column thickness (16 design points)

Detail:

- 232,583 nodes, 230,770 elements
- Hardware: Dell workstation with dual Intel<sup>®</sup> Xeon<sup>®</sup> E5-2690 (2.90 GHz, 16 cores),
   256 GB memory, all jobs running 2 cores

**Licensing Solution** 

- **1 ANSYS Mechanical**
- 2 ANSYS HPC Parametric Packs

**Result/Benefit** 

- ~6x speedup over sequential execution
- **Easier and fully automated workflow**







### Fatigue Analysis of Shaft - Evaluating Geometries

#### Problem

- Fatigue Analysis of steel shaft subjected to shear cyclic loading on top surface while being fixed on the bottom end
- Input parameters: base height, base thickness, groove height (15 design points)



- Detail:
  - Strain-life fatigue analysis of shaft subject to cyclic loading on the top surface
  - 364,959 nodes, 82,863 elements
  - Hardware: Dell workstation with dual Intel Xeon E5-2690 (2.90 GHz, 16 cores), 256 GB memory, all jobs running 2 cores

#### **Licensing Solution**

- 1 ANSYS Mechanical, 1 Fatigue Module, 1 ANSYS Design Modeler
- 2 ANSYS HPC Parametric Packs

#### **Result/Benefit**

- 3.2x speedup over sequential execution
- **Easier and fully automated workflow**





Acknowledgment: Paul Schofield and Jiaping Zhang, ANSYS Houston



# **Response Spectrum of Pressure Vessel**

- Evaluating Geometries

#### Problem

- **Pressure Vessel subjected to high internal pressure and subjected to acceleration in supports during earthquake**
- Input parameters: vessel thickness, vessel radius, vessel Height (16 design points)
- <sup>"</sup> Detail:
  - "Static Structural" + "Modal Analysis" + "Response Spectrum"
  - 62,439 nodes, 150,169 elements
  - Hardware: Dell workstation with dual Intel Xeon E5-2690 (2.90 GHz, 16 cores), 256 GB memory, all jobs running 2 cores

#### **Licensing Solution**

- 1 ANSYS Mechanical, 1 ANSYS DesignModeler
- 2 ANSYS HPC Parametric Packs

#### **Result/Benefit**

© 2012 ANSYS, Inc.

37

- ~3x speedup over sequential execution
- **Easier and fully automated workflow**







# **Intake Manifold Fluid Analysis**

#### - Evaluating Geometries

#### **Problem Description**

- Non-homogenous air flow in intake manifold through the 4 outlets
- Design objectives:
- Equal fresh and exhaust gas mass flow distribution to each cylinder
- To minimize the overall pressure drop
- Input Parameters: radii of 3 fillets near inlet (16 design points)

#### Detail:

- Steady state pressure based solver, realizable k-epsilon model
- 57,790 nodes, 208,740 elements
- Hardware: Dell workstation with dual Intel Xeon E5-2690 (2.90 GHz, 16 cores), 256 GB memory

### **Licensing Solution**

- 1 ANSYS CFX, 1 ANSYS DesignModeler
- 2 ANSYS HPC Parametric Packs

### **Result/Benefit**

- ~2.2x speedup over sequential execution
- **Easier and fully automated workflow**











# **ANSYS** Turbine Blade Root



#### **Design Objective:**

To determine the optimal parameters for maximum fatigue life of a blade root



**Output Parameter: Minimum Life** 

40 © 2012 ANSYS, Inc. September 22, 2013



# **ANSYS** Turbine Blade Root



| Optimization                        |                     |               |   |               |   |                 |                    |
|-------------------------------------|---------------------|---------------|---|---------------|---|-----------------|--------------------|
| Table of Schematic C4: Optimization |                     |               |   |               |   |                 |                    |
| -                                   | A                   | В             |   | с             |   | D               | E                  |
| 1                                   |                     | P5 - ds_xtilt |   | P6 - ds_ytilt |   | P7 - ds_rootrad | P28 - Life Minimum |
| 2                                   | 📮 Optimization Stud |               |   |               |   |                 |                    |
| 3                                   | Objective           | No Objective  | • | No Objective  | • | No Objective 🔻  | Maximize 🔻         |
| 4                                   | Target Value        |               |   |               |   |                 |                    |
| 5                                   | Importance          | Default       | • | Default       | Ŧ | Default 🔻       | Default 👻          |
| 6                                   | ■ GDO Sample Set 1  |               |   |               |   |                 |                    |
| 7                                   | Candidate A         | - 1.6457      |   | - 0.98276     |   | - 0.29984       | 4801.6             |
| 8                                   | Candidate B         | - 1.6376      |   | - 0.96636     |   | - 0.29861       | 4655.1             |
| 9                                   | Candidate C         | - 1.5553      |   | - 0.90571     |   | - 0.29721       | 4639.1             |

Objective is to maximize fatigue life

Design point for best candidate





# **ANSYS** Hip Joint Implant

#### **Design Objective:**

- **To optimize the implant for minimum human discomfort**
- ${\rm \H}$  Constraint: the relative sliding between bone marrow and implant should be less than 120  $\mu m$  but greater than 30  $\mu m$





# **ANSYS** Hip Joint Implant



#### Optimization

| Table of | Table of Schematic C4: Optimization |                                                                        |                 |                                  |                                   |  |
|----------|-------------------------------------|------------------------------------------------------------------------|-----------------|----------------------------------|-----------------------------------|--|
| •        | A                                   | В                                                                      | с               | D                                | E                                 |  |
| 1        |                                     | P2 - Frictional -<br>Implant-stem To<br>marrow Friction<br>Coefficient | P5 - stem_width | P7 - Force Z<br>Component<br>(N) | P3 - Sliding Distance Maximum (m) |  |
| 2        | Optimization Stud                   | ly                                                                     |                 |                                  |                                   |  |
| 3        | Objective                           | No Objective 🛛 🔻                                                       | No Objective 🔻  | No Objec 🔻                       | Seek Target 🔹 🗨                   |  |
| 4        | Target Value                        |                                                                        |                 |                                  | 9E-05                             |  |
| 5        | Importance                          | Default 🔻                                                              | Default 🔻       | Default 🔻                        | Default 🗨                         |  |
| 6        | 📮 GDO Sample Set :                  | 1                                                                      |                 |                                  |                                   |  |
| 7        | Candidate A                         | - 0.51988                                                              | - 0.0053988     | -525.25                          | 🔆 9.0006E-05                      |  |
| 8        | Candidate B                         | - 0.21238                                                              | - 0.0050125     | -470.75                          | 🔆 9.0022E-05                      |  |
| 9        | Candidate C                         | - 0.45288                                                              | - 0.0052309     | -618.17                          | 🔆 9.0707E-05                      |  |

43



#### **Optimized Geometry**



# **ANSYS** Dyson Air Multiplier<sup>™</sup> Fan

### **Design objective:**

- Maximize amplification ratio for a given size and power consumption
- 3 main design parameters, i.e. gap in annular ring, internal profile of ring, profile of external ramp

#### **Customer benefits include:**

- **Explored 10-fold of design variations than would otherwise have been possible** (each day 10 instead of 1)
- Improved performance 250% over original design





# **ANSYS** IC Engine Intake Port

#### **Design Objective:**

Maximize Effective Flow Area of a gasoline engine within a specified range of input design parameters







# **ANSYS** IC Engine Intake Port



**Response Surface and Sensitivity Chart** 



|           | Baseline Des                  | ign                           | Optimized Design             |              |  |
|-----------|-------------------------------|-------------------------------|------------------------------|--------------|--|
|           | Guide Curve<br>Angle<br>(Deg) | Guide Curve<br>Radius<br>(mm) | Section-1-<br>Length<br>(mm) | EFA<br>(mm²) |  |
| Baseline  | 63                            | 41                            | 51                           | 1100.2       |  |
| Optimized | 50                            | 30                            | 60.5                         | 1180.4       |  |

#### **Customer Benefits:**

- Able to quickly identify the key parameters the design is most sensitive to
- Considerable reduction of labor time and chances of human error by automating the whole process



#### **Design Objective:**

Optimize the fan-heat sink geometry such that the temperature on the 2 chips is lower than the baseline design (with fixed fan design)





|                   | <b>Output Parameters</b>             |            |          |
|-------------------|--------------------------------------|------------|----------|
| Output Parameters |                                      |            |          |
| P14               | surface-chip1                        | 325.57     | К        |
| P15               | surface-chip2                        | 323.36     | К        |
| P17               | area-wt-avg-vel-blow-exit            | 3.5312     | m s^-1   |
| P18               | vol-flow-out-blower                  | -0.0035515 | m^3 s^-1 |
| P19               | surface-integral-Pressure-hs-inlet   | 9.9385     | Pa       |
| P21               | surface-integral-pressure-hs-exit    | -0.47845   | Pa       |
| P22               | surface-integral-press-hs-inlet-exit | 4.73       | Pa       |





Chip temperature vs. (Shroud Diameter & Fan Heat Sink gap)

#### **Customer Benefits:**

- Quick understanding of relationship between <u>many</u> design variables and performance
- Easy exploration of a large number of 'optimal' designs (by using trade-off charts)

48 © 2012 ANSYS, Inc. September 22, 2013



# **ANSYS** Ongoing HPC Initiatives

# ANSYS focus on HPC is ongoingÅ

- Ongoing optimization and performance tuning
- <sup>"</sup> Dynamic load balancing; optimized resource mapping, compiler evaluation
- Architecting for next level scalability
  - <sup>"</sup> Performance at 10,000 cores or more; increased core density and GP-GPUs
  - <sup>"</sup> Innovative mechanical solvers: Multilevel PCG, 2D parallel DSPARSE fronts
  - " Hybrid distributed/shared memory and vector processing paradigms
- Scalability across all components and full simulation process
  - <sup>"</sup> Meshing, setup, solver, I/O, visualization, optimizationÅ
  - <sup>"</sup> Parallel for linear dynamics, including mode superposition-based analyses
  - " Distributed domain solver, especially for contact nonlinearities
  - <sup>"</sup> Partial factorization (in-core substructuring) for localized nonlinearities
- Usability
  - <sup>"</sup> Multi-component parallel execution environment, job scheduler support
  - <sup>\*</sup> Hardware fault tolerance, system performance tracking and debugging

# All to achieve next-generation capability / performance!

49 © 2012 ANSYS, Inc. September 22, 2013

# **ANSYS** HPC Partnerships

**ANSYS maintains close technical collaboration with the leaders in HPC** 

This mutual commitment ensures that you get the most possible value from your overall HPC investment

Some current examples:

- **Optimized performance on multicore processors from Intel, with R&D focused on Intel's Many Integrated Core (MIC)** 
  - Over <u>60% performance boost</u> for the latest Intel<sup>®</sup> Xeon<sup>®</sup> E5-2600 processor (Sandy Bridge) family compared to previous Intel (Westmere) generation
- <sup>"</sup>GPU computing accelerates ANSYS Mechanical today, with very active R&D engagement with NVIDIA across full portfolio
- <sup>"</sup> ANSYS and IBM Optimized cluster and storage architectures for ANSYS
- ANSYS and Cray Support for extreme scalability of ANSYS CFD on the Cray

   XE, up to 1000's of cores

   (intel)

   AMD

   Image: AMD

DELL

Microsoft





CADFEM (Austria) GmbH +43 1 587 70 73 0 info@cadfem.at www.cadfem.at