PARTNERSHIP FOR

ADVAI‘EIQED COMPUTING IN EUROPE

k'-.

[ ]
CERFLO ONERA

THE FRENCH AEROSPACE LAB

Hands-on: HPC with elsA

N. Gourdain, F. Sicot, CERFACS, CFD team

M. Gazaix, ONERA, DSNA Dpt.

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27,
University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

TR e,
FEEHLER Seecds
. .0
. . . - YT T%ssssss
University of Ljubljana

Faculty of Mechanical Engineering ~~ cawaumis e-infrastructure




Objective
» Evaluate some techniques to run a CFD
code In a parallel environment

* Try strategies without (part 1) and with
(part 2) blocks splitting to optimize the
parallel efficiency

* Highlight some limitations

=
GO  ONERA




’ 3 a structured code for aerodynamics
eI1S. (ensemble logiciel pour la simulation en
Aérodynamique)

« Mainly developed by ONERA [1] and CERFACS

* Industrial use (AIRBUS, EUROCOPTER, SAFRAN, EDF, etc.)

« Butaresearch tool too (ONERA, CERFACS, ISAE, ECL)
 Compressible finite volume flow solver with multi-block structured meshes
« Massively parallel capabilities (MPI) [2]

*  (U)RANS, DES and LES approaches
16384 -

12288

[ILR ataeant
S SE iRt
ETaauiis

Weak speed-up
|

4096
[1] Cambier and Veuillot, AIAA, 2008 I
I [2] Gourdain et al. J. Comp. Sc. Discovery, 2009 — '40'95' — '3152' — 1|22|88| - i63|84
CE®FLC) O NERA # computing cores

M. Gazaix & N. Gourdain. All right reserved. 3

THE FRENCH AEROSPACE LAB




Let’s start with some boring
things

Some information about the code... sorry!

elsA is not HMI -oriented:
* Industries build their own interface (the code is plug
into a design tool chain)

* Students can be a bit disappointed by this approach
compared to commercial products (ANSYS, NUMECA)
 Butitis the code used by the aeronautic industry for the

design of aircraft, gas turbines, etc.

* Human Machine Interface

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 4



els. 1 — Log files (parallel computing)

When running on several processors, elsA automatically creates log files
called

elsh MPI Pid <PID> N <MPI rank>

where

p1D Is the process identification number. It changes at each run.

MPI rank IS the rank of the MPI process ranging from 0 to #proc - 1

These log files contain the same data as in sequential mode except that
each processor only reads its allocated meshes.

In order to only create the rank 0 log file, set the environment variable
‘ ELSA MPI_1OG_FILES=0FF

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved.




o ol

— Log files (parallel computing)

Max. memory (local proc.)

Maximum total allocated memory 45364288 bytes

—_—————— e ———————————————————————————————————————————————
——————————— Z- Global reduction 4 processor config) —————-
Global ftotal allocated memory : 280142712 bytes
—————————————————— MPI Message Summary ———————————————

Max. memory (all procs)

—————————————————— 1- Local to processor ——————————————————————
Mumber of MPI send = 3.08323200e+05
Size of exchanged buffer = 1.833426Be+10
Cell Msg Wb : 3.932280@e+@85 Cell Msg size = 1.8334120e+10
Interface Msg Nb : 4.02000008e+8@ Interface Msg size = 1.4B873600e+05
MNode Msg Nb : B.22RRRRRe+BR MNode Msg size = B.PRRRRRARe+RR

Total Mumber of MPI buffer send : 1.9661688e+B6
Total Size of exchanged buffer : 4.363357%e+10 bytes

EEEEEEEEEEEEEEE End HPI HEﬂﬂagE infn eSS R SRS EEEEEEEEE

Size of MPI messages (local procs.)

Size of MPI messages (all procs.)

# elsA : normal run termination (@)

This task (proc : 8) took 2.131853%e+83 seconds (resolution = 1.088

Total time of the task

Blve-vb 35)



Processor assignation
(block2proc dictionary)

A convenient way to assign a given block to a given processor is to use a Python
dictionary:

els.l —

conf.set('mpi_blockZproc’, ’script_blockZproc’)

where ' script_block2proc’ actually refers to a python script named
script_block2proc.py that contains a specific dictionary:

dict_block2proc = {
: 25,
0,
26,
30,
31,
41,

The keys correspond to the block numbers (starting from 0) and the values
correspond to the MPI ranks (starting from 0). 7



e High pressure compressor core
designed by SNECMA

* Representative of a modern civil
application (CFM56)

Gourdain et al., JHPCA, 2010

Gourdain et al.,J. Turbomach., 2012

Ottavy et al., ). Prop. And Power, 2012

]
CERFLC) O NERA

THE FRENCH AEROSPACE LAB

M. Gazaix & N. Gourdain. All right reserved. 8




Let's choose a guinea pig?

’JI
U

- E)ttav;/ et a'I., 2012
- | Gourdain et al., 2010, 2012

J
¢
i

\

v
4
’ﬁ

AMAARY

A S

Y.o»

y
’

g
#

AAARARRARRRN

\ \’/ 100
-
- <L 50
[
> °

>

Entropy flow field, nominal operating conditions

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 9


Presenter
Presentation Notes
Partnership between ECL-LMFA, SAFRAN, ONERA and CERFACS



Now it's time to work

What is the best distribution of the blocks among the processors?

Simplistic answer: use 9 processors! Sadly, it is efficient only if the blocks
all have the same size. This is not the case here. One has to find a good
load balance (i.e. actual number of cells/proc should be as close as
possible to ideal number).

—
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 10




STEP 1: no splitting

* Go into directory TP1, then into Work (cd TP1/Work)

e Edit the file “main.py” (this file contains all the numerical
parameters)

> select the number of procs. you want: NB_PROC=[1;8]

* Edit the file “Mylob” and set the corresponding number of
procs. (1 to 8)

* Run the simulation and get the time from the elsA log file

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 11



STEP 1: no splitting

Perform all the load balance distribution ranging from 2 to 9 processors.

What is the best number of processors for this configuration?

[ ]
CERFLO

26000 T T A T T s/ T 120
verage cells/proc

24000 m— Max. cells/proc ®

22000 L\ --—*-- Load Bal. Error 4 100 .

20000 |- ‘,r E:,
S 18000 |- S8 e
a P 5
% 16000 - >
o . 4 60 ©
© 14000 - 5
o) B / @
S 12000 4 40 %

10000 E

8000 ~ 20

6000 ~

ol ' 8
4000 &= | | | | | | 0
2 3 4 5 6 7 8 9

It makes no sense to use more than 5 processors.

ONERA

THE FRENCH AEROSPACE LAB

# procs

M. Gazaix & N. Gourdain. All right reserved.

12



STEP 1: no splitting

Which are your conclusions?
e What is the ideal number of processors?

 What can you do to improve the max. number of
processors?

[ ]
CEPFLO ONERA
— M. Gazaix & N. Gourdain. All right reserved. 13
THE FRENCH AEROSPACE LAB




Splitting tool
It is nssihle to split the computational domain into more blocks in order to
run on more processors:

The process is purely sequential and therefore runs on a single processor:
read just the size of all the blocks
H run partitioning algorithm
El split the blocks one after the other

The memory should be large enough to handle the biggest block. As the

original mesh is already multi-blocks due to meshing constraints, this is,
never an issue.



Mesh partitioning

Two mesh partitioning algorithms are available in elsA that only consider

geometric information (no information from the communication graph is
used):

The Recursive Edge Bisection algorithm first splits the largest block on its
longest edge, and repat until the number of blocks equals
the desired number of CPUs indicated by the user

The Greedy Algorithm loops over blocks looking for the largest one (after

splitting when necessary) and allocating it to the PU with the
smaller number of cells until all blocks are allocated.

]
CERFLC) O NERA

acks
e M. Gazaix &N. Gourdain. All rght reserved. N=16 PUs

19 blocks

EEEEEEEEEEEEEEEEEEEEE




STEP 2: block splitting tool

* Go into directory TP2, then into Work (cd TP1/Work)

e Edit the file “main.py” (this file contains all the numerical
parameters)

» select the number of procs. you want: NB_PROC=[8;32]
» Select the splitting algorithm “load_balance_algo”

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 16



STEP 2: block splitting tool

The choice of split algorithm is made by the ’ 1oad_balance_algo’ key:
"no_split” only load balance
"greedy’ Greedy algorithm (default)
"greedy_1i7jk’ notyet documented (sic!), a better Greedy algorithm?

"recursive_bisection’ Recursive Edge Bisection algorithm

> Try “greedy” or “recursive_bisection”

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 17




STEP 2: block splitting tool

First the compute() method must NOT be called. Then 3 methods can be
used:

Bl load balance() takes the number of processors in argument, launches
the splitting algorithm

B print_script () prints the new scripts with the new topology

El split init file () splits the initial files (meshes, initial condition,
boundary...) and writes them

# conf.compute ()
nproc = 4 # number of processors

conf.load balance(nproc) # load balance
conf.print_script () # print new scripts

conf.split_init_file () # write new meshes
M. Gazaix & N. Gourdain. All right reserved 18




STEP 2: block splitting tool

The load balancing can be launched as a regular elsA computation:

> elsa —-f split.py | tee out_split

The algorithm tells how the blocks are spilit:

Split Algo Info : split (oldId = 0, DIR I, pos = 105)
# —> newId = 2 ( 105 X 85 X 2)
# ——> o0ldId = 0 ( 105 X 85 X 2)

Split Algo Info : split (oldId = 1, DIR I, pos = 105)
# —> newId = 3 ( 105 X 85 X 2)
# ——> oldIid = 1 (105 X 85 X 2)

» Run the script “run_split.sh”

]
CERFLC) O NERA

THE FRENCH AEROSPACE LAB

M. Gazaix & N. Gourdain. All right reserved. 19




STEP 2: block splitting tool

The splitter generates two kinds of scripts:
script_*_u.py are written in current Python-elsA syntax

B same names but without the _u suffix: old and deprecated syntax, can
be ignored.

The main scripts is script_cfd_u.py. Only the singletons are declared
in this file. It imports other new scripts:

m script_bndphys_u.py: physical boundary type declaration
B script_topology.py: physical and join boundary declaration
B script_extract.py: extraction declaration

Thereisa script_block_u.py file, but it is not imported by default.
Actually, the blocks are created automatically.

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 20




STEP 2: block splitting tool

* Edit the file “MylJob” and set the corresponding number of
procs. (8 to 32)

* Run the simulation and get the time from the elsA log file

[ ]
CERFLO

M. Gazaix & N. Gourdain. All right reserved. 21



30000

25000

20000

Max. callsproc
&
=]

The Greedy algorithm generates more blocks than requested processors.

—8— no spl
---#--- split Greedy . 120
---@--- split Bisection

: 140

A\:reraiglle c:eilsl'pr:uc

100

o0
=]

Load Balance Emor (%)
o= @
(= =1

l
6 8 10 12 14 16 18
# procs

(a) Max. cells/proc

2 4 &6 B 10 12 14 16 18
# procs

(b) Load balance error

# Hocks

30

25

20

15

—II—Inus'.[;Iit I
---a--- split G
---3--- split Bisection

4 6 &8 10 12 14 16 18

# procs

The load balance error remains (almost always) under 5 %.

(c) Number of blocks

The Recursive Bisection algorithm generates as many blocks as requested
procs: it starts splitting above 9 procs. The load balance error remains high.

—
CEPFLO

ONERA

M. Gazaix & N. Gourdain. All right reserved.

THE FRENCH AEROSPACE LAB

22



More things, if we have time...

Sometimes, one wants to run on twice or three times less processors
because of cluster constraints for instance.

The ELSA MPI MODULO_ PROC environment variable allow to divide the
total number of processors.

For instance if the configuration is split to run on 24 processors, setting
ELSA_MPI_MODULO_PROC=3 will automatically map the blocks to a
8-processors run.

[ ]
CERFLC) O NERA
/w’\ M. Gazaix & N. Gourdain. All right reserved. 23

FRENCH AEROSPACE LAB




# DoF # nodes

.
CERFLO)

74,624
ref

ONERA

THE FRENCH AEROSPACE LAB

35,870
+0.9 n.r""c-

77,440
+3,8 %

M. Gazaix & N. Gourdain. All right reserved.

Some side effects

36,040
+1.4 %

78,848
+5.6 %

24



Conclusion

All techniques presented in this hands-on are the basis to run much more complex
simulations, such as the flow simulation below (10° grid points, 1,024 processors)

/"'/_J'

]
CERFLC) O NERA

THE FRENCH AEROSPACE LAB

M. Gazaix & N. Gourdain. All right reserved. 25




	Hands-on: HPC with elsA
	Objective
	Slide Number 3
	Let’s start with some boring things
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Let’s choose a guinea pig?
	Slide Number 9
	Now it’s time to work
	STEP 1: no splitting
	STEP 1: no splitting
	STEP 1: no splitting
	Splitting tool
	Mesh partitioning
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	STEP 2: block splitting tool
	More things, if we have time…
	Some side effects
	Conclusion

