
Using HPCFS

Leon Kos, UL

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27,
University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Basic HPCFS cluster usage

• Setting GNOME or KDE desktop locale
preferences for keyboard, LANG
environment

• Using NX client (Disconnect, Terminate,
Logout)

• Console commands in Linux
• Editors for programming (emacs, gedit,

kate, eclipse, vi, pico, …)

2

Modules

• module avail
• module help/info
• module display
• module load/unload
• module list
• module purge

3

Pi example

emacs pi.py
single python pi.py

4

import random, math
total=100000
in_circle=0
for i in range(total):
 x = random.uniform(-1, 1)
 y = random.uniform(-1, 1)
 r = math.sqrt(x*x+y*y)
 if r < 1.0:
 in_circle += 1
print 'Pi =', 4.0*in_circle/total

Load Sharing Facility (LSF)

• Batch scheduler for all programs
• Compiled-in OpenMPI support
• bsub
• bjobs
• bkill
• bpeek
• Aliases for interactive usage of nodes

– node, single
 5

An Introduction to MPI

Leon Kos, UL

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27,
University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

The Message-Passing Model
• Unlike the shared memory model,

resources are local
• MPI is for communication among

processes, which have separate address
spaces.

• Interprocess communication consists of
– Synchronization
– Movement of data from one process’s

address space to another’s.

2

Why MPI

• Scalable to thousands of processes
• MPI provides a powerful, efficient, and

portable way to express parallel programs
• Many libraries use MPI and thus programs

eliminate the need of knowing
programming in MPI.

3

Minimal MPI

4

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 MPI_Finalize();
 return 0;
}

Try to run it with LSF
1. module load intel/11.1 openmpi/1.4.4
2. mpicc hello-mpi.c
3. bsub –n 6 mpirun a.out
4. mail

• Fortran example

uses
mpif90 hello-mpi.f90
instead

5

program main
include ’mpif.h’
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

Rank and communicator
• A process is identified by its rank in the group

associated with a communicator
• MPI_Comm_size reports the number of

processes.
• MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

• There is a default communicator whose
group contains all initial processes, called
MPI_COMM_WORLD.

 6

Updated hello-mpi.{c,f90}

7

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
} program main

include ’mpif.h’
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

Point-To-Point Message Passing –
Data transfer and Synchronization
• The sender process cooperates with the

destination process
• The communication system must allow the

following three operations
– send(message)
– receive (message)
– synchronisation

8

MPI is Simple
• Many parallel programs can be written using

just these six functions, only two of which are
non-trivial:
– MPI_INIT
– MPI_FINALIZE
– MPI_COMM_SIZE
– MPI_COMM_RANK
– MPI_SEND
– MPI_RECV

• Point-to-point (send/recv) isn’t the only way

9

Send/Receive P-t-P

10

program main
implicit none
include 'mpif.h'
integer ierr, rank, size
integer status(MPI_STATUS_SIZE)
real data(2)

call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
if (rank .eq. 0) then
 data(1)=1
 data(2)=2
 call MPI_SEND(data, 2, MPI_REAL, 1, 2929, MPI_COMM_WORLD, ierr)
else if (rank.eq.1) then
 call MPI_RECV(data, 2, MPI_REAL, 0, 2929, MPI_COMM_WORLD, status, ierr)
 print *, data(1), data(2)
endif
call MPI_FINALIZE(ierr)
end

Standard Send and Receive in C

• int MPI_Send(void *buf, int count,
 MPI_Datatype, type, int dest, int tag,
 MPI_Comm comm);

• int MPI_Recv (void *buf, int count,
 MPI_Datatype type, int source, int tag,
 MPI_Comm comm, MPI_Status, *status);

11

C example

12

#include <stdio.h>
#include <mpi.h>
void main (int argc, char * argv[])
{

 int err, size, rank;
MPI_Status status;
float data[2];
err = MPI_Init(&argc, &argv);
Andrew Emerson
err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank == 0) {
 data[0] = 1.0, data[1] = 2.0;
 MPI_Send(data, 2, MPI_FLOAT, 1, 1230, MPI_COMM_WORLD);
} else if(rank == 1) {
 MPI_Recv(data, 2, MPI_FLOAT, 0, 1230, MPI_COMM_WORLD, &status);
 printf(”%d: a[0]=%f a[1]=%f\n”, rank, a[0], a[1]);
}
err = MPI_Finalize();

}

Collective Operations in MPI
• Collective operations are called by all

processes in a communicator.
• MPI_BCAST distributes data from one

process (the root) to all others in a
communicator.

• MPI_REDUCE combines data from all
processes in communicator and returns it to
one process.

• In many numerical algorithms,
SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity
and efficiency

13

Summary
• MPI is a standard for message-passing and has

numerous implementations (OpenMPI, IntelMPI,
MPICH, etc)

• MPI uses send and receive calls to manage
communications between two processes (point-to-
point)

• The calls can be blocking or non-blocking.
• Non-blocking calls can be used to overlap

communication with computation but wait routines
are needed for synchronization.

• Deadlock is a common error and is due to
incorrect order of send/receive

14

Introduction to OpenMP

Introduction to
OpenMP

Outline

Introduction to OpenMP 3

• What is OpenMP?

• Timeline

• Main Terminology

• OpenMP Programming Model

• Main Components

• Parallel Construct

• Work-sharing Constructs

• sections, single, workshare

• Data Clauses

• default, shared, private, firstprivate, lastprivate,
 threadprivate, copyin

What is OpenMP?

4

OpenMP (Open specifications for Multi Processing)

– is an API for shared-memory parallel computing;

– is an open standard for portable and scalable parallel
programming;

– is flexible and easy to implement;

– is a specification for a set of compiler directives, library routines,
and environment variables;

– is designed for C, C++ and Fortran.

Introduction to OpenMP

Timeline

5

• OpenMP 4.0 Release Candidate 1 was released in November 2012.

• http://openmp.org/

Introduction to OpenMP

http://openmp.org/

Main Terminology

6

1. OpenMP thread: a lightweight process

2. thread team: a set of threads which co-operate on a task

3. master thread: the thread which co-ordinates the team

4. thread-safety: correctly executed by multiple threads

5. OpenMP directive: line of code with meaning only to certain compilers

6. construct: an OpenMP executable directive

7. clause: controls the scoping of variables during the execution

Introduction to OpenMP

OpenMP Programming Model

7

OpenMP is designed for multi-processor/core UMA or NUMA
shared memory systems.

UMA NUMA

Introduction to OpenMP

Execution Model:

8

• Thread-based Parallelism

• Compiler Directive Based

• Explicit Parallelism

• Fork-Join Model

• Dynamic Threads

• Nested Parallelism

Introduction to OpenMP

9

Memory Model:

• All threads have access to the shared memory.

• Threads can share data with other threads, but also have private data.

• Threads sometimes synchronise against data race.

• Threads cache their data; Use OpenMP flush

CPU CPU Private data Private data

Thread 1 Thread 2 Thread 3

Private data

Shared data

CPU

Introduction to OpenMP

Main Components

10

• Compiler Directives and Clauses: appear as comments,
executed when the appropriate OpenMP flag is specified
– Parallel construct

– Work-sharing constructs

– Synchronization constructs

– Data Attribute clauses

 C/C++:#pragma omp directive-name [clause[clause]...]

 Fortran free form: !$omp directive-name [clause[clause]...]

 Fortran fixed form: !$omp | c$omp | *$omp directive-name
[clause[clause]...]

Introduction to OpenMP

11

Compiling:

See: http://openmp.org/wp/openmp-compilers/ for the full list.

Compiler Flag

Intel icc (C)

icpc (C++)

ifort (Fortran)

-openmp

GNU gcc (C)

g++ (C++)

g77/gfortran (Fortran)

-fopenmp

PGI pgcc (C)

pgCC (C++)

pg77/pgfortran

(Fortran)

-mp

Introduction to OpenMP

http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/

12

• Runtime Functions: for managing the parallel program
– omp_set_num_threads(n) - set the desired number of threads

– omp_get_num_threads() - returns the current number of threads

– omp_get_thread_num() - returns the id of this thread

– omp_in_parallel() – returns .true. if inside parallel region

and more.

 For C/C++: Add #include<omp.h>

 For Fortran: Add use omp_lib

• Environment Variables: for controlling the execution of
parallel program at run-time.
– csh/tcsh: setenv OMP_NUM_THREADS n

– ksh/sh/bash: export OMP_NUM_THREADS=n

and more.

Introduction to OpenMP

Parallel Construct

13

• The fundamental construct in OpenMP.

• Every thread executes the same statements which are
inside the parallel region simultaneously.

• At the end of the parallel region there is an implicit barrier
for synchronization

Fortran:

!$omp parallel [clauses]

 ...

!$omp end

parallel

C/C++:

#pragma omp parallel [clauses]

{

 …

}

Introduction to OpenMP

double A[1000];

omp_set_num_threads(4);

foo(0,A); foo(1,A); foo(2,A); foo(3,A);

printf(“All Done\n”);

14

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int tid=omp_get_thread_num();

foo(tid,A);

}

printf(“All Done\n”);

• Create a 4-thread parallel
region

• Each thread with tid
from 0 to 3 calls foo(tid,
A)

• Threads wait for all
treads to finish before
proceeding

Introduction to OpenMP

15

Hello World Example:

C:

#include<omp.h>

#include<stdio.h>

int main(){

#pragma omp parallel

printf("Hello from thread %d out

of %d\n", omp_get_thread_num(),

omp_get_num_threads());

}

Fortran:

program hello

use omp_lib

implicit none

!$omp parallel

PRINT*, 'Hello from

thread',omp_get_thread_num(),'out

of',omp_get_num_threads()

!$omp end parallel

end program hello

Introduction to OpenMP

16

Compile: (Intel)

>icc -openmp hello.c -o a.out

>ifort -openmp hello.f90 -o a.out

Execute:

>export OMP_NUM_THREADS=4

>./a.out

Hello from thread 0 out of 4

Hello from thread 3 out of 4

Hello from thread 1 out of 4

Hello from thread 2 out of 4

Introduction to OpenMP

17

• Dynamic threads:
– The number of threads used in a parallel region can vary from one

parallel region to another.

– omp_set_dynamic(), OMP_DYNAMIC

– omp_get_dynamic()

• Nested parallel regions:
– If a parallel directive is encountered within another parallel directive,

a new team of threads will be created.

– omp_set_nested(), OMP_NESTED

– omp_get_nested()

Introduction to OpenMP

18

• If Clause:
– Used to make the parallel region directive itself conditional.

– Only execute in parallel if expression is true.

Fortran:

!$omp parallel if(n>100)

 ...

!$omp end parallel

C/C++:

#pragma omp parallel if(n>100)

{

 …

}

• nowait Clause:
– allows threads that finish earlier to proceed without waiting

Fortran:

!$omp parallel

 ...

!$omp end parallel

nowait

C/C++:

#pragma omp parallel nowait

{

 …

}

(Checks the size
of the data)

Introduction to OpenMP

Data Clauses

19

• Used in conjunction with several directives to control the
scoping of enclosed variables.
– default(shared|private|none): The default scope for all of the variables

in the parallel region.

– shared(list): Variable is shared by all threads in the team. All threads
can read or write to that variable.

C: #pragma omp parallel default(none), shared(n)

Fortran: !$omp parallel default(none), shared(n)

– private(list): Each thread has a private copy of variable. It can only be
read or written by its own thread.

C: #pragma omp parallel default(none), shared(n), private(tid)

Fortran: !$omp parallel default(none), shared(n), private(tid)

Introduction to OpenMP

20

• Most variables are shared by default

– C/C++: File scope variables, static

– Fortran: COMMON blocks, SAVE variables, MODULE variables

– Both: dynamically allocated variables

• Variables declared in parallel region are always private

• How do we decide which variables should be shared and
which private?

– Loop indices - private

– Loop temporaries - private

– Read-only variables - shared

– Main arrays - shared

Introduction to OpenMP

Example:

21

C:

#include<omp.h>

#include<stdio.h>

int tid, nthreads;

int main(){

#pragma omp parallel private(tid),

shared(nthreads)

{

tid=omp_get_thread_num();

nthreads=omp_get_num_threads();

printf("Hello from thread %d out

of %d\n", tid, nthreads);

}

}

Fortran:

program hello

use omp_lib

implicit none

integer tid, nthreads

!$omp parallel private(tid),

shared(nthreads)

tid=omp_get_thread_num()

nthreads=omp_get_num_threads()

PRINT*, 'Hello from

thread',tid,'out of',nthreads

!$omp end parallel

end program hello

Introduction to OpenMP

Some Additional Data Clauses:

22

– firstprivate(list): Private copies of a variable are initialized from the
original global object.

– lastprivate(list): On exiting the parallel region, variable has the value
that it would have had in the case of serial execution.

– threadprivate(list): Used to make global file scope variables (C/C++) or
common blocks (Fortran) local.

– copyin(list): Copies the threadprivate variables from master thread to
the team threads.

• copyprivate and reduction clauses will be described later.

Introduction to OpenMP

Work-Sharing Constructs

23

• To distribute the execution of the associated region
among threads in the team

• An implicit barrier at the end of the worksharing
region, unless the nowait clause is added

• Work-sharing Constructs:

– Loop

– Sections

– Single

– Workshare

Introduction to OpenMP

Sections Construct

24

• A non-iterative work-sharing construct.

• Specifies that the enclosed section(s) of code are to
be executed by different threads.

• Each section is executed by one thread.

Fortran:

!$omp sections [clauses]

 !$omp section

 ...

 !$omp section

 ...

!$omp end sections

[nowait]

C/C++:

#pragma omp sections [clauses] nowait

{

 #pragma omp section

 …

 #pragma omp section

 …

}

Introduction to OpenMP

25

#include <stdio.h>

#include <omp.h>

int main(){

int tid;

#pragma omp parallel private(tid)

{

 tid=omp_get_thread_num();

 #pragma omp sections

 {

 #pragma omp section

 printf("Hello from thread %d \n", tid);

 #pragma omp section

 printf("Hello from thread %d \n", tid);

 #pragma omp section

 printf("Hello from thread %d \n", tid);

 }

}

}

>export
OMP_NUM_THREADS=4

Hello from thread 0
Hello from thread 2
Hello from thread
3

Introduction to OpenMP

Single Construct

26

• Specifies a block of code that is executed by only one of
the threads in the team.

• May be useful when dealing with sections of code that are
not thread-safe.

• Copyprivate(list): used to broadcast values obtained by a
single thread directly to all instances of the private
variables in the other threads. Fortran:

!$omp parallel [clauses]

 !$omp single [clauses]

 ...

 !$omp end single

!$omp end

parallel

C/C++:

#pragma omp parallel [clauses]

{

 #pragma omp single [clauses]

 …

}

Introduction to OpenMP

Workshare Construct

27

• Fortran only

• Divides the execution of the enclosed structured block
into separate units of work

• Threads of the team share the work

• Each unit is executed only once by one thread

• Allows parallelisation of

– array and scalar assignments

– WHERE statements and constructs

– FORALL statements and constructs

– parallel, atomic, critical constructs

!$omp workshare

 ...

!$omp end workshare

[nowait]

Introduction to OpenMP

28

Program WSex

use omp_lib

implicit none

integer i

real a(10), b(10), c(10)

do i=1,10

 a(i)=i

 b(i)=i+1

enddo

!$omp parallel shared(a, b, c)

!$omp workshare

 c=a+b

!$omp end workshare nowait

!$omp end parallel

end program WSex

Introduction to OpenMP

References

29

1. http://openmp.org

2. https://computing.llnl.gov/tutorials/openMP

3. http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf

4. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP,
Mc Graw Hill, 2003.

Introduction to OpenMP

http://openmp.org
https://computing.llnl.gov/tutorials/openMP
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf

Thank you!

30

Introduction to OpenMP

	PRACE-Autumn-School-2013-Kos-UL-Using-HPCFS
	Using HPCFS
	Basic HPCFS cluster usage
	Modules
	Pi example
	Load Sharing Facility (LSF)

	PRACE-Autumn-School-2013-Kos-UL-Introduction-to-MPI
	An Introduction to MPI
	The Message-Passing Model
	Why MPI
	Minimal MPI
	Try to run it with LSF
	Rank and communicator
	Updated hello-mpi.{c,f90}
	Point-To-Point Message Passing – Data transfer and Synchronization
	MPI is Simple
	Send/Receive P-t-P
	Standard Send and Receive in C
	C example
	Collective Operations in MPI
	Summary

	OpenMPIntro_01

