PARTNERSHIP FOR

ADVAI‘EIQED COMPUTING IN EUROPE

kl'-
I"!..

Using HPCFS

Leon Kos, UL

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27,
University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

University of Ljubljana 7 . Teeege
Faculty of Mechanical Engineering __CAPACITIES _ e-infrastructure

Basic HPCFS cluster usage

Setting GNOME or KDE desktop locale
preferences for keyboard, LANG
environment

Using NX client (Disconnect, Terminate,
Logout)

Console commands in Linux

Editors for programming (emacs, gedit,
kate, eclipse, vi, pico, ...)

modu
modu
modu
modu
modu
modu

Modules

e avall

e help/info

e display

e load/unload
e list

e purge

P1 example

@ () /home/campus39/serialpifrisba-pi.svg - Inkscape <@cn30> =) = %)
Datoteka Uredi Pogled Plast Predmet Pot Besedilo Filti Razsiritve Pomoc
T B&2a A Tl Q@@ D@~

emacs pi.py B et
single python pi.py - |

import random, math
total=100000
in circle=0
for 1 1n range(total):
X = random.uniform (-1, 1)
y = random.uniform (-1, 1) ¥

e L s % 7 [+Layer1 | | Niizbranih predmetov. Iz f;g:gg zo2m [

r = math.sgrt (x*x+y*y) R

if r < 1.0:
in circle += 1
print 'Pi =', 4.0*in circle/total

Load Sharing Facility (LSF)

Batch scheduler for all programs
Compiled-in OpenMPI support
bsub

bjobs

bkill

bpeek

Aliases for interactive usage of nodes
— node, single

PARTNERSHIP FOR

ADVAI‘EIQED COMPUTING IN EUROPE

kl'-
I"!..

An Introduction to MPI

Leon Kos, UL

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27,
University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

University of Ljubljana 7 . Teeege
Faculty of Mechanical Engineering __CAPACITIES _ e-infrastructure

The Message-Passing Model

* Unlike the shared memory model,
resources are local

* MPI is for communication among
processes, which have separate address

spaces.
* Interprocess communication consists of

— Synchronization

— Movement of data from one process’s
address space to another’s.

Why MP|

» Scalable to thousands of processes

* MPI provides a powerful, efficient, and
portable way to express parallel programs

* Many libraries use MPI and thus programs
eliminate the need of knowing
programming in MPI.

Minimal MP|

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
MPI Init(&argc, &argv);
printf("Hello, world!\n");
MPI Finalize();

return 0O;

Try to run it with LSF

1. module load intel/11.1 openmpi/1.4.4
2. mpicc hello-mpi.c
3. bsub —n 6 mpirun a.out
4. mall
program main

include 'mpif.h’

* Fortran example integer ierr

USES

mpif90 hello-mpi.f90 call MPI INIT(ierr)
instead print *, 'Hello, world!'

call MPI FINALIZE(ierr)
end

5

Rank and communicator

A process is identified by its rank in the group
associated with a communicator

MPI Comm _ size reports the number of
processes.

MPI Comm_ rank reports the rank, a number
between 0 and size-1, identifying the calling
process

There is a default communicator whose
group contains all initial processes, called
MPI COMM WORLD.

Updated hello-mpi.{c,f90}

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv|[])
{
int rank, size;
MPI Init(&argc, é&argv);
MPI Comm rank(MPI COMM WORLD, &rank);
MPI Comm size(MPI COMM WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI Finalize() ;
return O;
} program main
include 'mpif.h’
integer ierr, rank, size

call MPI INIT(ierr)

call MPI COMM RANK(MPI COMM WORLD, rank,
call MPI_COMM SIZE(MPI COMM WORLD, size,
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)

end

ierr)
ierr)

Point-To-Point Message Passing —
Data transfer and Synchronization

* The sender process cooperates with the
destination process

* The communication system must allow the
following three operations
— send(message)
— receive (message)
— synchronisation

MPI is Simple

* Many parallel programs can be written using
just these six functions, only two of which are
non-trivial:

— MPI_ INIT

— MPI_FINALIZE
— MPI_COMM SIZE
— MPI_COMM RANK
— MPI_SEND

— MPI_RECV
» Point-to-point (send/recv) isn’t the only way

Send/Receive P-t-P

program main

implicit none

include 'mpif.h’

integer ierr, rank, size

integer status(MPI_STATUS_SIZE)
real data(2)

call MPL_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
if (rank .eq. 0) then
data(1)=1
data(2)=2
call MPI_SEND(data, 2, MPI_REAL, 1, 2929, MPI_COMM_WORLD, ierr)
else if (rank.eq.1) then
call MPI_RECV(data, 2, MPI_REAL, 0, 2929, MPI_COMM_WORLD, status, ierr)
print *, data(1), data(2)
endif
call MPI_FINALIZE(ierr)
end

10

Standard Send and Receive in C

* int MPI Send(void *buf, int count,
MPI Datatype, type, int dest, int tag,
MPI Comm comm) ;

* int MPI Recv (void *buf, int count,
MPI Datatype type, int source, int tag,
MPI Comm comm, MPI Status, *status);

11

#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv|[]) C exa m p I e
{

int err, size, rank;
MPI_Status status;
float data[2];
err = MPI_Init(&argc, &argv);
Andrew Emerson
err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank==0) {
data[0] = 1.0, data[1] = 2.0;
MPI_Send(data, 2, MPI_FLOAT, 1, 1230, MPI_COMM_WORLD);
} else if(rank ==1) {
MPI_Recv(data, 2, MPI_FLOAT, 0, 1230, MPI_COMM_WORLD, &status);
printf(”%d: a[0]=%f a[1]=%f\n", rank, a[0], a[1]);
}

err = MPI_Finalize();

12

Collective Operations in MPI

Collective operations are called by all
processes In a communicator.

MPI BCAST distributes data from one
process (the root) to all others in a
communicator.

MPI REDUCE combines data from all
proceésses in communicator and returns it to
ON€e Process.

In many numerical algorithms,
SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity
and efficiency

13

Summary

MPI is a standard for message-passing and has
numerous implementations (OpenMPI, IntelMPI,
MPICH, etc)

MPI| uses send and receive calls to manage
communications between two processes (point-to-
point)

The calls can be blocking or non-blocking.
Non-blocking calls can be used to overlap

communication with computation but wait routines
are needed for synchronization.

Deadlock IS a common error and is due to
iIncorrect order of send/receive

14

\) | <
\ \ “Vial R

\ ¥ o
|)(.***

\ PARTNERSHIP
FOR A /_VANCED\COMPUTING

-\ IN EUROPE
N A\
\ e r

Introduction to OpenMP

Introduction to

OpenMP

OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

Outline

®* What is OpenMP?
® Timeline
® Main Terminology
® OpenMP Programming Model
® Main Components
® Parallel Construct
® Work-sharing Constructs
® sections, single, workshare
® Data Clauses

® default, shared, private, firstprivate, lastprivate,
threadprivate, copyin

Introduction to OpenMP 3

IN EUROPE

PARTNERSHIP
FOR ADVANCED COMPUTING

\

What is OpenMP?

OpenMP (Open specifications for Multi Processing)

— iIs an API for shared-memory parallel computing;

— Is an open standard for portable and scalable parallel
programming;

— is flexible and easy to implement;

— Is a specification for a set of compiler directives, library routines,
and environment variables;

— Is designed for C, C++ and Fortran.

Introduction to OpenMP

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

Timeline

CiC++ 1.0 CiC++ 2.0
Fortran 1.0 Fortran 1.1 Fortran 2.0

OpenMP 2.5 OpenMP 3.0 OpenMP 3.1

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

® OpenMP 4.0 Release Candidate 1 was released in November 2012.
* http://openmp.org/

Introduction to OpenMP

http://openmp.org/

IN EUROPE

PARTNERSHIP
FOR ADVANCED COMPUTING

\

Main Terminology

. OpenMP thread: a lightweight process
thread team: a set of threads which co-operate on a task

. master thread: the thread which co-ordinates the team

thread-safety: correctly executed by multiple threads

. OpenMP directive: line of code with meaning only to certain compilers
. construct: an OpenMP executable directive

clause: controls the scoping of variables during the execution

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

OpenMP Programming Model

OpenMP is designed for multi-processor/core UMA or NUMA

shared memory systems.
| Bus Interconnect |

UMA NUMA

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Execution Model:

Thread-based Parallelism
Compiler Directive Based
Explicit Parallelism
Fork-Join Model

- -
master

1 parallel region } 1 parallel region }

—--

ZHO0Qg

® Dynamic Threads
® Nested Parallelism Vb

\J

Introduction to OpenMP °

IN EUROPE

PARTNERSHIP
FOR ADVANCED COMPUTING

\

Memory Model:

® All threads have access to the shared memory.
® Threads can share data with other threads, but also have private data.
® Threads sometimes synchronise against data race.
® Threads cache their data; Use OpenMP flush
Thread 1 Thread 2 Thread 3

Private dWPU Private data ,

Shared data

= =

Introduction to OpenMP

Private data

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

Main Components

® Compiler Directives and Clauses: appear as comments,
executed when the appropriate OpenMP flag is specmed

— Parallel construct

— Work-sharing constructs

— Synchronization constructs
— Data Attribute clauses

C/C++:#pragma omp directive-name [clause/clause]...]
Fortran free form: '$omp directive-name [clause/clause]...]

Fortran fixed form: !$omp | c$omp | *$omp directive-name
[clause/clause]...]

10

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

Compiling:

. [Compiler [Flag
Intel icc (C) -openmp

icpc (C++)

ifort (Fortran)
GNU gcc (C) -fopenmp

g++ (C++)

g77/gfortran (Fortran)

PGI pgcc (C) -mp
pgCC (C++)
pg77/pgfortran
(Fortran)

N
See: http://openmp.org/wp/openmp-compilers/ for the full list.
. \&

11

Introduction to OpenMP

http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

® Runtime Functions: for managing the parallel program
— omp_set_num_threads(n) - set the desired number of threads
— omp_get_num_threads() - returns the current number of threads

— omp_get_thread_num() - returns the id of this thread
— omp_in_parallel() — returns .true. if inside parallel region

and more.

For C/C++: Add #include<omp.h>
For Fortran: Add use omp_lib

® Environment Variables: for controlling the execution of

parallel program at run-time.
&

— csh/tcsh: setenv OMP_NUM_THREADS n

— ksh/sh/bash: export OMP_NUM_THREADS=n
and more.

12

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Parallel Construct

® The fundamental construct in OpenMP.

® Every thread executes the same statements which are
inside the parallel region simultaneously.

® At the end of the parallel region there is an implicit barrier
for synchronization

C/C++: Fortran:
!
#pragma omp parallel [clauses] !Somp parallel [clauses]
{ !'Somp end
} parallel

Introduction to OpenMP e

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

® Create a 4-thread parallel
region

double A[1000];

omp set num threads (4);
#fpragma omp parallel

{

int tid=omp get thread num();
foo(tid, A);
}

double A[1000]; . ” .
® FEach thread with tid [] prinEie | “ALL Dons\m”) ¢
from 0 to 3 calls foo(tid, l
A) omp_set_num_threads(4);

|
® Threads wait for all
treads to finish before ‘ l

foo(0,A); foo(1,A); foo(2,A); foo(3,A);

proceeding >

printf(“All Done\n”);

Introduction to OpenMP

14

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

Hello World Example:

C: Fortran:
#include<omp.h> program hello
#include<stdio.h> use omp lib
int main () { implicit none
fpragma omp parallel !Somp parallel
printf ("Hello from thread %d out PRINT*, 'Hello from
of %d\n", omp get thread num(), thread',omp get thread num(), 'out
omp get num threads()); of',omp get num threads()
}

!'Somp end parallel

end program hello

Introduction to OpenMP o

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

Compile: (Intel)
>icc -openmp hello.c -0 a.out
>ifort -openmp hello.f90 -0 a.out

Execute:

>export OMP_NUM_THREADS=4
>./a.out

Hello from thread 0 out of 4
Hello from thread 3 out of 4
Hello from thread 1 out of 4
Hello from thread 2 out of 4

16

Introduction to OpenMP

IN EUROPE

PARTNERSHIP
FOR ADVANCED COMPUTING

\

®* Dynamic threads:

— The number of threads used in a parallel region can vary from one
parallel region to another.

— omp_set_dynamic(), OMP_DYNAMIC
— omp_get_dynamic()

®* Nested parallel regions:

— If a parallel directive is encountered within another parallel directive,
a new team of threads will be created.

— omp_set_nested(), OMP_NESTED
— omp_get_nested()

Introduction to OpenMP Y

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

°* If Clause:

— Used to make the parallel region directive itself conditional.
— Only execute in parallel if expression is true.

C/C++: (Checks the size .

/ of the data) Fortran:

#pragma omp parallel if(n>10é;&""“-_-T;;;;~;;EQIIEI~I¥TE>lOO)
{ e

} o !'Somp end parallel

* nowait Clause:

— allows threads that finish earlier toporocteed without waiting
orctran:

C/C++:
|
#fpragma omp parallel nowait !'Somp parallel
{ . ..
'Somp end parallel
} nowait

Introduction to OpenMP 18

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Data Clauses

® Used in conjunction with several directives to control the
scoping of enclosed variables.

— default(shared/private/none): The default scope for all of the variables
in the parallel region.

— shared(/ist): Variable is shared by all threads in the team. All threads
can read or write to that variable.

C: #pragma omp parallel default(none), shared(n)
Fortran: !$omp parallel default(none), shared(n)

— private(/ist): Each thread has a private copy of variable. It can only be
read or written by its own thread. ~

C: #pragma omp parallel default(none), shared(n), private(tid) |
Fortran: !$omp parallel default(none), shared(n), private(tid) -

Introduction to OpenMP 9

IN EUROPE

\

PARTNERSHIP
FOR ADVANCED COMPUTING

® Most variables are shared by default
— C/C++: File scope variables, static
— Fortran: COMMON blocks, SAVE variables, MODULE variables
— Both: dynamically allocated variables

® Variables declared in parallel region are always private

® How do we decide which variables should be shared and
which private?
— Loop indices - private
— Loop temporaries - private
— Read-only variables - shared
— Main arrays - shared

20

Introduction to OpenMP

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

Example:

C:
#include<omp.h>
#include<stdio.h>
int tid, nthreads;
int main () {

#fpragma omp parallel private (tid),
shared (nthreads)

{

tid=omp get thread num() ;
nthreadg=om§_get_nam_threads();
printf ("Hello from thread %d out
of %d\n", tid, nthreads):;

}

}

Fortran:

program hello

use omp lib

implicit none

integer tid, nthreads

!Somp parallel private (tid),
shared (nthreads)

tid=omp get thread num/()
nthreadg=omg_get_nam_threads()
PRINT*, 'Hello from
thread', tid, 'out of',nthreads
!'Somp end parallel

end program hello

Introduction to OpenMP 2

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Some Additional Data Clauses:

— firstprivate(/ist): Private copies of a variable are initialized from the
original global object.

- Iastprivateﬂ//'st): On exiting the parallel region, variable has the value
that it would have had in the case of serial execution.

— threadprivate(/ist): Used to make global file scope variables (C/C++) or
common blocks (Fortran) local.

— copyin(/ist): Copies the threadprivate variables from master thread to
the team threads.

® copyprivate and reduction clauses will be described later.

22

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

Work-Sharing Constructs

® To distribute the execution of the associated region
among threads in the team

® An implicit barrier at the end of the worksharing
region, unless the nowait clause is added

® Work-sharing Constructs:
— Loop
— Sections
— Single
— Workshare

23

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Sections Construct

® A non-iterative work-sharing construct.

® Specifies that the enclosed section(s) of code are to
be executed by different threads.

® Each section is executed by one thread.

C/C++: Fortran:

: . !'Somp sections [clauses]
#fpragma omp sections [clauses] nowait ,
i !'Somp section

#fpragma omp section " .
!'Somp section

#fpragma omp section : .
!'Somp end sections

} [nowait]

Introduction to OpenMP 24

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

#include <stdio.h>

#include <omp.h>

int main () {

int tid;

fpragma omp parallel private (tid)
{

tid=omp get thread num();

#fpragma omp sections

{

#pragma omp section

printf ("Hello from thread %d \n", tid);
#pragma omp section

printf ("Hello from thread %d \n", tid); :>export

OMP_NUM_THREADS=4

#fpragma omp section
printf ("Hello from thread %d \n", tid);

} Hello from thread 0
} Hello from thread 2
) Hello from thread |

3

25

Introduction to OpenMP

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Single Construct

® Specifies a block of code that is executed by only one of
the threads in the team.

® May be useful when dealing with sections of code that are
not thread-safe.

® Copyprivate(/ist): used to broadcast values obtained by a
single thread directly to all instances of the private

variables in the other threads. Fortran:
C/C++:

!'Somp parallel [clauses]
fpragma omp parallel [clauses] !'Somp single [clauses]

{

fpragma omp single [clauses] !'Somp end single Vo
Somp end | "
} parallel O/

Introduction to OpenMP 20

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

Workshare Construct

® Fortran only

® Divides the execution of the enclosed structured block
into separate units of work

® Threads of the team share the work
® Each unit is executed only once by one thread

® Allows parallelisation of
— array and scalar assignments
— WHERE statements and constructs
— FORALL statements and constructs

!'Somp workshare

!Somp end workshare

[nowailt]

— parallel, atomic, critical constructs

Introduction to OpenMP 2!

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

Program WSex

use omp lib
implicit none

integer 1
real a(10), b(10), c(10)

do i=1,10
a(i)=1i
b(i)=i+1
enddo

!Somp parallel shared(a, b, c)
!'Somp workshare

c=a+tb
!Somp end workshare nowait
!Somp end parallel

end program WSex

Introduction to OpenMP

28

\

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

References

1. http://openmp.org

2. https://computing.linl.gov/tutorials/openMP

3. http://www.openmp.org/mp-documents/OpenMP4.0RC1 final.pdf
4. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP,

Mc Graw Hill, 2003.

29

Introduction to OpenMP

http://openmp.org
https://computing.llnl.gov/tutorials/openMP
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

Thank you!

30

Introduction to OpenMP

	PRACE-Autumn-School-2013-Kos-UL-Using-HPCFS
	Using HPCFS
	Basic HPCFS cluster usage
	Modules
	Pi example
	Load Sharing Facility (LSF)

	PRACE-Autumn-School-2013-Kos-UL-Introduction-to-MPI
	An Introduction to MPI
	The Message-Passing Model
	Why MPI
	Minimal MPI
	Try to run it with LSF
	Rank and communicator
	Updated hello-mpi.{c,f90}
	Point-To-Point Message Passing – Data transfer and Synchronization
	MPI is Simple
	Send/Receive P-t-P
	Standard Send and Receive in C
	C example
	Collective Operations in MPI
	Summary

	OpenMPIntro_01

