PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

Understand your design

Dipl.-Ing. (FH) Andreas Veiz, CADFEM GmbH

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Agenda

- Introduction
- Motivation for parametric variations
- Parametric workflow in ANSYS
- Manual variation
- Systematic variation using optiSLang for ANSYS
- Typical Questions
- Efficient performance of extensive design variation

Understand your Design

Motivation for parametric variation

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Motivation

- Understand a Design
- Match Tests and Simulation
- System Behavior
- Design Improvement
- Safe Designs

- Which designs will appear?
- What is the performance of each design?
- What causes the differencies?
- Which is the best one?

Understand a Design

Design

Part Assembly

Brake Pressure

Friction

Material

Manufacturing

Which one is most important? Is a larger value better or a smaller value?

Engineering a Design

Input is based on design evaluations and results

CADFEM

Input of engineers

defines a final design

Benefits of a parametric design variation

- Get the most significant parameters.
- Check correlations.
- Estimate numerical noise.
- Determine difficulties in extracting results.
- Estimate numerical stability.
- Check your geometrical validity.
- Check potential design improvement.

Design Improvement

Design Improvement

- Define improvement goals
- Insert constraints to fulfill additional conditions

Improve conflicting properties

- Somehow conflicting requirements occur.
- Find a compromise for two (or even more) different requirements.
- "Classical" example: minimize the volume (costs) and stress ensuring the performance.

Improve conflicting properties

- Taking the design out of a set, that fits the demands best.
- Chose yourself, which suits more:
 - Can I improve A with no setback of B?
- How do I find the best compromise for all properties?

Dealing with tolerances

Dealing with tolerances

- How does my product react when tolerances occur?
- How safe is my product?

Matching simulation and test

CADFEM

Matching simulation and test

System Simulation

System Behavior

INPUT

Behavior Model

Multiphysics simulation based on system coupling

- Dynamic interaction of multiple components in a system
 - Nonlinear components → Nonlinear Characteristics

Model Reduction for Nonlinear Components

- Transfer function as characterization
 - n simulatios (DoE)
 - Extract the relation from design variables to results as behavior model
- optiSLang
 - Automatic verification and adjustment of the behavior model for high comfort and safety
 - High efficiency and accuracy by optimal design samples
- Implementation in system simulation (Simplorer, Matlab) as table or C-Code

Behind optiSLang – <u>dunando</u>

- Software
 - optiSLang
 - mutiPlas
 - Statistics on Structures
- Consulting
 - Sensitivity, Optimization, Robust Design
 - Classroom and individual Trainings
- WOSD Weimar Optimization and Stochastic Days
 - >70 attendees
 - >20 talks

multiPlas: material models for masonry, soil, rock, sand, concrete, reinforced concrete, steel, wood, mortar and stone

Understand Your Design

Parametric Workflow in ANSYS

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Multiphysics Analysis of an Electric-Thermal Actuator

- Mirror actuator in a DLP projector
- Electric field & Joule heating
- Thermal strain and deformation

The ANSYS Workbench philosophy:

- Multiphysics in one environment by coupling of simulation systems
- Parametric persitency for all included simulations

Thermal-electric Actuator

- Silizium
- Thermal-electric analysis for joule heating
 - 0.1 V on Pins
 - Convection 11W/m²K on actuator
 - 22° on Pins
- Parametric persistency
 - From electric-thermal to structural FEA
 - Understand variation
 - of Voltage, Length, Thickness
 - on Temperature, Deformation

Where to get the parameters

CADFEM

CAD-Model Variation

Judge design alternatives in shape and sizing

Which CAD system provides parametric interfaces?

CAD Parameters

Create some parameters in your CAD System (Here: Pro/E)

Use the SpaceClaim Direct Modeler

Easy parametrization of "static" geometry files (STEP, Parasolid) in SCDM

Parametric Material Modeling

- Material Parameters often application specific
 - Damping
 - Friction
 - Stiffness
 - Yield point
 - Failure
 - ...
- Identification of relevant parameters by systematic variation

Source: Microconsult Engineering

MS Excel

- You have geometric conditions that have to be pre-calculated?
- You have your own result evaluation routines?
- You want to do additional postprocessing regarding external criteria?

Use and link MS Excel for additional pre- and postprocessing!

Outline of Cell B2: Analysis							
	A	В	С				
1		Input	Output				
2	🖃 満 Setup						
3	🗉 ᄙ 🎦 Nachweis.xlsx						
4	🌾 WB_Moment_Z	1					
5	🌾 WB_Moment_Y	1					
6	🌾 WB_Moment_X	1					
7	🌾 WB_Kraft_Z	V					
8	🗘 WB_Kraft_Y	1					
9	🗘 WB_Kraft_X	V					
10	闷 WB_Auslastungsgrad		V				

	A	B	С	D	E	F	G	н	1		K		L	M	N
1	Name	Schub in X	Schub in Y	Zug/Druck in Z	Biegung um X	Biegung um Y	Biegung um Z	Beanspruchungs gruppe	FAT Klasse	Auslastungs orad					
2	Name							3 PF -	100						
3	Grundolatte Bis Dom 5.1														
4	Geometrie	268 mm²	DEB mm ^a	268 mm ²	240C mm ^a	1570 mm*	3320 mm*						emeut P	hifen	
5	Kraft / Moment	154 N	1248 N	11871 N	84595 Nrom	18153 Nmm	1698 Nmm	B6	FAI	765					
6	Spannumg MPa	1 MPa	é MP a	44 MPa	35 MPa	12 MPa	1.6/95		100		_				_
7	Grundplatte Bis Dom	6.1													
8	Geometrie	268 mm ^a	268 mm ^e	268 mm ^e	2400 mm ²	1570 mm ^e	3300 mm ³				neue generelle FAT Klasse			FAT Klasse	
9	Kraft / Moment	154 N	1248 N	11871 N	84595 Nmm	18153 Nmm	1698 \ mm	B6	FAI	765					
10	Spannumg MPa	1 MPa	6 MPa	44 MPa	35 MPa	12 MPa	1 MFa		100					-	
11	Grundplatte Bis Dom	5.6									_				
12	Geometrie	268 mm ²	260 mm²	268 mm ²	240C mm ²	1570 mm ²	3320 mm*		C 1 7			Geom	etrieriat	en ersetzen	
13	Kraft / Moment	1123 N	577 N	5773 N	23372 Nmm	47958 Nmm	137 Smm	B6	FAI	245					
14	Spannumg MPa	4 MPa	C MP a	22 MPa	10 MPa	31 MPa	0.6%		100						_
15	Grundplatte Bis Dom	4.5													
16	Geometrie	268 mm ²	X8 rom ²	268 mm ²	2200 m rol ^o	1570 mm ⁴	3300 ram ²					Beanson	chungs	anuone anderr	
17	Kraft / Moment	1028 N	747 N	6550 N	26007 Neum	71312 Nmm	4138 Nom	B6	FAT	53%				9-444	
18	Spannumg MPa	4 MPa	3 MPa	24 MPa	11 MPa	45 MPa	1 MFa		100		_				_
19	Grundplatte Bis Dom	3.4													
20	Geometrie	266 mm*	268 mm*	268 mm*	2400 mm ^a	1570 mm*	3320 mm*								
21	Kraft / Moment	144 N	1384 N	12891 N	92061 Nmm	20731 Nmm	1395 Nmm	B6	FAI	995					
22	Spannumg MPa	1 MPa	E MP a	48 MPa	38 MPa	13 MPa	0 MP3		180						
23	Grundplatte Bis Dom	3.4													
24	Geometrie	268 mm#	268 mm ²	268 mm ^a	2400 mm ^e	1570 mm*	3320 mm*		CAT						
25	Kraft / Moment	144 N	1354 N	12891 N	SEA61 Nimine	20731 Nmm	1395 Vinm	86	FAI	995					
26	Spannumg MPa	1 MPa	6 MPs	48 MPa	38 MPa	13 MPa	0 MFs		100						
27	Grundplatte Bis Dom	2.3													
28	Geometrie	258 mm²	268 mm*	268 mm ²	2400 mm ²	1570 mm ²	3320 mm*		C.4.7						
29	Kraft / Moment	1224 N	513 N	6768 N	18066 Nmm	52588 Nmm	259 Nmm	B6	FAI	295					
30	Spannumg MPa	5 MPa	2 MPa	25 MPa	3 MPa	33 MPa	0 MPa		100						
31	Grundplatte Bis Dom-	1.2													
32	Geometrie	268 mm²	268 mm ²	268 mm²	2400 mm ⁹	1570 mm*	3320 mm ²		CAT						
33	Kraft / Moment	971 N	830 N	5564 N	27347 Ninni	64247 Nmm	3925 Nmin	B6	FAI	39%					
34	Spannumg MPa	4 MPa	3 MPa	21 MPa	L1 MPa	41 MPa	1 MFa		100						
35	Dom-6-1 Bis Deckplat	le													
36	Geometrie	268 mm²	72fl mm*	268 mm²	2400 mm ²	1570 mm ²	3320 mm*		FAT						
37	Kraft / Moment	123 N	1347 N	12244 N	250560 Nmm	7260 Nmm	2112 Nmm	B6	FAI	395%					
38	Spannung MPa	0 MPa	5 MPa	46 MPa	103 MPa	5 MPa	1 MFa		100						
39	Dom 6-1 Bis Deckplat	te													
40	Geometrie	268 mm*	DE8 mm ²	268 mm ^a	2400 mm ^a	1570 mm*	3320 mm ²		CAT						
41	Kraft / Moment	123 N	1347 N	12244 N	258560 Nmm	7260 Nmm	2112 Vmm	B6	FAI	395.5					
42	Spannumg MPa	0 MPa	€ MPa	46 MPa	108 MPa	5 MPa	1 MFa		100						
12	Destal and Dis Dem 6	e													

Fully Automated Simulation Workflows in APDL

- Example: Spring simulation at Muhr und Bender
 - Complete workflow
 - Geometry modeling
 - Loads
 - Simulation
 - Result calculation
- Classic model setup by ANSYS
 Parametric Design Language APDL
 - Text file drives workflow
 - Numbers in text files can be set as parameters

Fully Automated Simulation Workflows in APDL

 Each parameter that is created by name=.., *get,.. or *set,.. in an APDL Makro can be transferred to the parameter set.

Understand your Design

Manual Variation

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Understand your Design

Example: Notch

cRad = 7thck_l = 5 cthck = 3 thck = 8 nthck = 0.42 nRad = 1 blend = 10 Which parameter shall be taken for a manual variation?

Example: Notch

- Take 1 Parameter: Thickness (thck) and vary it between 5 and 9
- The evaluation of the results is quite simple.
- Just use two graphs in Excel.

Thck	Stress	Mass				
5	141.6	0.0239				
6	107.34	0.0258				
7	91.2	0.0277				
8	81.5	0.0298				
9	75	0.032				

- 2nd parameter: cThck, variation: 2 ... 3.5
- Which combination to create?
- 3 Designs per Parameter (low-mid-high): 2³ = 8 designs.
- Check the effect.
- Taken the right parameter?

cThck	Thck	Stress	Mass
2	5	127.9	0.0176
2	7	95.1	0.0213
2	9	82.1	0.0255
2.75	5	135.4	0.0223
2.75	7	91.9	0.0260
2.75	9	76.9	0.0303
3.5	5	181.4	0.0274
3.5	7	96.5	0.0311
3.5	9	74.5	0.0354

Manual variations

- All 7 parameters: 3⁷ = 2187 designs!
- Do you want to set this up manually?
- Can you ensure that all designs can be regenerated?
- Information useful?

- Manual variation: normally 3 designs (low-mid-high)
- Failed design: loss of large amount of information
- Stochastic sampling:
 - No loss of information, best representation of variation space!

The automatic sampling

Systematic variation using optiSLang inside Workbench

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Example: Notch

Parametrization

Design Improvement goal:

- Minimize the deformation and the mass.
- The stress should not exceed 140 MPa.

Content

- Systematic variation using optiSLang inside Workbench
 - Get a better understanding for the model behaviour
 - Improve your design
 - Dealing with tolerances
- Examples
 - Sensitivity Analysis and Design Improvement of a notch

The developed modules Sensitivity, Optimization and Robustness provide user friendly wizards for each task

How it Works

CADFEM

How it Works	•	Parameter set							? 🗙
	[Name	Parameter type	Reference value	Resolution	Constant		Range	Range plot
		1 cut_wall_thickn	Deterministic	4	Continuous	📃 non const	3	5	
🐧 bike_shaft - Workbench									
File Edit View Tools Units Help		2 radius_pedal	Deterministic	0.5	Continuous	non const	0.25	0.75	
👔 New 💣 Open 🚽 Save 🖳 Save As 🍙 Import 🍣 Reconnect 😹 Refresh Project 🍼 Update Project 🎊 Resume 🌮	99 Upda	3 outer_thickness	Deterministic	7	Continuous	non const	5	10	
Toolbox • # X Project Schematic									
E Analysis Systems		4 inner_thickness	Deterministic	7	Continuous	🔲 non const	5	10	
		E also and model	Deterministic	15	Continuous			25	
 (e) Electric ▼ A ▼ B 		5 th_red_pedal	Deterministic	15	Continuous	non const	2	25	
Explicit Dynamics 1 Geometry 1 Z Static Structural		6 inner_radius	Deterministic	15	Continuous	non const	10	20	
🖸 Harmonic Response 2 🛍 Geometry 🖌 2 🖉 Engineering Data 🖌 -									
Linear Buckling 2 Concentration		7 sections	Deterministic	5	Discrete	🔽 const	456		
Linear Buckling (Samcef) (Beta)									
Magnetostatic Geometry 4 Model 🗸		8 thickness	Deterministic	10	Continuous	📄 non const	8	14	
🞹 Modal 5 🍓 Setup 🗸 🧹									
🔞 Modal (ABAQUS)(Beta) 6 🗌 Solution 🐔		9 cut_wall_thickn	Deterministic	2	Continuous	non const	1.5	4	
🔞 Modal (NASTRAN)(Beta) 7 😭 Results 🥖 .		10 cut depth	Deterministic	4	Continuous	non const	3	5	
Modal (Samcef)		io cucucpin	Deterministic		continuous	- non const	Ĩ.,	Ĩ	
Random Vibration		11 pedal_thickness	Deterministic	20	Continuous	non const	18	25	
Response Spectrum Static Structural									
Rigid Dynamics		12 pedal_thickness	Deterministic	16	Continuous	📄 non const	12	20	
Shape Optimization (Beta)									
🚾 Static Structural		13 cut_depth_pedal	Deterministic	3	Continuous	📄 non const	2	4	
Static Structural (ABAQUS) (Beta)	-								
Static Structural (Samcef)	_						Use	e desian	as reference *
1 Steady-State Thermal								-	
Steady-State Thermal (ABAQUS) (Beta)							OK		
U Steady-State Thermal (Samcef) (Beta)							UK		
(1) Thermal-Electric									
Transient Structural 1 Sensitivity 1 Sensitivity 1 Sensitivity									
Transient Structural (ABAQUS) (Beta) 2 🕒 Parameter 🗸 2 🛀 Parameter									
iransient Structural (Samcer) (Beta) 3 for Criteria 🗸 3 for Criteria 🗸									
4 🖗 DoE 🗸 4 🐗 ARSM 🐔									
Transient Inermal (ABAQUS)(Beta) S ♥ MoP ✓ S ♥ Regults ♥									
(ransient inermai (samcer) (beta)				fina		nar	an	not	lor
Le Component Systems Optimization ARSM					yuu	par	an		
Custom Systems Sensitivity									
Design Exploration			Var	iatio	n a n	der	ite	ria	in a
optiSLang			vai	ano	па		πC		ma
1 Optimization									
∑ Robustness				ard					
💥 Sensitivity									
View All / Customize									
Messages									
Pdating the ARSM componentin Optimization ARSM					Show Prog	ress 🔁 Show	238 Mes	sages	

Example: Notch

CAD Parametrization in ANSYS DesignModeler

Example: Notch

Reference Results

Example: Notch

Drag & Drop a new sensitivity analysis in ANSYS

🔥 Spannhuelse - Workbench	
File Edit View Tools Units Extensions Hel	p
🎦 New 对 Open 📕 Save 🔣 Save As 👔 Impo	ort 🏽 🍣 Reconnect 🛛 🤁 Refresh Project 🍼 Update Project
Toolbox 🝷 🕂 🗙	Project Schematic
Analysis Systems	
Component Systems	
Custom Systems	▼ A
Design Exploration	1 w Static Structural
optiSLang	2 🦪 Engineering Data 🗸 🖌
Optimization	3 🕼 Geometry 🗸 🖌
🔊 Robustness	4 🎯 Model 🗸 🖌
😸 Sensitivity	5 🍓 Setup 🗸 🖌
	6 🕼 Solution 🗸 🖌
	7 🥪 Results 🗸
	→ 8 🛱 Parameters
	Model, Static Structural
	🙀 Parameter Set
	Constants adalance system
	Create standarone system

Example: Notch

The Wizard opens to insert the given parameter variations.

s	ensitivity										? 🗙
Pi	arameter Start de	esigns Criteria	Dynamic sampling	Other Resu	lt designs						
	Name	Parameter type	Reference value	Constant	Resolution		Range	Range plot	PDF	Туре	Mean
1	Force_Magnitude	Det+Stoch	1000		Continuous	900	1100			UNIFORM	1000
2	cylinder_radius	Det+Stoch	7		Continuous	5	8			UNIFORM	7
3	thickening_len	Det+Stoch	5		Continuous	2	6			UNIFORM	5
4	cylinder_thickn	Det+Stoch	3		Continuous	2	3.5			UNIFORM	3
5	thickening_thic	Det+Stoch	8		Continuous	5	9			UNIFORM	8
6	notch_thickness	Det+Stoch	0.42		Continuous	0.3	0.5			UNIFORM	0.42
7	notch_radius	Det+Stoch	1		Continuous	0.6	1.2			UNIFORM	1
8	ausrundung	Det+Stoch	10		Continuous	4	12			UNIFORM	10
•				III							Þ
										Impor	rt parameter 🔹
▶	Show additional opti	ions								OK Car	ncel Apply

Example: Notch

A number of samples to calculate of 50 should be enough!

🙁 Sensitivity		? 🔀
Parameter Start	designs Criteria Dynamic sampling Other Result designs	
V Dynamic sampling	 	
Sampling Type:	Advanced Latin Hypercube Sampling (ALHS)	•
Number of samples:	50	
Show additional op	vtions OK	Cancel Apply

Example: Notch

The post-processing gives you an overview over all sensitivity results

4 of the 7 Parameters seem to have no recognizable Influence on the results. Two Paramers are more significant. One is minor significant.

OUTPUT: Total_Deformation_Maximum vs. OUTPUT: Total_Defor...

Example: Notch

Take a look at the different result modes:

- See which parameters have an influence
- Check the result variation. Does the variation reach critical stages?
- How do I have to modify my parameters to get a desired value for the deformation.

Remember the optimization goal of minimizing mass and deformation by considering a maximum stress of 140 Mpa? Open the parallel coordinates plot to check your optimization possibilities!

Now check your forecast quality and deeper correlations by starting the optiSLang meta model of optimal prognosis!

The model will be automatically reduced to the significant inputs. All noticable correlations will be determined. The forecast quality is estimated.

The correlations are determined more detailly

OUTPUT: Total_Deformation_Maximum vs. OUTPUT: Total_Defor...

INPUT: cylinder_radius vs. INPUT: thickening_length, r = -0.024

COPs

Check the single CoPs to extract the significance of each input

CADFEM

As a summary, check the CoP Matrix:

You can explain all of the variations perfectly just with 3 of 7 parameters! Any other parameter variation is not necessary – this saves time.

Example: Notch

Now let's improve our design!

CADI

Example: Notch

The unimportant parameters are automatically filtered!

) O	ptimization Wizard										• x
Pa	Parametrize Inputs	uts									≜ ₩
	Name	Parameter type	Reference value	Constant	Resolution		Range	Range plot	PDF	Type	•
1	l Force_Magnitude	Det+Stoch	1000	✓ filtered	Continuous	900	1100			UNIFORM	
2	2 cylinder_radius	Det+Stoch	7		Continuous	5	8			UNIFORM	
3	3 thickening_len	Det+Stoch	5	✓ filtered	Continuous	2	6			UNIFORM	
4	cylinder_thickn	Det+Stoch	3		Continuous	2	3.5			UNIFORM	E
-	5 thickening_thic	Det+Stoch	8		Continuous	5	9			UNIFORM	
6	5 notch_thickness	Det+Stoch	0.42	✓ filtered	Continuous	0.3	0.5			UNIFORM	
7	7 notch_radius	Det+Stoch	1	✓ filtered	Continuous	0.6	1.2			UNIFORM	
8	ausrundung	Det+Stoch	10	✓ filtered	Continuous	4	12			UNIFORM	-
	•	· 		1							Þ
									Impor	t paramete	er 🔻
									Next > Ca	ncel	Help

Example: Notch

Let's insert our goals using the wizard

Variables				Parameter			Responses						
Name	Expres	sion Valu	e	Name	Value	<u>^</u>	Name	Value	•				
new				Force_Magnit	1000		Equivalent_St	77.3451326372	=				
				cylinder_radius	7	-	Geometry_M	0.0301139899567	-				
Objectives													
Name	Criterion	Expressi	on		Value								
Goal_1	MIN	Total_Deformation	_Maximum	1									
Goal_2	MIN	Geometry_Mass		0.030114	0.030114								
Constraints		1											
Name	Left	ide expression	Criterion	ight side express	ic		Value						
Constraint	Equivalen	t_Stress_Maximum	<=	140	62.6549								
new													
					·								

optiSLang suggests automatically the best suiting method!

Therefore you do not have to care about different algorithms or sophisticated settings. This is done by the software!

) Optimization Wizard
Optimization method Specify the optimization method
Optimization method
Response surface method
Adaptive Response Surface Method (ARSM)
Natural inspired optimization algorithms
🔘 💿 Evolutionary Algorithm (EA) - local
Evolutionary Algorithm (EA) - global
O Particle Swarm Optimization (PSO) - local
🔘 💿 Particle Swarm Optimization (PSO) - global
Stochastic Design Improvement (SDI)
Gradient based optimization
Non-Linear Programming by Quadratic Lagrangian (NLPQL)
Additional options
Use Previous Data As Starting Point(s)
< <u>Back</u> <u>Next</u> >Cancel <u>H</u> elp

CADFEM

Example: Notch

Check the effect of manufacturing tolerances! Vary the geometry by 1% and the Force by 5%

Name	Parameter type	Reference value	Constant	Resolution	R	ange	Range plot	PDF	Туре	Mean	Std. Dev.	CoV
orce_Magnitude	e Det+Stoch	1000		Continuous	900	1100		\frown	NORMAL	1000	50	5 %
ylinder_radius	Det+Stoch	7		Continuous	6.3	7.7		\frown	NORMAL	7	0.07	1 %
hickening_len	Det+Stoch	5		Continuous	4.5	5.5		\frown	NORMAL	5	0.05	1 %
ylinder_thickn	Det+Stoch	3		Continuous	2.7	3.3		\frown	NORMAL	3	0.03	1 %
hickening_thic	Det+Stoch	8		Continuous	7.2	8.8		\frown	NORMAL	8	0.08	1 %
notch_thickness	Det+Stoch	0.42		Continuous	0.378	0.462		\frown	NORMAL	0.42	0.0042	1 %
notch_radius	Det+Stoch	1		Continuous	0.9	1.1		\frown	NORMAL	1	0.01	1 %
ausrundung	Det+Stoch	10		Continuous	9	11		\frown	NORMAL	10	0.1	1 %

Example: Notch

The correlation matrix indicates that the 5% variation of the force is dominant.

INPUT: Force_Magnitude vs. INPUT: cylinder_radius, r = 0.010

Example: Notch

The variation is of the same magnitude as the input variation of the force

Typical Questions

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Content

- Typical Questions
 - How to evaluate 1000 designs?
 - Accuracy and numerical noise
 - Robust parameter settings
 - Which settings are the best for my design improvement?

Context senstive overview of all results.

- The correlation matrix
- Red: Positive correlation
- Blue: Negative correlation
- Grey: No significant correlation.

Check:

 Correlations not only between input and output but also between the different results!

- Three input parameters show influence on the results.
- Four parameters show no influence.

Deformation and Stress: positive correlated Mass: negative correlation to stress and deformation \rightarrow Important for future design improvement.

Get the overview of all correlations using the extended correlation matrix!

Parallel Coordinates Plot:

- Good for a quick exploration of input/output trends
- Check whether desired design improvement goals can be reached.

The optiSLang Meta-model of Optimal Prognosis (MOP)

- Characterize the system behavior by a mathematical description
- Determination of the best approximation model
- The response surface visualizes the behavior model
- Filter out the unimportant parameters
- Asses the forecast quality of the model: The Coefficient of Prognosis (CoP)
- Estimate occuring numerical noise
- Check concerning nonlinear correlation
- Explore improvement possibilites

The Coefficient of Prognosis (CoP)

- Estimation of the forecast quality of the approximation model
- Explain the model behavior with a reduced parameter set
- Handle nonlinearities
- Determine coupled correlation some parameters boost or efface each other
- A low CoP indicates occuring numerical noise

Accuracy and numerical noise

- Check accuracy using the Coefficient of Prognosis
 - A CoP of larger than ~80% is a good start value for further design improvement
- What if CoP is < 60..70% ?</p>
 - Check variation space (to big / small)?
 - Forget some very important parameters?
 - Too much numerical noise in my model?
 - Too less samples?
 - Difficulties in result extraction?

Reviewing the results

- Histograms:
 - Relative distribution of result values
 - Determination of critical stages
 - Check for possible design improvement

OUTPUT: Total_Deformation_Maximum

Robust parameter settings

- What are robust parameter setting?
 - The solution always converges
 - The geometry can always be generated
 - The mesh can always be created
- Can we determine robust parameter settings in advance?
- Do we even need them?

Determining robust parameter settings

 optiSLang enables you to visualize failed designs to show the expected position in the variation space!

BUT - Do we need always converging and regeneratable models?

- optiSLang can deal with failed designs!
- Do not limit your variation space!
- Rather accept failed designs than loosing information!

Restart option

- What is if your computer system crashes or you need it for other purpose?
- optiSLang can be interrupted and restarted at any time.

Understand your Design

Hard- and Software for Performant Design Variation

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Parallelize your calculations

- Use the optiSLang RSM Mode to send several designs in parallel to your solver system
- optiSLang inside Workbench uses the RSM technology and therfore you can combine it with your own jobmanagement systems.

Propertie	es of Schematic D2: DOE	→ ∓ Х	
	А	В	
1	Property	Value	
2	■ General		
3	Component ID	DOE (optiSLang)	
4	Directory Name	Sensitivity	
5	Save Design Point Directories		
6	Notes		
7	Notes		
8	Update Options		\sim
9	Use RSM Mode		
10	Preferred Number of Design Points in Rarallel	10	
11	Run Python Script for Update		

Hardware

- Workstation
 - Local High End Computing power
 - Local High End 3D Graphics
 - Up to 16 Cores and 512 GB Memory
- Benefit
 - All kind of sequential simulation processing

Desktop Workstation

Mobile Workstation

Z1 All-in-One Workstation

Hardware

- Compute Server
 - Remote High End Computing power
 - No 3D Graphics
 - Scalable in cores, memory, disks
 - Redundant components
 - Service Level Agreements SLAs availible
 - Remote service access on hardware level → high availability

Benefit

- All kind of sequential and simultaneous simulation processing
 - Highly scalable in the number of cores per job
 - Highly scalable in the number of simultaneous jobs → large DoE's

Hardware

- Terminals & Cloud
- Benefit
 - High bandwidth connection from blade workstation to compute server → fast postprocessing
 - Flexible allocation of virtual workstations → cost effective "workstation" usage by multiple users
 - Flexible scaling of hardware resources
 → better scaling and availability by external hardware sharing

- 4 -

Parallel Processing \rightarrow Multiple cores per Design

Use multiple cores

- Today, every computer is a parallel computer
- 8 Cores → factor 4 on industry FEA models is typical average
- HPC Pack with 1 additional GPU → additional factor 1.5
 - NVidia Tesla 2075 ~ 2-3000€
- Total speedup Cores*GPU: 4 x 1.5 = 6
- Important: SMP & DMP available

ariaci	J 1.J		14	+		 			-
			12						_
# Cores	Speed-Up	computing h	10						
	1 1	24.0	. 0						_
	2 1.4	17.1	8						
	4 2.4	10.0	6	-		 			_
	6 3.5	6.9	4			_			_
	8 4.2	5.7		\vdash					_
1	6 8	3.0	2						
3	2 15.3	1.6	0 -				1		_
					1	8		16	

16

Speed-Up CPU

Source: MicroConsult

Benefit

- 1 HPC-Pack: +200% corepower (300 % with GPU) for +35% costs (ANSYS/MECH)
- 2 HPC-Pack: +990% corepower (1500% with GPU) for +70% costs (ANSYS/MECH)

32

Simultaneous Processing \rightarrow Multiple Designs at once

CADFEM C.A.V.E. - Why

- High number of simulation result sets → big data
- Workbench integration of VCollab (Visual Collaboration Technologies)
 - Reduced amount of data by factor 50 to 300 for cost effective archiving and sharing
 - High speed visualization
 - Flexibility by visualization independent from CAE software
 - Sharing of 3D result data for a better understanding of all project partners
 - Seamless integration into ANSYS Workbench and Office

Source: AGCO FENDT

Part	rst-File	cax-File
Injection Molding Tool (9 results)	529 MB	3.3 MB
Automotive Assembly (16 results)	68 GB	1.0 GB
Mechanical Part (8 results)	137 GB	0.4 GB

CADFEM C.A.V.E. - Summary

- High data compression rate
 - Minimized costs for archiving
 - High speed visualization
- Improves communication and understanding by sharing results
 - 3D Result viewing for everyone free of charge
- Seamless Workbench integration
 - Safety First: Automated consistency
 - Time effective result extraction

CAD

Understand your design Optimization

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Table of contents

- 1. General Information
- 2. Optimization Algorithms

dynando

1. General Information

Workflow:

dynardo

General Information

Design variables

Variables defining the design space (continuous, discrete, binary)

- <u>Objective function</u>
 Function *f*(**x**) has to be minimized
- <u>Constraints, State variables</u> Constrain the design space, Equality/Inequality restrictions are possible

$$f(x_1, x_2, \dots, x_N) \to \min$$

 $g_k(x_1, x_2, \dots, x_N) = 0; \ k = 1, m_e$ $h_l(x_1, x_2, \dots, x_N) \ge 0; \ l = 1, m_u$ $x_i \in [x_l, x_u] \subset \mathbb{R}^N$ $x_l \le x_i \le x_u$ CANFE

2. Optimization Algorithms

Available Optimization algorithms in optiSLang:

Deterministic methods

- Hill climbing methods
- Simplex strategies
- Gradient-based strategies
- Surrogate models
 - Global response surface methodology
 - Adaptive response surface methodology

Stochastic methods

- Sampling methods
 - Plain Monte Carlo
 - Markov Chain Monte Carlo
 - Latin Hypercube Sampling
 - Simple Design improvement
- Physical process procedures
 - Simulated annealing
 - Tunneling algorithm
- Artificial life approaches
 - Evolution strategies
 - Genetic algorithms
 - Particle swarm optimization

CADFEM

Optimization Algorithms

Decision Tree:

frequently

EA

EA (PSO)

PSO

dunando

Optimization Algorithms

optiSLang inside Workbench chooses the best algorithm by a wizard:

Optimization Wizard
Optimization method Specify the optimization method
Optimization method
Response surface method
O Adaptive Response Surface Method (ARSM)
Natural inspired optimization algorithms
🔘 💿 Evolutionary Algorithm (EA) - local
🔘 💿 Evolutionary Algorithm (EA) - global
🔘 💿 Particle Swarm Optimization (PSO) - local
🔘 💿 Particle Swarm Optimization (PSO) - global
🔘 💿 Stochastic Design Improvement (SDI)
Gradient based optimization
Non-Linear Programming by Quadratic Lagrangian (NLPQL)
Additional options
☑ Use Previous Data As Starting Point(s)
< Back Next > Cancel Help

dynando

Optimization Algorithms

Nonlinear Programming Quadratic Line Search (NLPQL)

Recommended area of application: reasonable smooth problems

Remark:

The gradient optimizer sometimes stucks in local optima Also use with care for binary/discrete variables

Optimization Algorithms

Adaptive Response Surface Method:

- + Fast catch of global trends, smoothing of noisy answers
- + Adaptive RSM with D-optimal linear DOE/approximation functions for optimization problems with up to 5...15 continuous variables is possible

Optimization Algorithms

Adaptive Response Surface Method:

dunando

Evolutionary algorithm (EA)

It imitates Evolution ("Optimization") in Nature:

- Survival of the fittest
- Evolution due to mutation, recombination and selection
- Developed for optimization problems where no gradient information is available, like binary or discrete search spaces

Particle Swarm Optimization (PSO)

- swarm intelligence based biological algorithm
- imitates the social behaviour of a bees swarm searching for food
- Selection of swarm leader including archive strategy
- Adaption of fly direction
- Mutation of new position
- Available for single/multi objective Optimization

dynando

Simple Design Improvement

- Improves a proposed design without extensive knowledge about interactions in design space
- Start population by uniform LHS around given start design
- The best design is selected as center for the next sampling
- The sampling ranges decrease with every generation - 13 -

Gradient-based algorithms

- Most efficient method
 Attractive method if gradients are accurate enough
- Consider its restrictions like local optima, only continuous variables

Response surface method

- for a small set of continuous variables (<15)
- Adaptive RSM with default settings is the method of

Biologic Algorithms

dynando

- GA/EA/PSO copy mechanisms of nature to improve individuals
- Method of choice if gradient or ARSM fails
- Very robust against numerical noise, nonlinearities, number of variables

4) Goal: user-friendly procedure provides as much automatism as possible

- Objective 1: minimize maximum amplitude after 5s
- Objective 2: minimize eigen-frequency
- DOE scan with 100 LHS samples gives good problem overview
- Weighted objectives require about 1000 solver calls - 16 -

- Only for conflicting objectives a Pareto frontier exists
- For positively correlated objective functions exactly one optimum exists CAD
 - 18 -

Correlated objectives

dynando

Biologic Algorithms

Response surface method (RSM)

Global adaptive RSM

Understand your Design

Outlook

PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

ANSYS Competence Center FEM

Do you want to get deeper into optiSLang?

Take a look at our seminar!

Strukturmechanik mit ANSYS

Praesenz-Seminar: Optimierung und Reverse Engineering mit optiSLang inside ANSYS Workbench

www.cadfem.de or www.cadfem.at

Tomorrow

Your feedback!

More Information?

- Brochures
- Feedback Form
- Contact Information
 © 0800-1-CADFEM
 © 0800-1-223336
 www.cadfem.de

