Non-strongly-convex smooth
stochastic approximation
with convergence rate O(1/n)
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Large-scale supervised learning
Stochastic approximation

e Context: Learning from large datasets with a single pass

e Goal: Minimize generalization error | E, (. ., ¢(v. 9 ®(x )

— Linear predictions T ®(z), with d(z) € R4
— Smooth loss ¢ (least-squares and logistic)
— Learning from stream of i.i.d. data (z,.yn), n > 1

¢ Main approach: (averaged) stochastic gradient descent
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— Polyak-Ruppert averaging: 4,, = %ZEZU ;.



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovski and Yudin, 1983)

— Strongly convex: O((un)—1)

Attained by averaged stochastic gradient descent with ~,, o (un _}_1

— Non-strongly convex: O(n—1/2)

Attained by averaged stochastic gradient descent with ~,, oc n= /2

e Breaking lower bounds

— A single algorithm for smooth problems with convergence rate
O(1/n) in all situations
— Robustness to ill-conditioning and step-size selection



Provable convergence in O(1/n) for smooth functions

e |l east-squares regression

— Constant step-size averaged stochastic gradient descent
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e Logistic regression

— Novel constant step-size online Newton algorithm
— Same complexity of O(d) per iteration
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e Step-size 7 = 1/4R?

— State-of-the-art performance in theory and experiments
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