Learning from Limited Demonstrations

Beomjoon Kim

Amir-massoud Farahmand Joelle Pineau Doina Precup

Learning from Demonstrations

Expert Learning Control
Demonstrations Algorithm Policy

Successes:

- Helicopter Flight [Abbeel 07]
- Robot Surgical Task [Berg 10]
- UAV Control [Ross 13]
- Navigation in Human Environments [Kim 13]

What if we have limited demonstrations?

Suboptimal Expert

and/or

Expensive Expert

Key Idea: Learn from both trial-and-error and demonstrations

Reinforcement Learning + Learning from Demonstrations

Approximate Policy Iteration with Demonstrations

Approximate Policy Iteration Large Margin Classification

$$\hat{Q} \leftarrow \underset{Q \in \mathcal{F}^{|\mathcal{A}|}, \xi \in \mathbb{R}_{+}^{m}}{\operatorname{argmin}} \|Q - T^{\pi}Q\|_{n}^{2} + \lambda J^{2}(Q) + \frac{\alpha}{m} \sum_{i=1}^{m} \xi_{i}$$
s.t.
$$Q(X_{i}, \pi_{E}(X_{i})) - \underset{a \in \mathcal{A} \setminus \pi_{E}(X_{i})}{\max} Q(X_{i}, a) \geq 1 - \xi_{i}$$

- PAC guarantee on Bellman Error
- Real Robot Path Finding Experiment

