Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits

Ben Shababo, Brooks Paige, Ari Pakman, Liam Paninski Sat18

Modeling The Experiment

- not all neurons we attempt to fire release neurotransmitter
- some neurons near those we attempt to fire may fire
- c, vector of connection strengths is sparse

Bayesian Inference & Optimal Adaptive Closed-Loop Experimental Design

- Spike-and-slab prior on the synaptic strengths, c
 - incorporates prior information about sparse connections, cell types, locations, etc.
- Goal: choose stimuli to minimize posterior entropy of c
- Use variational inference for speed during optimization
 - need decisions in < 1 second</p>
 - factorized approximation is justified
- Developed effective heuristics for optimizing entropy objective

Real-time adaptive design is feasible.

Optimal Design Significantly Speeds Up Convergence in Simulations

