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Many applications in
continuous spaces

*» Mixture modeling
» Ecological modeling/ spatial stats




DPPs on Continuous Spaces
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Method 1: Low Rank Approx. + Dual Samp.

— Independent approx. samples
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Kernel function Lix.y) = Z An@n(X)0n(Y)

Low rank approx. Ll =
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In discrete case, sampling is O(N?). [Hough

et. al. , 2006]
* only need eig(L)

* makes DPPs useful in practice

How do we sample in continuous case?
Need to:
1. eigendecompose kernel function
2. sample from densities based on
eigenfunctions (HARD!)

Nystrom Method
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Amazingly, eig(C) <> eig(L ).
So sampling just as in discrete case ...
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Method 2: Gibbs Samp. for fixed- sized DPP

— Dependent approx. sampies

Iteratively sample

X ~ P (xkl{xj}{f:&k])
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* derived using Schur’s determinantal formula




Mixture of Gaussian with DPP Prior
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Leads to higher accuracy in classification tasks, as well !!
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In 62 dimensions! Complexity of
sampling scales linearly with d

Better coverage of space than random
sampling
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