Approximate Inference in Continuous Determinantal Point Processes

Raja Affandi

Emily Fox

Ben Taskar

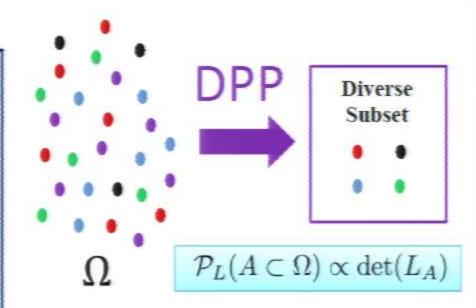
DPPs in ML have focused on diverse subset selection from discrete sets

Diverse image search

Document summarization

Detecting multiple object trajectories

E



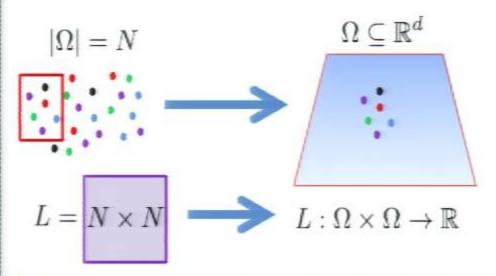
Many applications in

continuous spaces

- Mixture modeling
- Ecological modeling/ spatial stats

:

DPPs on Continuous Spaces



In discrete case, sampling is $O(N^3)$. [Hough et. al., 2006]

- only need eig(L)
- makes DPPs useful in practice

How do we sample in continuous case? Need to:

- eigendecompose kernel function
- sample from densities based on eigenfunctions (HARD!)

Method 1: Low Rank Approx. + Dual Samp.

→ Independent approx. samples

Kernel function

$$L(\mathbf{x}, \mathbf{y}) = \sum_{n=1} \lambda_n \phi_n(\mathbf{x}) \overline{\phi_n}(\mathbf{y})$$

Low rank approx.

$$\tilde{L}(\mathbf{x}, \mathbf{y}) = B(\mathbf{x})^* B(\mathbf{y})$$

Nyström Method

Random Fourier Features

Dual kernel matrix

Amazingly, $eig(C) \leftrightarrow eig(\tilde{L})$.

So sampling just as in discrete case ... $O(D^3)$.

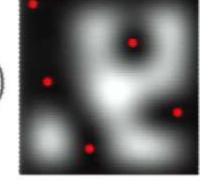
Method 2: Gibbs Samp. for fixed-sized DPP

→ Dependent approx. samples

Iteratively sample

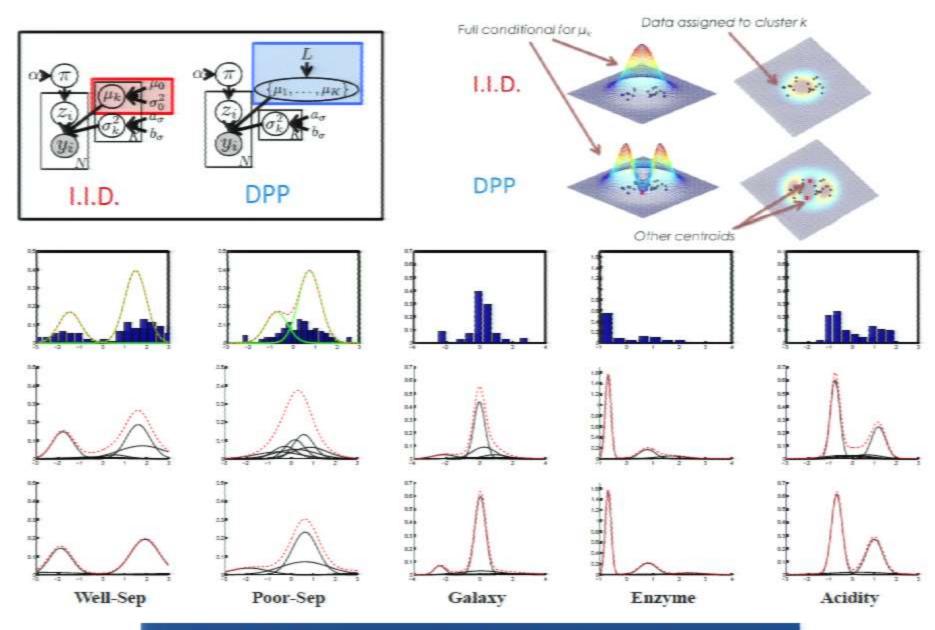
$$x_k \sim p\left(x_k \Big| \big\{ x_j \big\}_{\{j \neq k\}}\right)$$

tilted 1-DPP



derived using Schur's determinantal formula

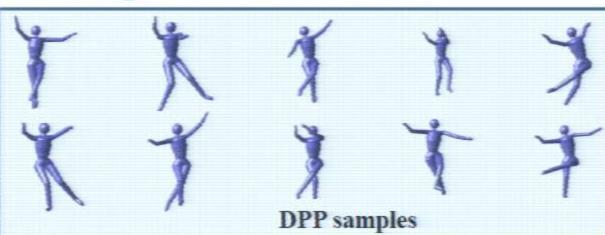
Mixture of Gaussian with DPP Prior

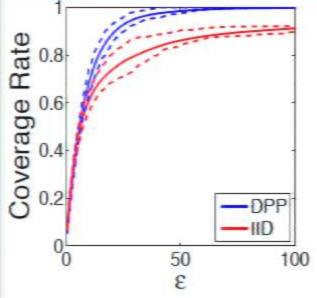


Data

Leads to higher accuracy in classification tasks, as well!!

Synthesizing Human Pose





In 62 dimensions! Complexity of sampling scales linearly with d

Better coverage of space than random sampling