Robust multimodal graph matching: sparse coding meets graph matching

Marcelo Fiori

Joint work with

Pablo Sprechmann, Joshua Vogelstein, Pablo Musé and Guillermo Sapiro.

Poster: Sun22 (today)

$\frac{1}{2 F+17 \%}$
Universioad bebarrivich

0000

We seek a permutation matrix $P \in \mathcal{P}$,

$$
\hat{P}=\underset{P \in \mathcal{P}}{\operatorname{argmin}}\|A P-P B\|_{F}^{2}
$$

convex relaxation

$$
\tilde{P}=\underset{P \in \mathrm{X}}{\operatorname{argmin}}\|A P-P B\|_{F}^{2} \quad \text { and project } \tilde{P} \text { onto } \mathcal{P}
$$

Robust multimodal graph matching formulation:

vector of matched coeff.
$\tilde{P}=\underset{P \in \mathcal{D}}{\operatorname{argmin}} \sum_{i, j}\|\overbrace{\left((A P)_{i j},(P B)_{i j}\right)}\|_{2}$

- Group-lasso type of penalty: sparse number of matched coefficients.
- Well suited for multi-modal data.
- Elegantly fits into the joint graph inference/alignment.

Experimental results

Graph matching with real graphs:

C. elegans connectome: electrical and chemical connection graphs. Compared to Zaslavskiy et al. 2009 and Vogelstein et al 2012.

Collaborative FMRI graph inference:

Inverse covariance matrix estimation In blue: complete 10 minutes study. In red: collaborative with 6 minutes per study.

