Inferring neural population dynamics from multiple partial recordings of the same neural circuit

Srinivas C Turaga, Lars Buesing, Adam M Packer, Henry Dalgleish, Noah Pettit, Michael Hausser, Jakob H Macke sturaga@gatsby.ucl.ac.uk

- there are fundamental limits to the number of neurons that can be simultaneously imaged.
- can we overcome these limits by "stitching" neural activity imaged in two different sessions?
- can we infer noise correlations between non-simultaneously imaged neurons?
- yes! with latent dynamical models

A common linear dynamical system is fit with missing observations to all recordings

xt: underlying neural activity

Gaussian innovation noise

$$\epsilon_t \sim \mathcal{N}\left(0, Q\right)$$

$$x_t = Ax_{t-1} + Bu_t + \epsilon_t$$

A: dynamics matrix ("functional couplings")

ut: external stimulus drive

yt(i): activity observed in imaging session i

$$y_t^{(i)} = C^{(i)} x_t + \eta_t$$

$$\eta_t \sim \mathcal{N}(0, C^{(i)}RC^{(i)\top})$$

C(i): observation matrix (sparse and known)

Gaussian observation noise

- we fit a common gaussian linear dynamical system with missing observations.
- state-space includes all neurons eventually observed.
- observation space is different for each recording session.
- online EM is used to speed up and improve convergence.

unobserved variable observed variable parameter

Model accurately predicts pairwise correlations

2-photon in vivo Ca++ imaging data GCaMP6s, C2 barrel, anesthetized mouse somatosensory cortex

stitched

fully observed

- pairwise correlations are well predicted by the model
- model parameters (couplings) are highly degenerate with many parameters yielding equally good predictions

Prediction performance improves for larger networks and approaches

Conclusions & outlook

- Latent dynamical models can be used to accurately "stitch" neural correlations across overlapping imaging sessions.
- The method is expected to work best when neural dynamics are low dimensional.
- We can now use this to "stitch" measurements from multiple experiments, resulting for the first time in a model of the tuning properties and correlations for a cortical column.