Exact and Stable Recovery of Pairwise Interaction Tensor

Shouyuan Chen¹, Michael R. Lyu¹, Irwin King¹, Zenglin Xu²

¹The Chinese University of Hong Kong

²Purdue University

a scalable algorithm for recovering pairwise interaction tensors from limited observations

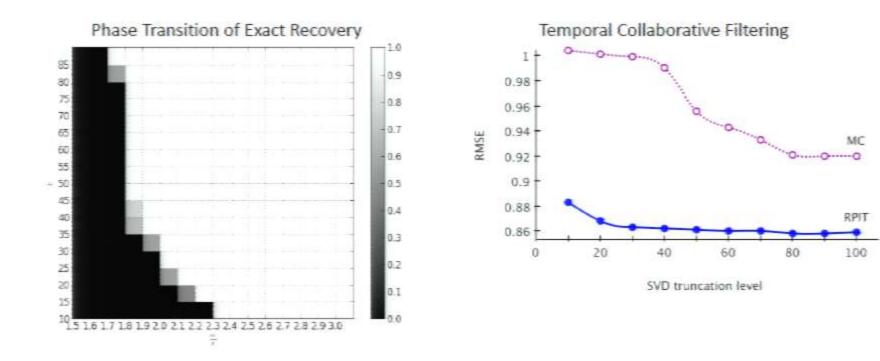
Recovery of Pairwise Interaction Tensor

Object	Decomposition	Recovery
rank- k matrix $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$	$M_{ij} = \left\langle u_i, v_j \right\rangle$	[Candes et al. 2009] guaranteed recovery of M from $O(nk \log^2(n))$ observations
rank- k tensor $\mathbf{T} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$	$T_{ijk} = \left\langle u_i, v_j, w_k \right\rangle$	computing the rank is NP-hard best rank-1 approximation is NP-hard
pairwise interaction tensor $\mathbf{T} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$	$T_{ijk} = \left\langle u_i^{(a)}, v_j^{(a)} \right\rangle + \left\langle v_j^{(b)}, w_k^{(b)} \right\rangle + \left\langle w_k^{(c)}, u_i^{(c)} \right\rangle$	this paper: guaranteed recovery of \mathbf{T} from $O(nk \log^2(n))$ observations.

- Pairwise interaction tensor is a special case of tensor.
 - · Good performance in various applications
 - · Tag recommendation [Rendle et al. 2009]
 - Sequential data analysis [Rendle et al. 2010]
 - Existing recovery algorithms are local optimization heuristics.

Key ideas and results

- Reduce to a matrix completion problem.
- · Formulate a constrained trace norm minimization objective.
- Optimize using SVT.



$$\min_{\substack{(X,Y,Z) \in S}} \sqrt{n_3} \|X\|_* + \sqrt{n_1} \|Y\|_* + \sqrt{n_3} \|Z\|_* \\ \text{s. t.} \quad X_{ij} + Y_{jk} + Z_{ki} = T_{ijk}, \forall ijk \in \Omega$$

- S is a constraint for ensuring uniqueness of recovery.
- Ω is the set of observations
- (formulation of exact recovery)

Theoretical results

- Exact observations.
 - Recovery is exact from $O(nk\log^2(n))$ observations
- Noisy observations
 - · Provable approximation guarantees.

Come to see our poster: Fri86.