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Motivation

Structure-from-Motion 
Point Cloud

Volumetric Surface 
Reconstruction*

● Up to City Scale
● Obtained in real-time (SLAM)
● Sparse representation 
● AR and robotics require surface
● Not suitable for occlusion handling, 

navigation etc.

● High quality surface reconstruction
● Volumetric approach
● Limited scene size
● GPGPU required to handle 

computational effort

* Image taken from [Graber 2012]
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Motivation

● Can we reconstruct a surface from sparse SfM points?

● Consistent surface

– Robust against outliers 
● Fully incremental to be integrated into SLAM

● In real-time 

● Arbitrary camera motion
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Challenges

● Inhomogeneous density of the scene information

● Severe outliers 

● When using in combination with SLAM

● Continuously growing

● Arbitrary camera motion - “revisiting” of already reconstructed parts
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Outline

● Related Work

● Formulation as Labeling Problem

● Incremental Surface Reconstruction

● Experiments
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Related Work 

● Irregular discretization of space into tetrahedra 

● Perform 3D Delaunay triangulation of sparse 3D points 

● Fast, can be incrementally updated

● Classification into free / occupied space using visibility information 

● Interface is between free and occupied is surface

● Methods

● Free-space carving [Lovi et al. 2010]

→ not robust to outlier

● Formulation as labeling problem solved with graph cuts 
[Labatut et al. 2007]

→ Energy function motivated by free-space carving

→ robust against outliers, not suitable for incremental reconstruction

● Aggregation of “free” tetrahedra for incremental reconstruction

→  [Poster yesterday, Litvinov et al. 2013,  Lhuillier et al. 2013]
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Contributions

● Robust free / occupied labeling of Delaunay triangulated sparse point cloud

● Formulation as Conditional Random Field 

● Energy function can be easily adapted to modified 
Delaunay triangulation (DT) 

● New 3D points can be easily integrated into the DT

● Integration of new scene information leads to series of energy functions

● Optimization using dynamic graph cuts
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Our Approach
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Random Field Formulation

● Goal: Classify each tetrahedron Vi into free or occupied 
given the visibility information / rays R 

● R set of all line segments that connects a sparse 3D point to a camera center

● Energy function to minimize

● Ri line segments connected to the vertices of the tetrahedron Vi 

● Unary and binary potentials only depend on 
local ray information Ri 

● Submodular function → Can be optimized by graph cuts

 

probability tetrahedron 
free or occupied

Smoothness across 
neighbouring tetrahedra
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Unary Potentials

● Unary terms motivated by truncated signed distance function

● Probability that a tetrahedron “in front“ of 3D point  is free is high

● Probability that a tetrahedron “behind“ a 3D point  is occupied 
is high

● “In front” → tetrahedron intersected by a ray connected
to its vertices

● “Behind” → tetrahedron is in extent of a ray connected
to its vertices

● Counting how often a tetrahedron is 
“in front” or  “behind” 

→ No ray/tetrahedron intersection required

→ Delaunay data structure 
    speeds up the counting

“in front” / free

“behind” /occupied
V2

V1
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Binary Potentials

● Typically only 50% of all tetrahedra obtain unary potentials

→ Strong regularization required

● It is very unlikely that (Vi,Vj) obtain different labels 

→ Costs for assigning different labels is set to a high value

● Except neighboring tetrahedra that are not crossed 
by common rays

free

occupied
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Incremental Energy Update

● New 3D point changes the Delaunay triangulation

● But only locally 

● Existing tetrahedra are deleted, new ones are created

● Energy has to be updated En → En+1

→ Deletion of tetrahedra removes terms from the energy

→ New tetrahedra add new terms

● Unaries and binaries depend only on local visibility information 

● Energy update is quite fast → 1000 points require 0.5 seconds
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Incremental Labeling

● Delaunay triangulation update-able

● Energy function easily update-able  

● Series of energies  En to be optimized

● Problem: Number of terms in energy grow over time

● Solving from scratch prevents scalability
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Incremental Labeling

● Delaunay triangulation update-able

● Energy function easily update-able  

● Series of energies  En to be optimized

● Problem: Number of terms in energy grow over time

● Solving from scratch prevents scalability

● Solution: Dynamic graph cut [Kohli et al. 2007]

● Optimization of series of energies that can be solved by graph cuts

● Re-use result from minimization of  En-1

● Complexity depends on the number of changed terms, not on the overall 
number of terms
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Experiments – Static

● Static case

● All 3D points and visibility information is available

● Input: SfM point cloud obtained by standard SfM pipeline like Bundler 

→ 77,300 3D points, connected to 4.4 rays on average

● Size of reconstructed area: 200m x 50m
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Labatut et al. 
79 seconds

Ours
32 seconds

Free-space carving
78 seconds

Intel i7, Single Core
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Experiments – Static

● Strecha Fountain 11 dataset

● 7123 3D points

Labatut et al. Ours
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Experiments – Incremental
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Experiments – Incremental

Time for integrating 1000 new points 
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Dynamic Graph Cut
Static Graph Cut

Dynamic Graph Cut
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Conclusion

● Can we reconstruct a consistent mesh from a sparse 3D point cloud?

● Robustness by random field formulation labeling

● Can we reconstruct it incrementally and in real time?

● 2000 sparse 3D points per second

● Independent from overall scene size thanks to dynamic graph cut

● Without GPGPU

● Are we limited to specific camera motion?

● No, 3D points can be inserted on arbitrary parts in the scene

● Is it difficult to implement?

● No, thanks to libraries like CGAL (DT) and the publicly available dynamic 
graph cut
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Thanks for your attention!

[Kohli et al. 2007]  P. Kohli and P.H.S. Torr. Dynamic graph cuts for 
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[Labatut et al. 2007]  P. Labatut, J.P. Pons, and R. Keriven. Efficient multi-view reconstruction of large-
scale scenes using interest points, delaunay triangulation and graph cuts. ICCV, 2007.
[Graber 2012] G. Graber, Realtime 3D reconstruction, Masterthesis, TU Graz
[Lhuillier et al. 2013] Manifold surface reconstruction of an environment from 
sparse Structure-from-Motion data,  CVIU, 2013
[Lovi et al 2010]  D. Lovi, N. Birkbeck, D. Cobzas, and M. Jaegersand. 
Incremental free-space carving for real-time 3D reconstruction. 3DPVT, 2010.
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Unary - Occupied
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Unary - Free
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Free Space Carving 
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Structure-from-Motion

● High-resolution, overlapping images

● Estimation of camera poses

● Estimation of sparse / dense 3D scene points

Sparse Densified Mesh
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