

Incremental Surface Reconstruction from Sparse Structure-from-Motion Point Clouds

Christof Hoppe, Manfred Klopschitz*, Michael Donoser, Horst Bischof

Graz University of Technology

* Imaging and Computer Vision Research Group Video Analytics Corporate Technology, Siemens AG, Austria, Graz

Motivation

<section-header>

Volumetric Surface Reconstruction*

- Up to City Scale
- Obtained in real-time (SLAM)
- Sparse representation
- AR and robotics require surface
- Not suitable for occlusion handling, navigation etc.

- High quality surface reconstruction
- Volumetric approach
- Limited scene size
- GPGPU required to handle computational effort

* Image taken from [Graber 2012]

Motivation

- Can we reconstruct a surface from sparse SfM points?
 - **Consistent** surface
 - Robust against outliers
 - Fully incremental to be integrated into SLAM
 - In real-time
 - Arbitrary camera motion

Challenges

- Inhomogeneous density of the scene information
- Severe **outliers**
- When using in combination with SLAM
 - Continuously growing
 - Arbitrary camera motion "revisiting" of already reconstructed parts

Outline

- **Related Work**
- Formulation as Labeling Problem lacksquare
- **Incremental Surface Reconstruction**
- Experiments lacksquare

Related Work

- Irregular discretization of space into tetrahedra
- Perform 3D Delaunay triangulation of sparse 3D points
 - Fast, can be incrementally updated
- Classification into free / occupied space using visibility information
 - Interface is between free and occupied is surface
- Methods
 - Free-space carving [Lovi et al. 2010]
 - \rightarrow not robust to outlier
 - Formulation as labeling problem solved with graph cuts [Labatut et al. 2007]
 - \rightarrow Energy function motivated by free-space carving
 - \rightarrow robust against outliers, not suitable for incremental reconstruction
 - Aggregation of "free" tetrahedra for incremental reconstruction
 - \rightarrow [Poster yesterday, Litvinov et al. 2013, Lhuillier et al. 2013]

- Robust free / occupied labeling of Delaunay triangulated sparse point cloud
- Formulation as Conditional Random Field
- Energy function can be easily adapted to modified Delaunay triangulation (DT)
 - New 3D points can be easily integrated into the DT
- Integration of new scene information leads to series of energy functions
 - Optimization using dynamic graph cuts

AERIAL VISION GROUP

G

Institute for Computer Graphics and Vision

Ē

AERIAL VISION GROUP

Ē

AERIAL VISION GROUP

Ť

Institute for Computer Graphics and Vision

AERIAL VISION GROUP Institute for Computer Graphics and Vision

Random Field Formulation

- **Goal:** Classify each tetrahedron V_i into free or occupied given the visibility information / rays R
- R set of all line segments that connects a sparse 3D point to a camera center
- Energy function to minimize

$$E(\mathcal{L}) = \sum_{i} (E_u(V_i, \mathcal{R}_i) + \sum_{j \in \mathcal{N}_i} E_b(V_i, V_j, \mathcal{R}_i))$$

probability tetrahedron free or occupied Smoothness across neighbouring tetrahedra

- R_{i} line segments connected to the vertices of the tetrahedron V_{i}
- Unary and binary potentials only depend on local ray information R_i
- Submodular function \rightarrow Can be optimized by graph cuts

Unary Potentials

- Unary terms motivated by truncated signed distance function
- Probability that a tetrahedron "in front" of 3D point is free is high
- Probability that a tetrahedron "behind" a 3D point is occupied is high
- "In front" → tetrahedron intersected by a ray connected to its vertices
- "Behind" \rightarrow tetrahedron is in extent of a ray connected to its vertices
- Counting how often a tetrahedron is "in front" or "behind"

"in front" / free

- \rightarrow No ray/tetrahedron intersection required
- → Delaunay data structure speeds up the counting

"behind" /occupied

Binary Potentials

- Typically only 50% of all tetrahedra obtain unary potentials
 - → Strong regularization required
- It is very unlikely that (Vi,Vj) obtain different labels
 - \rightarrow Costs for assigning different labels is set to a high value
- Except neighboring tetrahedra that are not crossed by common rays

AERIAL VISION GROUP

Incremental Energy Update

- New 3D point changes the Delaunay triangulation
 - But only locally
- Existing tetrahedra are deleted, new ones are created
- Energy has to be updated $E_n \rightarrow E_{n+1}$
 - \rightarrow Deletion of tetrahedra removes terms from the energy
 - → New tetrahedra add new terms
- Unaries and binaries depend only on local visibility information
- Energy update is quite fast \rightarrow 1000 points require 0.5 seconds

Incremental Labeling

- Delaunay triangulation update-able
- Energy function easily update-able
 - Series of energies En to be optimized
- Problem: Number of terms in energy grow over time
- Solving from scratch prevents scalability

Incremental Labeling

- Delaunay triangulation update-able
- Energy function easily update-able
 - Series of energies En to be optimized
- Problem: Number of terms in energy grow over time
- Solving from scratch prevents scalability
- **Solution:** Dynamic graph cut [Kohli et al. 2007]
 - Optimization of series of energies that can be solved by graph cuts
 - Re-use result from minimization of E_{n-1}
 - Complexity depends on the number of changed terms, not on the overall number of terms

Experiments – Static

- Static case
 - All 3D points and visibility information is available
- Input: SfM point cloud obtained by standard SfM pipeline like Bundler
 - \rightarrow 77,300 3D points, connected to 4.4 rays on average
- Size of reconstructed area: 200m x 50m

G

Institute for Computer Graphics and Vision

Free-space carving 78 seconds

Labatut et al. 79 seconds

Ours 32 seconds

Intel i7, Single Core

AERIAL VISION GROUP Institute for Computer Graphics and Vision

Experiments – Static

- Strecha Fountain 11 dataset
- 7123 3D points

Labatut et al.

Ours

Christof Hoppe / hoppe@icg.tugraz.at

Incremental Surface Reconstruction

0.64

1.28

2.56

> 2.56

Experiments – Incremental

AERIAL VISION GROUP

Experiments – Incremental

Time for integrating 1000 new points

AERIAL VISIO<u>N GROUP</u>

Dynamic Graph Cut

Conclusion

- Can we reconstruct a **consistent** mesh from a sparse 3D point cloud?
 - Robustness by random field formulation labeling
- Can we reconstruct it **incrementally** and in **real time?**
 - 2000 sparse 3D points per second
 - Independent from overall scene size thanks to dynamic graph cut
 - Without GPGPU
- Are we limited to **specific camera** motion?
 - No, 3D points can be inserted on arbitrary parts in the scene
- Is it difficult to **implement**?
 - No, thanks to libraries like CGAL (DT) and the publicly available dynamic graph cut

Thanks for your attention!

[Kohli et al. 2007] P. Kohli and P.H.S. Torr. Dynamic graph cuts for efficient inference in markov random fields. TPAMI, 2007
[Labatut et al. 2007] P. Labatut, J.P. Pons, and R. Keriven. Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. ICCV, 2007.
[Graber 2012] G. Graber, Realtime 3D reconstruction, Masterthesis, TU Graz
[Lhuillier et al. 2013] Manifold surface reconstruction of an environment from sparse Structure-from-Motion data, CVIU, 2013
[Lovi et al 2010] D. Lovi, N. Birkbeck, D. Cobzas, and M. Jaegersand. Incremental free-space carving for real-time 3D reconstruction. 3DPVT, 2010.

This work has been supported by the Austrian Research Promotion Agency (FFG) FIT-IT project Construct (830035) and the FP7-ICT EU project Nr. 601139 CultAR

Unary - Occupied

G

Institute for Computer Graphics and Vision

Unary - Free

G

Structure-from-Motion

- High-resolution, overlapping images
- Estimation of camera poses
- Estimation of sparse / dense 3D scene points

Sparse

Densified

Mesh

(G

Institute for Computer Graphics and Vision

Ĵ

Institute for Computer Graphics and Vision

G

Institute for Computer Graphics and Vision

