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Why set-based recognition?

From single-instance recognition to set-based recognition:

Single-instance recognition Set-based recognition
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Who? Who? Who? Who?

Collecting a set of images for recognition becomes increasingly convenient.
> Taking and sharing pictures/videos gets easier

The direction of set based recognition recently gets hotter and hotter.

> Face recognition

> Person re-identification (multiple-shot)

Set based recognition models have the potential to outperform single-instance based recognition
approaches under the same conditions.
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2. Direct set-to-set matching 2

-- Uses simple minimum point-wise distance for set-to-set matching.
-- Relies on good features for single instances.
-- Sensitive to noises/outliers.

-- Unsupervised. 3
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Existing solutions

1. Set-based signature generation

-- Largely explored for person re-identification.
-- Compatible with single instance based learning algorithms.
-- Needs manual design, which is task-dependent and hard.

3. Geometric dist. finding

A = -- Mainly for face recognition.
A '_ - -- Explores set structure.
|
a4t - o | - Robustto noises/outliers.
N - -- Unsupervised (can be supervised).
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Set-to-set distance finding

Q -- Query/Probe Set
1 E;; xi,iE{l,...,n}
. 7/ -- Gallery Sets
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(a) Set-to-set distances (b) Set-to-sets distance

(MPD, AHISD/CHISD, SANP/KSANP, SBDR, RNP) (CSA)
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Regularized Nearest Points (RNP)

Regularized Nearest Points —distance finding

RNP models each image set by a regularized affine hull (RAH):

RAH = {X: X.a| Zkak :1,||0z||2 < 0'},
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RNP models each image set by a regularized affine hull (RAH):
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Regularized Nearest Points (RNP)

Regularized Nearest Points - distance finding

RNP models each image set by a regularized affine hull (RAH):
RAH = {X =X.a| Zkak :1,||0z||2 < 0'},

RNP finds two nearest points from the RAH of Q and the RAH of X. , respectively
by solving

minjQu-Xpf, stY,a =13 4 =1a, <o, |B], <o
which can be solved by

min|Qa - X B + 4 Jaff + 4B}, stY,@ =1, 4,1
where

Zkak :1,Zj,8j =1 help avoiding the trivial solution o= =0
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Regularized Nearest Points (RNP)

Regularized Nearest Points — classification

After getting the solution a, [3*, the set-to-set distance between Q and X. is defined to be

d;QNP = (”Q *)"Qa* - XiB*

where ||Q||* is the nuclear norm of Q) , i.e. the sum of the singular values of it.
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The nuclear norm term reflects the representation ability (related to the
size) of a set, thus being able to remove the possible disturbance
unrelated to the class information.
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Regularized Nearest Points — classification

After getting the solution a, B*, the set-to-set distance between Q and X. is defined to be

d;QNP = (”Q *)"Qa* - XiB*

where ||Q||* is the nuclear norm of Q) , i.e. the sum of the singular values of it.

2
5!

X

The nuclear norm term reflects the representation ability (related to the
size) of a set, thus being able to remove the possible disturbance
unrelated to the class information.

Finally, Q is classified by:

C(Q)=arg miin{d;NP}.
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Collaboratively Regularized Nearest Points

ra Collaborative distance finding

RNP:

min{|Qa Xl + A Joff + 2B}, stY, e =13 4, =1

CRNP solves the following optimization problem:

min {|Qu B[} + Aol + & B}, stY,a =130, 3 A1

where X =[X,,..., X ]
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ra Distance finding optimization

min {|Qu~XBE + 4 Jof + 2, B +7,A-3, @) +7,0- 1.3, A7)

U
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One-step closed-
form solution?

Yes!
But,
-- it Is expensive,

-- the whole optimization
Is needed for each
qguery/probe set.
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Collaboratively Regularized Nearest Points

ra Distance finding optimization

min 2 ~Qu— g+ al; + 2, ||
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One-step closed- lterative Optimization:
form solution?

Fix §, and optimize o :

uu:> @ =P, (z—XB), with P, = © 0+11)0 .

Yes!
But,

-- it is expensive, Fix a, and optimize 3 :

-- the whole optimization
Is needed for each
qguery/probe set.

B =P, (z-0Oa), with P, = (Q{T&Jr/lzl)‘l@(T.
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Collaboratively Regularized Nearest Points

ra Distance finding optimization

Algorithm 1 COLLABORATIVELY REGULARIZED NEAREST POINTS (CRNP):
mxNy .

Require:  The training/gallery sets arbitrary test/query set Q € R Ng,

the pre-computed z, X and(P, (using Equation 10)) and four trade-off parameters

{ll 3123’1/1 *3/2}
Ensure: The representation coefficients for distance finding: &* and .

I: Construct Q = QT VN, ,ONqﬂT.
Compute the project matrix P, = (QTQ+MD)1QT.
Initialize B, = 1/N,.
while not converged or not exceeding the maximum number of iterations do
Update the representation coefficients:
O = Pq(z - ?’:(ﬁr)
B =Pu(z—Qayy);

end while
Return &¢* and B~.
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Like sparse/collaborative representation models for single-instance based
recognition, here the set-specific coefficients [} = [|31, |3 ] is implicitly made
to have some discrimination power.

Therefore, we design our classification model as follows.
- i
C(Q)=arg min {dCRNP} ,

1 )1Qe -

where dine = (
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Collaboratively Regularized Nearest Points

ra Classification

Like sparse/collaborative representation models for single-instance based
recognition, here the set-specific coefficients [} = [|31, B ] is implicitly made
to have some discrimination power.

Therefore, we design our classification model as follows.

C(Q)=arg miin{déRNp},
).

Recall that RNP doesn’t directly use the coefficients themselves which are actually
also discriminative.
i
dRNP ( )

where dine = (

Q-
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Face recognition

Honda/UCSD dataset and CMU MoBo0 dataset:

1. Honda/UCSD - 20 subjects (20 specified seq. for the gallery, and the other 39 seq.
for testing.);

2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the
gallery, and the rest for testing.).

3. The gallery/probe set size for both datasets is set to be 50 or 100
(collected from the beginning of each sequence.)
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Experimental Results

ra Experimental settings -- datasets

Face recognition

Honda/UCSD dataset and CMU MoBo0 dataset:
1. Honda/UCSD - 20 subjects (20 specified seq. for the gallery, and the other 39 seq.

for testing.);
2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the

gallery, and the rest for testing.).
3. The gallery/probe set size for both datasets is set to be 50 or 100

(collected from the beginning of each sequence.)

Person re-identification
3 widely used datasets: iILIDS-MA, iLIDS-AA, and CAVIAR4REID.

- ILIDS-MA: 40 subjects, 1 gallery set & 1 probe set for each, set size 10;
- ILIDS-AA: 100 subjects, 1 gallery set & 1 probe set for each, set size 10;
- CAVIAR4REID : 50 subjects, 1 gallery set & 1 probe set for each, set size 5;
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ra Experimental settings -- comparisons

Methods

MPD (CVPR10),

SRC (TPAMI09), CRC (ICCV11),

CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12),
SBDR (ECCV12),

CSA (AVSS12) , RNP (FG13).
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Experimental Results

ra Experimental settings -- comparisons

Methods

MPD (CVPR10),
SRC (TPAMI09), CRC (ICCV11),

CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12),
SBDR (ECCV12),

CSA (AVSS12) , RNP (FG13).

Parameters
For CRNP: %212:4,7/1:7/2:1

For other methods:

- default settings or originally suggested parameters were used.
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Experimental Results

ra Results

Face recognition accuracy (%) comparison on the Honda/UCSD dataset.

Method MPDJ[4] SRC[8] CRC[14] CHISD[2] SANP[13] KSANP[6]SBDR[IO]CSA[9] RNP[12] CRNP

50 frames  79.49 7692 7692 79.49/82.05" 84.62/84.62* 87.18" 87.69"  84.62 66.67/87.18" 89.74
100 frames 87.18 94.87 82.05 79.49/84.62* 89.74/92.31* 94.87* 89.23*  92.31 92.31/94.87* 97.44

Face recognition accuracy (%) comparison on the CMU MoBo dataset.

Method MPD[4] SRC[8] CRC[14] CHISD[2] SANP[13] SBDR[10] CSA[9] RNP[I2] CRNP

50 frames 9222 88.89  89.72 90.83 90.14 95.00* 86.25 91.81/91.9* 93.33
100 frames  94.31 9236  93.06 94.17 93.61 96.11* 94.44 94.58/94.7* 94.44

Performance comparison for person re-identification on three benchmark datasets.

Dataset MPDI[4]  SRC[8] CRC[14] CHISD[2] SANP[13] CSA[9] RNP[I12] CRNP
1LIDS-MA 50.0(75.0) 57.3(74.8) 28.5(50.0) 52.5(72.8) 46.8(74.8) 59.0(71.3) 53.3(76.0) 59.0(78.3)
iLIDS-AA 23.8(60.4) 36.0(68.9) 24.7(54.1) 24.6(58.2) 19.2(57.3) 22.5(59.6) 25.5(59.9) 35.4(71.6)

CAVIAR4REID 19.0(47.2) 25.4(50.8) 16.6(37.6) 25.4(51.2) 25.2(52.4) 24.6(48.8) 24.0(50.2) 26.8(63.6)
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Experimental Results

ra Computational cost

For those methods which can have (parts of) their models pre-computed using the training
data, the total pre-computation time (in seconds) is listed for comparison.

Honda/UCSD CMU MoBo . .
Dataset 50 frames 100 frames 50 frames 100 frames ILIDS-MA iLIDS-AA CAVIAR4REID
SBDR[10] 9.23x10% 1.46x 10* 1.23x10* 3.14 x 10* N/A N/A N/A
CSA[9] 0.59 0.74 28.7 50.2 0.39 0.62 0.26
RNP[12] 0.06 0.20 0.17 0.64 0.02 0.05 0.02
CRNP 0.22 0.87 0.64 2.66 0.04 0.22 0.02

Computational cost comparison with all the related methods on all of the recognition tasks
(in the "milliseconds per sample" manner, excluding the time for feature extraction).

Dataset MPDJ[4] SRC[8] CRC[14] CHISD[2] SANP[13] SBDR[10] CSA[9] RNP[12] CRNP
Honda/UCSD (50) 32 12x10°  0.28 71.7 19.6 259 17.4 11.5 0.32
Honda/UCSD (100) 64  4.1x10° 0.5 330 17.3 97.8 32.6 14.5 0.46
CMU MoBo (50) 24 7.6x10°  0.94 89.0 47.2 85.0 29.0 3.5 2.1
CMU MoBo (100) 714 2.7x10% 1.8 394 53.0 79.3 39.1 5.9 2.5
iILIDS-MA 39 741 0.51 58.7 121 N/A 9.6 24.5 3.3
iILIDS-AA 9.9 2337 1.2 150 344 N/A 36.8 83.4 7.2
CAVIAR4REID 3.8 214 0.35 55.3 249 N/A 15.8 30.8 8.0
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ra Findings
o Collaborative representation is effective for set-based recognition.

¢ The computationally efficient L2-norm based regularization works
well with collaborative representation.
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Findings and Future Work

ra Findings
o Collaborative representation is effective for set-based recognition.

¢ The computationally efficient L2-norm based regularization works
well with collaborative representation.

ra Future work

¢ A deeper comparison of different norms (including LO, L1, and L2) Iin
the same framework of CRNP.

¢ Dictionary learning for performance improvement.

Code: available soon on my personal webpage.
http://mm.media.kyoto-u.ac.jp/members/yangwu/
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Thank you!
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