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Why set-based recognition?

From single-instance recognition to set-based recognition:

 Collecting a set of images for recognition becomes increasingly convenient.
>  Taking and sharing pictures/videos gets easier

 The direction of set based recognition recently gets hotter and hotter.
>  Face recognition
>  Person re-identification (multiple-shot)

 Set based recognition models have the potential to outperform single-instance based recognition 
approaches under the same conditions.
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-- Largely explored for person re-identification. 
-- Compatible with single instance based learning algorithms.
-- Needs manual design, which is task-dependent and hard.
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2.  Direct set-to-set matching
-- Uses simple minimum point-wise distance for set-to-set matching.

-- Relies on good features for single instances.

-- Sensitive to noises/outliers.

-- Unsupervised.

1. Set-based signature generation
-- Largely explored for person re-identification. 
-- Compatible with single instance based learning algorithms.
-- Needs manual design, which is task-dependent and hard.

3.  Geometric dist. finding 
-- Mainly for face recognition.
-- Explores set structure.
-- Robust to noises/outliers.
-- Unsupervised (can be supervised).
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-- Gallery Sets



9/12/2013 Yang Wu, et al., Kyoto University, Japan 614

{ }2
| 1, ,i kk

RAH α σ= = = ≤∑x X α α

RNP models each image set by a regularized affine hull (RAH):

Yang et al., FG’13

Regularized Nearest Points – distance finding
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RNP models each image set by a regularized affine hull (RAH):

RNP finds two nearest points from the RAH of Q and the RAH of iX , respectively
by solving

2
1 22 2 2,

min , . . 1, 1, , ,i k jk j
s t α β σ σ− = = ≤ ≤∑ ∑α β

Qα X β α β

which can be solved by
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min , . . 1, 1,i k jk j
s tλ λ α β− + + = =∑ ∑α β

Qα X β α β

1, 1k jk j
α β= =∑ ∑ 0= =α βhelp avoiding the trivial solution

where
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Regularized Nearest Points – classification

After getting the solution * *,α β , the set-to-set distance between  and iQ X is defined to be

( ) 2* *
* * 2

· ,i
RNP i id = + −Q X Qα X β

where is the nuclear norm of , i.e. the sum of the singular values of it.
*

Q Q

Regularized Nearest Points (RNP)
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Regularized Nearest Points – classification

After getting the solution * *,α β , the set-to-set distance between  and iQ X is defined to be

( ) 2* *
* * 2

· ,i
RNP i id = + −Q X Qα X β

where is the nuclear norm of , i.e. the sum of the singular values of it.
*

Q Q

The nuclear norm term reflects the representation ability (related to the 
size) of a set, thus being able to remove the possible disturbance 
unrelated to the class information.

( ) { }arg min .i
RNPi

C d=Q

Finally, is classified by:Q

Regularized Nearest Points (RNP)
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Distance finding optimization
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1 ) .(

T T

q λ −= +P Q Q I Q
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2 ) .(

T T

x λ −= +P X X I X
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Yes!
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is needed  for each 
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Like sparse/collaborative representation models for single-instance based 
recognition, here the set-specific coefficients                               is implicitly made 
to have some discrimination power. 

Therefore, we design our classification model as follows.

Collaboratively Regularized Nearest Points (CRNP)

( ) 2 2* * *
* * 2 2

· ./i
CRNP i i i id = + −Q X Qα X β β

( ) { }arg min ,i
CRNPi

C d=Q

where

Recall that RNP doesn’t directly use the coefficients themselves which are actually 
also discriminative.

( ) 2* *
* * 2

· ,i
RNP i id = + −Q X Qα X β
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Honda/UCSD dataset and CMU MoBo dataset:
1. Honda/UCSD – 20 subjects (20 specified seq. for the gallery, and the other 39 seq. 

for testing.); 
2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the 

gallery, and the rest for testing.).
3. The gallery/probe set size for both datasets is set to be 50 or 100

(collected from the beginning of each sequence.)
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Experimental settings -- datasets

Experimental Results

Face recognition                                                                              .

Person re-identification                                                                  .

Honda/UCSD dataset and CMU MoBo dataset:
1. Honda/UCSD – 20 subjects (20 specified seq. for the gallery, and the other 39 seq. 

for testing.); 
2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the 

gallery, and the rest for testing.).
3. The gallery/probe set size for both datasets is set to be 50 or 100

(collected from the beginning of each sequence.)

3 widely used datasets: iLIDS-MA, iLIDS-AA, and CAVIAR4REID.

- iLIDS-MA: 40 subjects, 1 gallery set & 1 probe set for each, set size 10;
- iLIDS-AA: 100 subjects, 1 gallery set & 1 probe set for each, set size 10;
- CAVIAR4REID : 50 subjects, 1 gallery set & 1 probe set for each, set size 5;
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Experimental Results

Experimental settings -- comparisons

Experimental Results

Methods                                                                                           .
MPD (CVPR10), 
SRC (TPAMI09), CRC (ICCV11), 
CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12), 
SBDR (ECCV12), 
CSA (AVSS12) , RNP (FG13).



9/12/2013 Yang Wu, et al., Kyoto University, Japan 15

Experimental Results

Experimental settings -- comparisons

Experimental Results

Methods                                                                                           .

Parameters                                                                                      .

MPD (CVPR10), 
SRC (TPAMI09), CRC (ICCV11), 
CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12), 
SBDR (ECCV12), 
CSA (AVSS12) , RNP (FG13).

For CRNP:

For other methods:

- default settings or originally suggested parameters were used.

1 2 1 24, 1λ λ γ γ= = = =
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Experimental Results

Results

Experimental Results

Face recognition accuracy (%) comparison on the Honda/UCSD dataset.

Face recognition accuracy (%) comparison on the CMU MoBo dataset.

Performance comparison for person re-identification on three benchmark datasets.
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Experimental Results

Computational cost

Experimental Results

For those methods which can have (parts of) their models pre-computed using the training 
data, the total pre-computation time (in seconds) is listed for comparison.

Computational cost comparison with all the related methods on all of the recognition tasks 
(in the ``milliseconds per sample'' manner, excluding the time for feature extraction).
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Findings
Collaborative representation is effective for set-based recognition.
The computationally efficient L2-norm based regularization works 
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Code: available soon on my personal webpage.
http://mm.media.kyoto-u.ac.jp/members/yangwu/
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Thank you! 
Q & A?
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