

Collaboratively Regularized Nearest Points for Set Based Recognition

Yang Wu, Michihiko Minoh, Masayuki Mukunoki

Kyoto University

Outline

- Why set-based recognition?
- Related work
- Regularized Nearest Points (RNP)

Collaborative Regularized Nearest Points (CRNP)

- Experimental results
- Findings and future work

- Collecting a set of images for recognition becomes increasingly convenient.
 - > Taking and sharing pictures/videos gets easier

•

- Collecting a set of images for recognition becomes increasingly convenient.
 - > Taking and sharing pictures/videos gets easier
- The direction of set based recognition recently gets hotter and hotter.
 - > Face recognition
 - > Person re-identification (multiple-shot)

- Collecting a set of images for recognition becomes increasingly convenient.
 - > Taking and sharing pictures/videos gets easier
- The direction of set based recognition recently gets hotter and hotter.
 - > Face recognition
 - > Person re-identification (multiple-shot)
 - Set based recognition models have the potential to outperform single-instance based recognition approaches under the same conditions.

1. Set-based signature generation

- -- Largely explored for person re-identification.
- -- Compatible with single instance based learning algorithms.
- -- Needs manual design, which is task-dependent and hard.

3

1. Set-based signature generation

- -- Largely explored for person re-identification.
- -- Compatible with single instance based learning algorithms.
- -- Needs manual design, which is task-dependent and hard.

3

2. Direct set-to-set matching

- -- Uses simple minimum point-wise distance for set-to-set matching.
- -- Relies on good features for single instances.
- -- Sensitive to noises/outliers.
- -- Unsupervised.

1. Set-based signature generation

- -- Largely explored for person re-identification.
- -- Compatible with single instance based learning algorithms.
- -- Needs manual design, which is task-dependent and hard.

3

3. Geometric dist. finding

- -- Mainly for face recognition.
- -- Explores set structure.
- -- Robust to noises/outliers.
- -- Unsupervised (can be supervised).

- -- Uses simple minimum point-wise distance for set-to-set matching.
- -- Relies on good features for single instances.
- -- Sensitive to noises/outliers.
- -- Unsupervised.

Set-to-set distance finding

Set-to-set distance finding

Set-to-set distance finding

Yang Wu, et al., Kyoto University, Japan

RNP models each image set by a regularized affine hull (RAH):

$$RAH = \left\{ \mathbf{x} = \mathbf{X}_{i} \boldsymbol{\alpha} \mid \sum_{k} \alpha_{k} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma \right\},\$$

Yang et al., FG'13

RNP models each image set by a regularized affine hull (RAH):

RNP models each image set by a regularized affine hull (RAH):

$$RAH = \left\{ \mathbf{x} = \mathbf{X}_{i} \boldsymbol{\alpha} \mid \sum_{k} \alpha_{k} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma \right\},\$$

RNP finds two nearest points from the RAH of ${\bf Q}\,$ and the RAH of ${\bf X}_{i}$, respectively by solving

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma_{1}, \left\| \boldsymbol{\beta} \right\|_{2} \leq \sigma_{2},$$

RNP models each image set by a regularized affine hull (RAH):

$$RAH = \left\{ \mathbf{x} = \mathbf{X}_{i} \boldsymbol{\alpha} \mid \sum_{k} \alpha_{k} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma \right\},\$$

RNP finds two nearest points from the RAH of ${\bf Q}\,$ and the RAH of ${\bf X}_{i}$, respectively by solving

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma_{1}, \left\| \boldsymbol{\beta} \right\|_{2} \leq \sigma_{2},$$

which can be solved by

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1,$$

RNP models each image set by a regularized affine hull (RAH):

$$RAH = \left\{ \mathbf{x} = \mathbf{X}_{i} \boldsymbol{\alpha} \mid \sum_{k} \alpha_{k} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma \right\},\$$

RNP finds two nearest points from the RAH of ${\bf Q}\,$ and the RAH of ${\bf X}_{i}$, respectively by solving

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1, \left\| \boldsymbol{\alpha} \right\|_{2} \leq \sigma_{1}, \left\| \boldsymbol{\beta} \right\|_{2} \leq \sigma_{2},$$

which can be solved by

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1,$$

where

$$\sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1$$
 help avoiding the trivial solution $\alpha = \beta = 0$

Yang Wu, et al., Kyoto University, Japan

Regularized Nearest Points – classification

After getting the solution α^*, β^* , the set-to-set distance between **Q** and **X**_{*i*} is defined to be

$$d_{RNP}^{i} = \left(\left\| \mathbf{Q} \right\|_{*} + \left\| \mathbf{X}_{i} \right\|_{*} \right) \cdot \left\| \mathbf{Q} \boldsymbol{\alpha}^{*} - \mathbf{X}_{i} \boldsymbol{\beta}^{*} \right\|_{2}^{2},$$

where $\|\mathbf{Q}\|_*$ is the nuclear norm of \mathbf{Q} , i.e. the sum of the singular values of it.

Regularized Nearest Points – classification

After getting the solution α^*, β^* , the set-to-set distance between **Q** and **X**_{*i*} is defined to be

$$d_{RNP}^{i} = \left(\left\| \mathbf{Q} \right\|_{*} + \left\| \mathbf{X}_{i} \right\|_{*} \right) \cdot \left\| \mathbf{Q} \boldsymbol{\alpha}^{*} - \mathbf{X}_{i} \boldsymbol{\beta}^{*} \right\|_{2}^{2},$$

where $\|\mathbf{Q}\|_*$ is the nuclear norm of \mathbf{Q} , i.e. the sum of the singular values of it.

The nuclear norm term reflects the representation ability (related to the size) of a set, thus being able to remove the possible disturbance unrelated to the class information.

Regularized Nearest Points – classification

After getting the solution α^*, β^* , the set-to-set distance between **Q** and **X**_{*i*} is defined to be

$$d_{RNP}^{i} = \left(\left\| \mathbf{Q} \right\|_{*} + \left\| \mathbf{X}_{i} \right\|_{*} \right) \cdot \left\| \mathbf{Q} \boldsymbol{\alpha}^{*} - \mathbf{X}_{i} \boldsymbol{\beta}^{*} \right\|_{2}^{2},$$

where $\|\mathbf{Q}\|_*$ is the nuclear norm of \mathbf{Q} , i.e. the sum of the singular values of it.

The nuclear norm term reflects the representation ability (related to the size) of a set, thus being able to remove the possible disturbance unrelated to the class information.

Finally, \mathbf{Q} is classified by:

$$C(\mathbf{Q}) = \arg\min_{i} \left\{ d_{RNP}^{i} \right\}.$$

Collaborative distance finding

Collaborative distance finding

RNP:

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1,$$

Collaborative distance finding

RNP:

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}_{i}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{j} \beta_{j} = 1,$$

CRNP solves the following optimization problem:

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\}, \quad s.t. \sum_{k} \alpha_{k} = 1, \sum_{i=1}^{n} \sum_{j} \beta_{i}^{j} = 1, \\ \end{split}$$
where
$$\mathbf{X} = [\mathbf{X}_{1}, \dots, \mathbf{X}_{n}]$$

$$\boldsymbol{\beta} = [\boldsymbol{\beta}_{1}^{T}, \dots, \boldsymbol{\beta}_{n}^{T}]^{T}$$

Collaborative distance finding

RNP:

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} + \gamma_{1} (1 - \sum_{k} \alpha_{k})^{2} + \gamma_{2} (1 - \sum_{i=1}^{n} \sum_{j} \beta_{i}^{j})^{2} \right\},\$$

Distance finding optimization

 $\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} + \gamma_{1} (1 - \sum_{k} \alpha_{k})^{2} + \gamma_{2} (1 - \sum_{i=1}^{n} \sum_{j} \beta_{i}^{j})^{2} \right\},$ $\lim_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},$

Distance finding optimization

 $\min_{\alpha,\beta} \left\{ \|\mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\alpha}\|_{2}^{2} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2} + \gamma_{1} (1 - \sum_{k} \alpha_{k})^{2} + \gamma_{2} (1 - \sum_{i=1}^{n} \sum_{j} \beta_{i}^{j})^{2} \right\},\$ $\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},\$ $\mathbf{Z} = [\mathbf{0}_{1m}, \sqrt{\gamma_1}, \sqrt{\gamma_2}]^T$ $\mathbf{Q} = [\mathbf{Q}^T, \sqrt{\gamma_1} \mathbf{1}_{N_a, 1}, \mathbf{0}_{N_a, 1}]^T$ $\mathbf{X} = [-\mathbf{X}^T, \mathbf{0}_{N-1}, \sqrt{\gamma_2}\mathbf{1}_{N-1}]^T$

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},\$$

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},\$$

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},\$$

Distance finding optimization

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left\{ \left\| \mathbf{z} - \mathbf{Q}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} \right\},\$$

One-step closedform solution? Yes! But, -- it is expensive, -- the whole optimization is needed for each query/probe set.

Iterative Optimization:

Fix β , and optimize α :

$$\boldsymbol{\alpha}^* = \mathbf{P}_q(\mathbf{z} - \mathbf{X}\boldsymbol{\beta}), \text{ with } \mathbf{P}_q = (\mathbf{Q}^T \mathbf{Q} + \lambda_1 \mathbf{I})^{-1} \mathbf{Q}^T.$$

Fix α , and optimize β :

$$\boldsymbol{\beta}^* = \mathbf{P}_x(\mathbf{z} - \mathbf{Q}\boldsymbol{\alpha}), \text{ with } \mathbf{P}_x = (\mathbf{X}^T \mathbf{X} + \lambda_2 \mathbf{I})^{-1} \mathbf{X}^T.$$

Distance finding optimization

Algorithm 1 COLLABORATIVELY REGULARIZED NEAREST POINTS (CRNP):

- **Require:** The training/gallery sets $\mathbf{X} \in \mathbb{R}^{m \times N_x}$, an arbitrary test/query set $\mathbf{Q} \in \mathbb{R}^{m \times N_q}$, the pre-computed \mathbf{z} , $\hat{\mathbf{X}}$ and \mathbf{P}_x (using Equation 10), and four trade-off parameters $\{\lambda_1, \lambda_2, \gamma_1, \gamma_2\}$.
- **Ensure:** The representation coefficients for distance finding: $\boldsymbol{\alpha}^*$ and $\boldsymbol{\beta}^*$.
 - 1: Construct $\hat{\mathbf{Q}} = [\mathbf{Q}^T, \sqrt{\gamma_1} \mathbf{1}_{N_q, 1}, \mathbf{0}_{N_q, 1}]^T$.
 - 2: Compute the project matrix $\mathbf{P}_q = (\hat{\mathbf{Q}}^T \hat{\mathbf{Q}} + \lambda_1 \mathbf{I})^{-1} \hat{\mathbf{Q}}^T$.
 - 3: Initialize $\beta_0 = 1/N_x$.
 - 4: while not converged or not exceeding the maximum number of iterations do
 - 5: Update the representation coefficients:

6:
$$\boldsymbol{\alpha}_{t+1} = \mathbf{P}_q(\mathbf{z} - \hat{\mathbf{X}}\boldsymbol{\beta}_t).$$

- 7: $\boldsymbol{\beta}_{t+1} = \mathbf{P}_x(\mathbf{z} \hat{\mathbf{Q}}\boldsymbol{\alpha}_{t+1});$
- 8: end while
- 9: Return $\boldsymbol{\alpha}^*$ and $\boldsymbol{\beta}^*$.

Classification

Classification

Like sparse/collaborative representation models for single-instance based recognition, here the set-specific coefficients $\boldsymbol{\beta}^* = [\boldsymbol{\beta}_1^*, \dots, \boldsymbol{\beta}_n^*]$ is implicitly made to have some discrimination power.

Classification

Like sparse/collaborative representation models for single-instance based recognition, here the set-specific coefficients $\boldsymbol{\beta}^* = [\boldsymbol{\beta}_1^*, \dots, \boldsymbol{\beta}_n^*]$ is implicitly made to have some discrimination power.

Therefore, we design our classification model as follows.

$$C(\mathbf{Q}) = \arg\min_{i} \left\{ d_{CRNP}^{i} \right\},$$
$$d_{CRNP}^{i} = \left(\|\mathbf{Q}\|_{*} + \|\mathbf{X}_{i}\|_{*} \right) \cdot \|\mathbf{Q}\boldsymbol{\alpha}^{*} - \mathbf{X}_{i}\boldsymbol{\beta}_{i}^{*}\|_{2}^{2} / \|\boldsymbol{\beta}_{i}^{*}\|_{2}^{2}.$$

where

Classification

Like sparse/collaborative representation models for single-instance based recognition, here the set-specific coefficients $\boldsymbol{\beta}^* = [\boldsymbol{\beta}_1^*, \dots, \boldsymbol{\beta}_n^*]$ is implicitly made to have some discrimination power.

Therefore, we design our classification model as follows.

$$C(\mathbf{Q}) = \arg\min_{i} \left\{ d_{CRNP}^{i} \right\},$$

$$d_{CRNP}^{i} = \left(\|\mathbf{Q}\|_{*} + \|\mathbf{X}_{i}\|_{*} \right) \cdot \|\mathbf{Q}\boldsymbol{\alpha}^{*} - \mathbf{X}_{i}\boldsymbol{\beta}_{i}^{*}\|_{2}^{2} / \|\boldsymbol{\beta}_{i}^{*}\|_{2}^{2}.$$

where

Recall that RNP doesn't directly use the coefficients themselves which are actually also discriminative.

$$d_{RNP}^{i} = \left(\left\| \mathbf{Q} \right\|_{*} + \left\| \mathbf{X}_{i} \right\|_{*} \right) \cdot \left\| \mathbf{Q} \boldsymbol{\alpha}^{*} - \mathbf{X}_{i} \boldsymbol{\beta}^{*} \right\|_{2}^{2},$$

Experimental settings -- datasets

Experimental settings -- datasets

Face recognition

Honda/UCSD dataset and CMU MoBo dataset:

- Honda/UCSD 20 subjects (20 specified seq. for the gallery, and the other 39 seq. for testing.);
- 2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the gallery, and the rest for testing.).
- 3. The gallery/probe **set size** for both datasets is set to be **50 or 100** (collected from the beginning of each sequence.)

Experimental settings -- datasets

Face recognition

Honda/UCSD dataset and CMU MoBo dataset:

- Honda/UCSD 20 subjects (20 specified seq. for the gallery, and the other 39 seq. for testing.);
- 2. CMU MoBo -- 24 subjects (randomly select 1 seq. out of 4 for each subject for the gallery, and the rest for testing.).
- 3. The gallery/probe **set size** for both datasets is set to be **50 or 100** (collected from the beginning of each sequence.)

Person re-identification

3 widely used datasets: iLIDS-MA, iLIDS-AA, and CAVIAR4REID.

- iLIDS-MA: 40 subjects, 1 gallery set & 1 probe set for each, set size 10;
- iLIDS-AA: 100 subjects, 1 gallery set & 1 probe set for each, set size 10;
- CAVIAR4REID : 50 subjects, 1 gallery set & 1 probe set for each, set size 5;

Experimental settings -- comparisons

Methods

```
MPD (CVPR10),
SRC (TPAMI09), CRC (ICCV11),
CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12),
SBDR (ECCV12),
CSA (AVSS12) , RNP (FG13).
```


Experimental settings -- comparisons

Methods

```
MPD (CVPR10),
SRC (TPAMI09), CRC (ICCV11),
CHISD (CVPR10), SANP (CVPR11), KSANP (PAMI12),
SBDR (ECCV12),
CSA (AVSS12) , RNP (FG13).
```

Parameters

For **CRNP**:

$$\lambda_1 = \lambda_2 = 4, \gamma_1 = \gamma_2 = 1$$

For other methods:

- default settings or originally suggested parameters were used.

Results

Face recognition accuracy (%) comparison on the Honda/UCSD dataset.

Method	MPD[4]	SRC[8]	CRC[14]	CHISD[2]	SANP[13]	KSANP[6]	SBDR[10]	CSA[9]	RNP[12]	CRNP
50 frames	79.49	76.92	76.92	79.49/82.05*	84.62/84.62*	87.18*	87.69*	84.62	66.67/87.18*	89.74
100 frames	87.18	94.87	82.05	79.49/84.62*	89.74/92.31*	94.87*	89.23*	92.31	92.31/94.87*	97.44

Face recognition accuracy (%) comparison on the CMU MoBo dataset.

Method	MPD[4]	SRC[8]	CRC[14]	CHISD[2]	SANP[13]	SBDR[10]	CSA[9]	RNP[12]	CRNP
50 frames	92.22	88.89	89.72	90.83	90.14	95.00*	86.25	91.81/91.9*	93.33
100 frames	94.31	92.36	93.06	94.17	93.61	96.11*	94.44	94.58/94.7*	94.44

Performance comparison for person re-identification on three benchmark datasets.

Dataset	MPD[4]	SRC[8]	CRC[14]	CHISD[2]	SANP[13]	CSA[9]	RNP[12]	CRNP
iLIDS-MA	50.0(75.0)	57.3(74.8)	28.5(50.0)	52.5(72.8)	46.8(74.8)	59.0 (71.3)	53.3(76.0)	59.0 (78.3)
iLIDS-AA	23.8(60.4)	36.0 (68.9)	24.7(54.1)	24.6(58.2)	19.2(57.3)	22.5(59.6)	25.5(59.9)	35.4(71.6)
CAVIAR4REID	19.0(47.2)	25.4(50.8)	16.6(37.6)	25.4(51.2)	25.2(52.4)	24.6(48.8)	24.0(50.2)	26.8(63.6)

Computational cost

For those methods which can have (parts of) their models pre-computed using the training data, the total pre-computation time (in seconds) is listed for comparison.

Dataset	Honda	/UCSD	CMU	МоВо	I IDS-MA		CAVIA P/PEID	
	50 frames	100 frames	50 frames	100 frames	ILID3-MA	ILID5-AA	CAVIAR+REID	
SBDR[10]	9.23×10^3	1.46×10^4	1.23×10^4	3.14×10^4	N/A	N/A	N/A	
CSA[9]	0.59	0.74	28.7	50.2	0.39	0.62	0.26	
RNP[12]	0.06	0.20	0.17	0.64	0.02	0.05	0.02	
CRNP	0.22	0.87	0.64	2.66	0.04	0.22	0.02	

Computational cost comparison with all the related methods on all of the recognition tasks (in the ``*milliseconds per sample*'' manner, excluding the time for feature extraction).

Dataset	MPD[4]	SRC[8]	CRC[14]	CHISD[2]	SANP[13]	SBDR[10]	CSA[9]	RNP[12]	CRNP
Honda/UCSD (50)	3.2	$1.2 imes 10^3$	0.28	77.7	19.6	259	17.4	11.5	0.32
Honda/UCSD (100)	6.4	4.1×10^3	0.55	330	17.3	97.8	32.6	14.5	0.46
CMU MoBo (50)	12.4	$7.6 imes 10^3$	0.94	89.0	47.2	85.0	29.0	3.5	2.1
СМИ МоВо (100)	71.4	$2.7 imes 10^4$	1.8	394	53.0	79.3	39.1	5.9	2.5
iLIDS-MA	3.9	741	0.51	58.7	121	N/A	9.6	24.5	3.3
iLIDS-AA	9.9	2337	1.2	150	344	N/A	36.8	83.4	7.2
CAVIAR4REID	3.8	214	0.35	55.3	249	N/A	15.8	30.8	8.0

Findings and Future Work

Findings

- Collaborative representation is effective for set-based recognition.
- The computationally efficient L2-norm based regularization works well with collaborative representation.

Findings and Future Work

Findings

- Collaborative representation is effective for set-based recognition.
- The computationally efficient L2-norm based regularization works well with collaborative representation.

Future work

- A deeper comparison of different norms (including L0, L1, and L2) in the same framework of CRNP.
- Dictionary learning for performance improvement.

Findings and Future Work

Findings

- Collaborative representation is effective for set-based recognition.
- The computationally efficient L2-norm based regularization works well with collaborative representation.

Future work

- A deeper comparison of different norms (including L0, L1, and L2) in the same framework of CRNP.
- Dictionary learning for performance improvement.

Code: available soon on my personal webpage. <u>http://mm.media.kyoto-u.ac.jp/members/yangwu/</u>

Thank you! Q & A?