

Unsupervised Object Discovery and Segmentation in Videos

Samuel Schulter, Christian Leistner, Peter M. Roth, Horst Bischof Graz University of Technology – Institute for Computer Graphics and Vision Microsoft Austria

 Given: Set of unlabeled images

 Given: Set of unlabeled images

 Goal: Discover common visual concepts

 Given: Set of unlabeled images

Goal: Discover
 common visual
 concepts

 Given: Set of unlabeled images

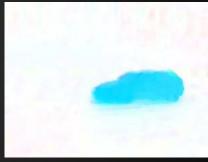
Goal: Discover
 common visual
 concepts

Typical Approach

- Collection of still images
- Topic modelling or clustering methods
- Rely on prior information
 - Arbitrary image segmentations
 - Objectness
 - etc.
- Reliable discovery without priors is difficult!

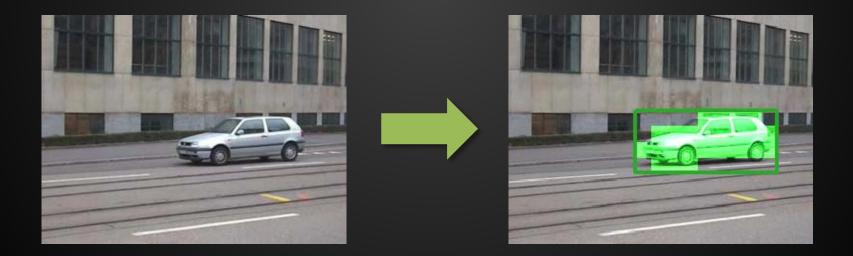
Use Videos instead of Still Images

- Motion is a strong and physically valid prior for objects
- Advantages of using videos
 - Objects can be segmented from the background
 - High variability of object appearance
 - Huge amount of data easily available



UOD in Videos

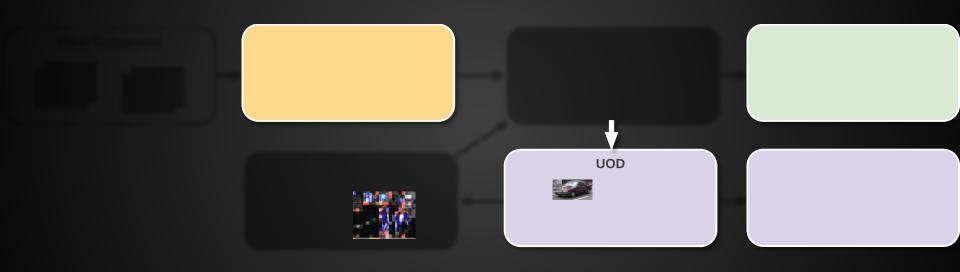
Given: Videos capturing some objects
 Goal: Discover objects and assign them a semantic label

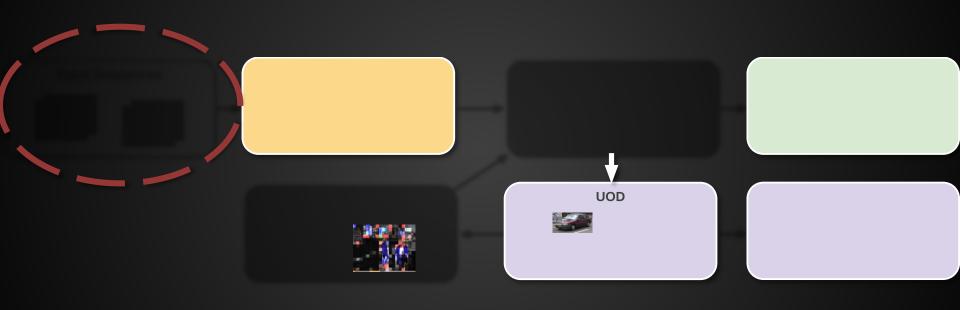


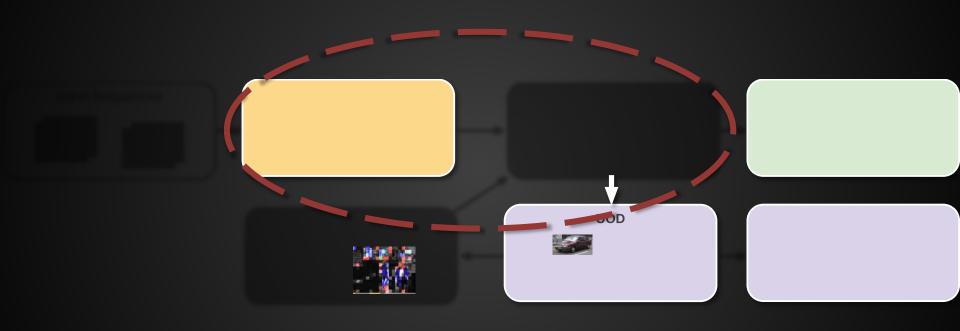
Outline

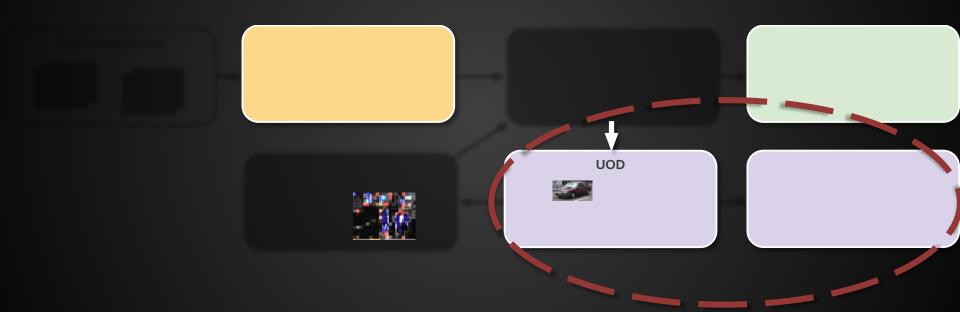
- Our approach for UOD from Videos
 - Overview
 - Building blocks
 - Outcome

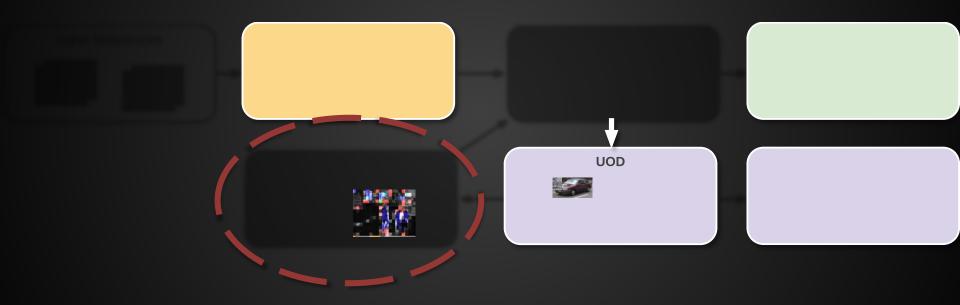
- Experiments
 - Object discovery in videos
 - Object detection in still images

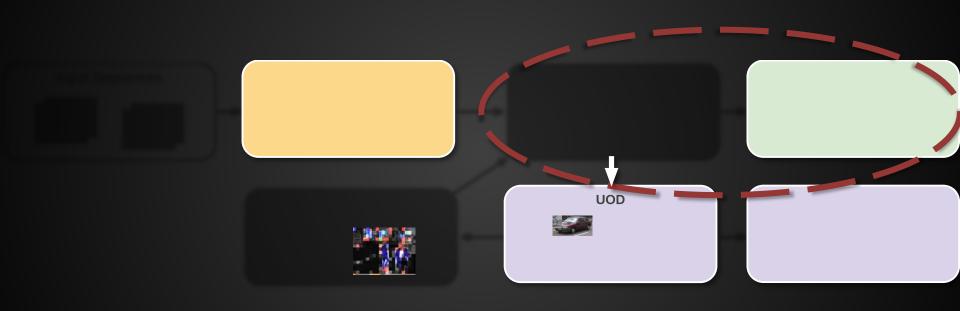












Motion Segmentation

- CRF-based segmentation
- Large optical flow vectors indicate objects

Input video

Motion Segmentation

- CRF-based segmentation
- Large optical flow vectors indicate objects

Input video

Optical flow

Motion Segmentation

- CRF-based segmentation
- Large optical flow vectors indicate objects

Input video

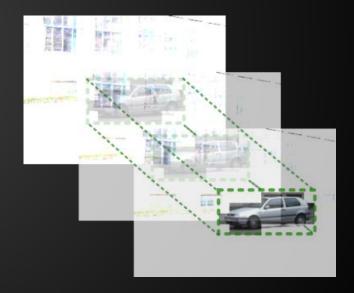
Optical flow

Motion segmentation

Object Proposals from Motion

Object proposal = Motion segment

- Proposals are typically noisy
 - Filter via motion constraints
 - Smooth trajectories through space and time
 - Not possible for still images



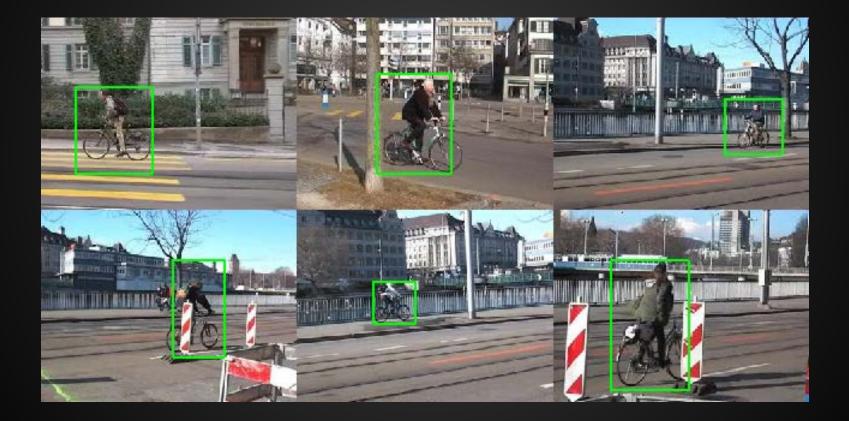
Object Proposal Clustering

- Feature vector for each remaining proposal bounding box
 - Bag-of-Words on Dense SIFT (300d codebook)
 - Spatial pyramid
- Choose the number of objects k

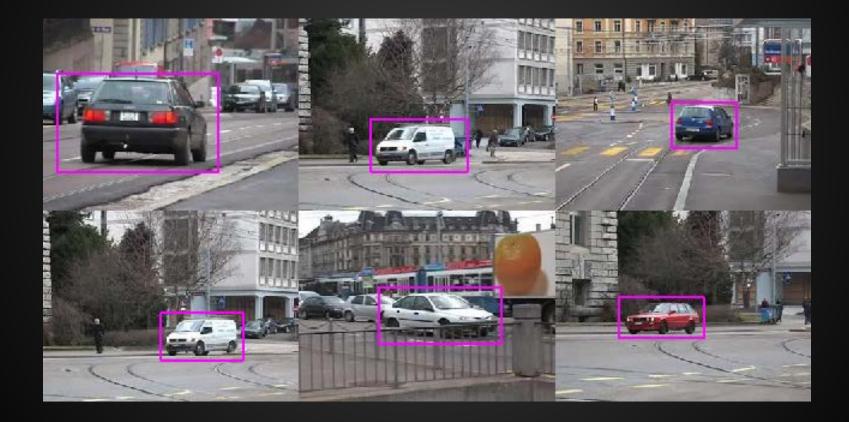
– Only supervision required!

• Apply a spectral clustering algorithm $- \mathcal{X}^2$ distance

Clustering Result



Clustering Result

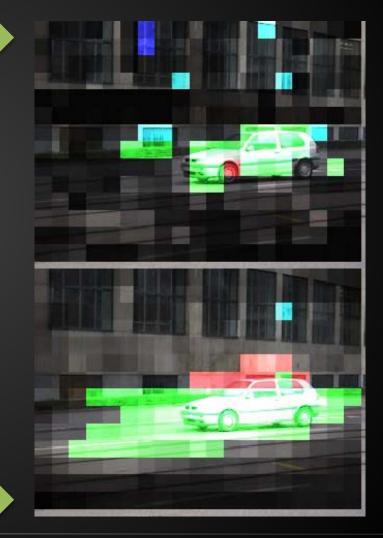


Training Object Models

- Train classifier for each cluster
 Allows for discovering static objects
- Random Forests on two abstraction levels
 - Superpixel level (standard RF on superpixels)
 - Object level (Hough Forests [Gall & Lempitsky, 09])

Applying Object Models

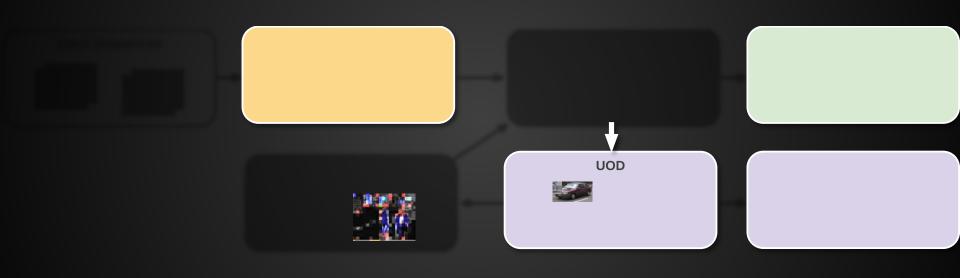
Superpixel level



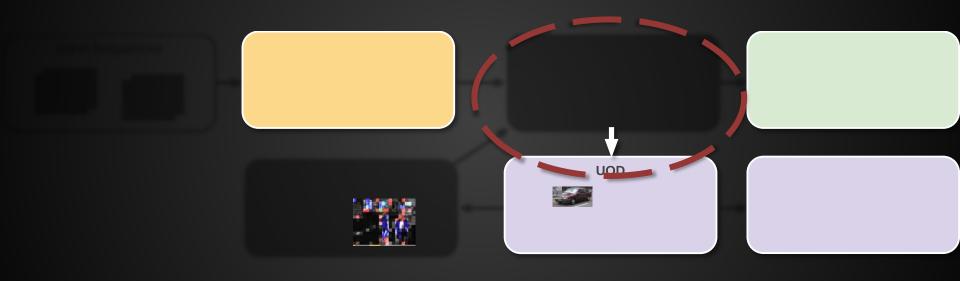
Object level

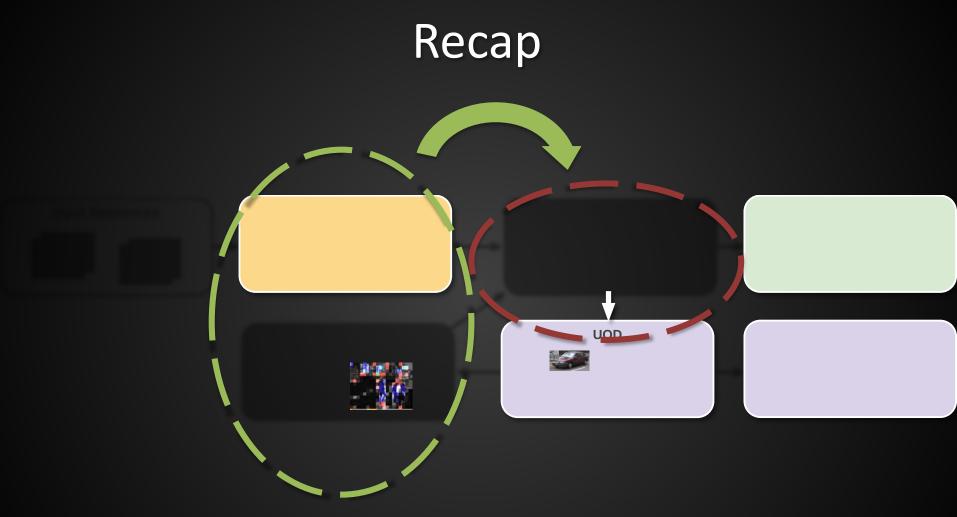
Unsupervised Object Discovery and Segmentation from Videos

Recap



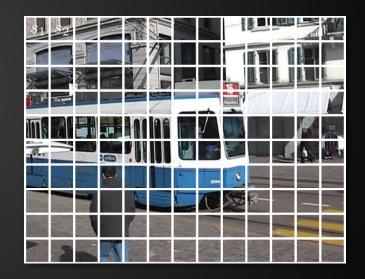
Recap





CRF-based Semantic Segmentation

- Graph $\mathcal{G} = \langle \mathcal{V}, \mathcal{E}
 angle$
- Nodes on superpixels s_l
 - Regular grid
 - Fast computation
- Edges link spatially and temporally
- Label space size: k+1 (k categories and background)



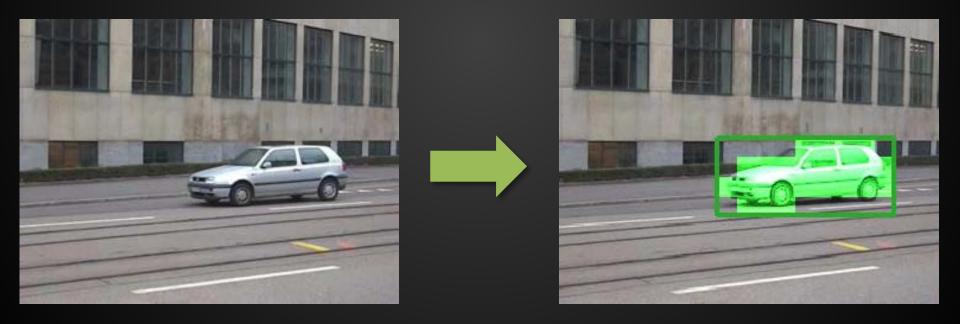
CRF-based Semantic Segmentation

- Linear combination of unary potentials
 Optical flow fields
 - 2 semantic appearance maps
- Contrast-sensitive pairwise potentials
 RGB color and optical flow vectors
- Standard Graph-Cut for minimization

ightarrow Details in the paper

CRF-based Semantic Segmentation

• Output: Labeled video frames



Experiments

- Experiments with video data
 Unsupervised object discovery
- Experiments on still images
 Object detection

- Videos from [Ommer & Buhmann, 07]
 - 96 videos, > 7000 frames, 4 categories
 - Captured with non-static hand-held camera

Object Discovery in Videos

 Intention: Successful discovery of moving and static objects, requiring only the parameter k

- Accuracy measure is **purity**
- Frame correctly classified if largest segment is correctly labeled
- Evaluation of different parts of our approach and comparison to [Russel et al., 06]

Quantitative Results

Model	Purity [%]
Ours (full)	75.1
Ours (superpixel only)	72.3
Ours (holistic only)	69.4
Ours (no outlier rem.)	62.2
[Russel et al. 06] k=4	52.0
[Russel et al. 06] k=5	55.0

-	c1	c2	c3	c4
c1	65	05	12	06
c2	06	88	02	06
c3	13	06	80	04
c4	13	00	04	84

Results of UOD task as purity

Confusion matrix of the 4 categories: c1 = bicycle c2 = car c3 = pedestrian c4 = streetcar

Quantitative Results

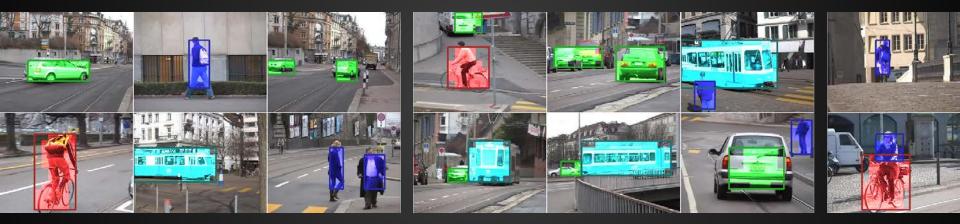
Model	Purity [%]
Ours (full)	75.1
Ours (superpixel only)	72.3
Ours (holistic only)	69.4
Ours (no outlier rem.)	62.2
[Russel et al. 06] k=4	52.0
[Russel et al. 06] k=5	55.0

Results of UOD task as purity

-	c1	c2	c3	c4
c1	65	05	(12)	06
c2	06	88	02	06
c3	13	06	(80)	04
c4	13	00	04	84

Confusion matrix of the 4 categories: c1 = bicycle c2 = car c3 = pedestrian c4 = streetcar

Qualitative Results



Moving objects

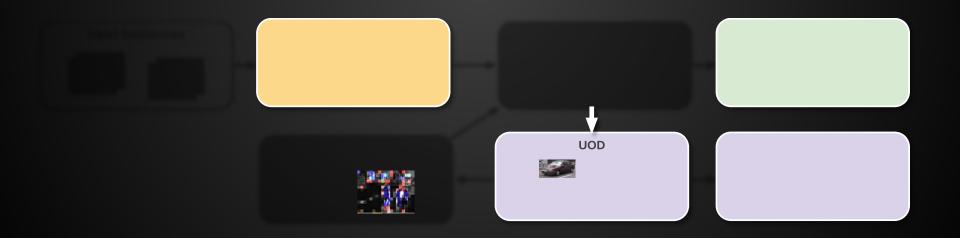
Also non-moving objects (parking cars, pedestrian)

Failure cases

Result Videos

Recognition in Still Images

 Intention: Show the generalization capability of the unsupervised learned models on still images



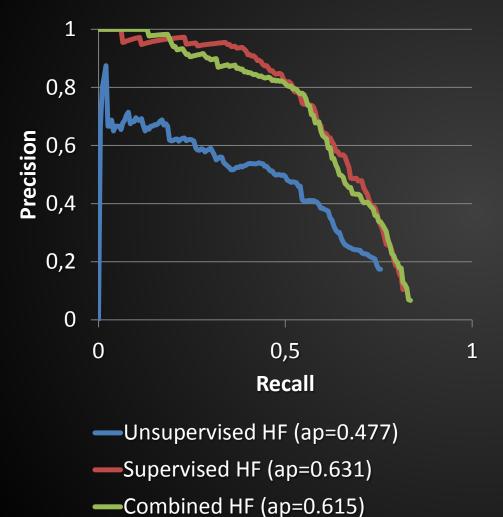
Recognition in Still Images

 Intention: Show the generalization capability of the unsupervised learned models on still images

Recogntion in Still Images

- Holistic appearance models can be directly applied on still images [Gall & Lempitsky, 09]
- TUD-pedestrian and ETHZ-cars data sets [Andriluka et al., 08], [Leibe et al., 07]
- Compare 3 models
 - Unsupervised (train images only from videos)
 - Supervised (original train images)
 - Combined (both image sets)

Results on TUD-pedestrian



- Combined model slightly worse than fully supervised
- Only little additional information, as TUDpedestrian mainly shows side-view pedestrians

Results on ETHZ-cars

- Unsupervised HF (ap=0.707)
- Supervised HF (ap=0.770)
- Combined HF (ap=0.844)

- Combined model significantly outperforms fullysupervised model
- Unlabeled data helps and comes for free!
- Motivating result

Conclusion

- Unsupervised Object Discovery from videos
- Motion is a strong object indicator
- Include both motion and appearance cues in a joint CRF formulation

- Successful discovery of objects in videos
- Model can even be applied on still images

Thank you!

Samuel Schulter

schulter@icg.tugraz.at Institute for Computer Graphics and Vision Graz University of Technology, Austria

References

[Gall & Lempitsky, 09] J. Gall, V. Lempitsky. Class-specific Hough Forests for Object Detection. CVPR 2009

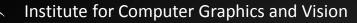
[Ommer & Buhmann, 07] B. Ommer, J. M. Buhmann. Compositional object recognition, segmentation, and tracking in video. EMMCVPR 2007

[Andriluka et al., 08] M. Andriluka, S. Roth, B. Schiele. Peaple-tracking-by-detection and peopledetection-by-tracking. CVPR 2008

[Leibe et al., 07] B. Leibe, N. Cornelis, K. Cornelis, L. van Gool. Dynamic 3D scene analysis from a moving vehicle. CVPR 2007

Conclusion

- Unsupervised Object
 Discovery from videos
- Include both motion and appearance cues in a joint CRF formulation
- Successful discovery of objects in videos



Conclusion

- Unsupervised Object Discovery from videos
- Include both motion and appearance cues in a joint CRF formulation
- Successful discovery of objects in videos

Take-Home message:

- Motion is a strong prior for objects
- Appearance models also generalize well to still images
- Applicable to object detection

Discussion

- Discuss the pipeline
- Benefits and limitations
- Influence of $k \rightarrow$ scalability with k
- Better performance when going pixel-wise and learning some CRF parameters
- Denote this slide as future work? Rather at the end of the presentation?!

Additional Slides

- Camera motion suppression
- Shot boundary detection
- Filtering via line fitting, e.g., x-y-coordinates of bounding box center through space and time

Additional Slides

- Random Forest training
 - 2 Hough Forests (1 without offset vectors)
 - Superpixel double the size \rightarrow 16x16 patches
 - Object: bounding box → 100px height → 16x16
 random patches
- Why holistic model? Only vote for object center? Usefull?

Additional Slide

- CRF segmentation
 - In the first iteration, label space is the same but we spread the motion potentials to all semantic labels equally (and to background in the correct relation)
 - Appearance probabilities are normalized (from Hough Forests)
- Weighting factors are hand-tuned
- Add constant fg-probability to motion!

Unsupervised Object Retrieval

- Learn categories from unlabeled videos
- Predict the correct label for unseen test frames
- Illustration of the generalization capability

- Split the videos into train and test set (3:1)
- Accuracy metric
 - Retrieval rates per frame and video

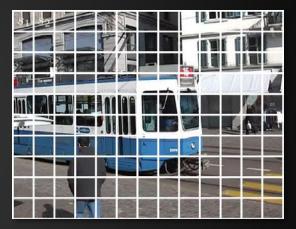
Results

Model	Frame	Video
Ours (full)	65.9	73.9
[Ommer & Buhmann 07]	74.3	87.4
[Ommer et al. 09] <i>Appear</i>	53.0	58.9
[Ommer et al. 09] <i>Shape</i>	74.4	88.4
[Ommer et al. 09] <i>Combination</i>	81.4	94.5

- Our model has less supervision and no shape information
- Our unsupervised "appearance only" is 13% better than the weakly supervised "appearance only" model

Motion Segmentation

- CRF-based motion segmentation
- Superpixels s_l
 - Regular grid
 - Fast computation



Unary potential based on optical flow vectors

Large optical flow vectors indicate objects

$$\Phi(s_l) = -\log\left(\eta + \frac{\operatorname{med}(\|v(s_l)\|)}{\max_l \operatorname{med}(\|v(s_l)\|)}\right)$$