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Typical Approach

• Collection of still images
• Topic modelling or clustering methods
• Rely on prior information

– Arbitrary image segmentations
– Objectness
– etc.

• Reliable discovery without priors is difficult!
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Use Videos instead of Still Images
• Motion is a strong and

physically valid prior for
objects

• Advantages of using videos
– Objects can be segmented from

the background
– High variability of object

appearance
– Huge amount of data easily

available
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UOD in Videos

• Given:        Videos capturing some objects
• Goal:          Discover objects and assign them a

semantic label
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Outline

• Our approach for UOD from Videos
– Overview
– Building blocks
– Outcome

• Experiments
– Object discovery in videos
– Object detection in still images
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Motion Segmentation
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Object Proposals from Motion

• Proposals are typically noisy
– Filter via motion constraints
– Smooth trajectories through

space and time
– Not possible for still images
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Object Proposal Clustering

• Feature vector for each remaining proposal
bounding box
– Bag-of-Words on Dense SIFT (300d codebook)
– Spatial pyramid

• Choose the number of objects k
– Only supervision required!

• Apply a spectral clustering algorithm
– distance
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Clustering Result
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Clustering Result
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Training Object Models

• Train classifier for each cluster
– Allows for discovering static objects

• Random Forests on two abstraction levels
– Superpixel level (standard RF on superpixels)
– Object level (Hough Forests [Gall & Lempitsky, 09])
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Applying Object Models
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Superpixel level

Object level
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Recap
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CRF-based Semantic Segmentation

• Graph
• Nodes on superpixels

– Regular grid
– Fast computation

• Edges link spatially
and temporally

• Label space size: k+1
(k categories and
background)
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CRF-based Semantic Segmentation

• Linear combination of unary potentials
– Optical flow fields
– 2 semantic appearance maps

• Contrast-sensitive pairwise potentials
– RGB color and optical flow vectors

• Standard Graph-Cut for minimization

 Details in the paper
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CRF-based Semantic Segmentation
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Experiments

• Experiments with video data
– Unsupervised object discovery

• Experiments on still images
– Object detection

• Videos from [Ommer & Buhmann, 07]

– 96 videos, > 7000 frames, 4 categories
– Captured with non-static hand-held camera
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Object Discovery in Videos

• Intention: Successful discovery of moving and
static objects, requiring only the parameter k

• Accuracy measure is purity
• Frame correctly classified if largest segment is

correctly labeled
• Evaluation of different parts of our approach

and comparison to [Russel et al., 06]
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Quantitative Results
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Model Purity [%]

Ours (full) 75.1

Ours (superpixel only) 72.3

Ours (holistic only) 69.4

Ours (no outlier rem.) 62.2

[Russel et al. 06] k=4 52.0

[Russel et al. 06] k=5 55.0

- c1 c2 c3 c4

c1 65 05 12 06

c2 06 88 02 06

c3 13 06 80 04

c4 13 00 04 84

Results of UOD  task as purity Confusion matrix of the 4 categories: 
c1 = bicycle
c2 = car
c3 = pedestrian
c4 = streetcar
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Qualitative Results
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Moving objects Also non-moving objects
(parking cars, pedestrian)

Failure
cases
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Result Videos
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Recognition in Still Images

• Intention: Show the generalization capability
of the unsupervised learned models on still 
images
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Recogntion in Still Images
• Holistic appearance models can be directly

applied on still images [Gall & Lempitsky, 09]

• TUD-pedestrian and ETHZ-cars data sets
[Andriluka et al., 08], [Leibe et al., 07]

• Compare 3 models
– Unsupervised (train images only from videos)
– Supervised (original train images)
– Combined (both image sets)
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Results on TUD-pedestrian

• Combined model
slightly worse than
fully supervised

• Only little additional 
information, as TUD-
pedestrian mainly
shows side-view 
pedestrians
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Results on ETHZ-cars

• Combined model
significantly
outperforms fully-
supervised model

• Unlabeled data helps
and comes for free!

• Motivating result
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Conclusion

• Unsupervised Object Discovery from videos
• Motion is a strong object indicator
• Include both motion and appearance cues in a 

joint CRF formulation

• Successful discovery of objects in videos
• Model can even be applied on still images
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Thank you!
Samuel Schulter
schulter@icg.tugraz.at
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
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Take-Home message:
• Motion is a strong 

prior for objects
• Appearance models

also generalize well to
still images

• Applicable to object
detection
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Discussion

• Discuss the pipeline
• Benefits and limitations
• Influence of k scalability with k
• Better performance when going pixel-wise

and learning some CRF parameters
• Denote this slide as future work? Rather at the

end of the presentation?!

31.01.2014 Unsupervised Object Discovery and Segmentation from Videos 31



Institute for Computer Graphics and Vision

Additional Slides

• Camera motion suppression
• Shot boundary detection
• Filtering via line fitting, e.g., x-y-coordinates of

bounding box center through space and time
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Additional Slides

• Random Forest training
– 2 Hough Forests (1 without offset vectors)
– Superpixel double the size 16x16 patches
– Object: bounding box  100px height 16x16 

random patches

• Why holistic model? Only vote for object
center? Usefull?
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Additional Slide

• CRF segmentation
– In the first iteration, label space is the same but 

we spread the motion potentials to all semantic
labels equally (and to background in the correct
relation)

– Appearance probabilities are normalized (from
Hough Forests)

• Weighting factors are hand-tuned
• Add constant fg-probability to motion!
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Unsupervised Object Retrieval

• Learn categories from unlabeled videos
• Predict the correct label for unseen test

frames
• Illustration of the generalization capability

• Split the videos into train and test set (3:1)
• Accuracy metric

– Retrieval rates per frame and video
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Results

• Our model has less
supervision and no
shape information

• Our unsupervised
„appearance only“ is
13% better than the
weakly supervised
„appearance only“ 
model
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Model Frame Video

Ours (full) 65.9 73.9

[Ommer & 
Buhmann 07] 74.3 87.4

[Ommer et al. 09] 
Appear 53.0 58.9

[Ommer et al. 09] 
Shape 74.4 88.4

[Ommer et al. 09] 
Combination 81.4 94.5



Institute for Computer Graphics and Vision

Motion Segmentation

• CRF-based motion segmentation
• Superpixels

– Regular grid
– Fast computation

• Unary potential based on optical flow vectors
– Large optical flow vectors indicate objects
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