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Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2Cam center

Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

S (a 3D point)

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

S (a 3D point)

projection

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

p q

S (a 3D point)

projection

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

p q

Left cam Right cam
c1 c2

S (a 3D point)

projection

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

p q

Left cam Right cam
c1 c2

p q

S (a 3D point)

projection

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

p q

Left cam Right cam
c1 c2

p q

S (a 3D point)

projection

S (finding it)

triangulation

Cam center
Image plane



Objective

Endowing the computer with human like depth skill
 Human: two eyes + a brain = depth perception
 Stereo vision system: two cameras + PC/FPGA = depth perception

TFASW 231/01/2014

Left cam Right cam
c1 c2

p q

Left cam Right cam
c1 c2

p q

S (a 3D point)

How to find the corresponding points？

projection

S (finding it)

triangulation

Cam center
Image plane



Objective
How to find the corresponding points in a pair of stereo images?

Stereo matching algorithms
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Pipeline
Generally, local stereo matching algorithms follow four steps:
 Cost computation: calculate the matching cost between p and its candidate points
 Cost aggregation: aggregate all costs within a support window  compare windows
 Disparity optimization: winner take all strategy, local optimal among candidate windows
 Refinement: post-processing step to remove mismatches
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Related work

How to choose a window?
 Important assumption: all pixels within the support window should be at 

the same depth with the center pixel

 Approaches:
 Multiple window approach: change the window shape
 Variable window approach: change the window size & shape
 Shiftable window approach: change the window center offset
 Adaptive support weight (ASW) approach – best local method
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Related work
Adaptive support weight (ASW) methods
 Idea: 

 assign a weight for each pixel of the support window
 aggregate the weighted costs

 Weight ~ Likelihood of two pixels at the same disparity
 more likely in the same disparity  big weight
 less likely in the same disparity  small weight

 Assign weight = change window size, shape, center offset
How to calculate the weight for each pixel? 
 Bilateral filter weight function [Yoon PAMI’06] (BF)
 Segmented bilateral filter weight function [Tombari PSIVT’07] (BFSeg)
 Geodesic weight function [Hosni ICIP’09] (GEO)
 Guided filter weight function [Rhemann CVPR’11] (GF )
 ……
Which function is the most accurate?
 Hosni [Hosni CVIU’13] evaluated various weight functions on a large 

datasets, suggesting that both BF and GF are the most accurate functions
.
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Bilateral filter weight function
Two rules (for pixel p and q):
 Spatially close  more likely in the same disparity
 Similar in color  more likely in the same disparity

Bilateral filter weight function [Yoon PAMI’06] :
 Spatial proximity term: Euclidean distance between coordinates (x, y)

 Color similarity term: Euclidean distance between the colors, CIELab color 
space

  bf weight:
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Drawback of the bilateral filter weight

 From bilateral filter, W(p, q) in (b) equals to W(p, q) in (c)
 Actually, they should not equal, because in (c) these two pixels are in the 

same depth but in (b) they are not.
 Our method: use boundary cue in (d)

 If there is a boundary between two pixels, their weight should be small
 If not, their weight should be big
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The proposed method

Trilateral filter weight function 
 A new boundary strength term 
 The boundary strength at pixel p is defined as [Robbins IVC’97]:

and            is a pair of quadrature filters in different orientation 

 The boundary strength term is defined as:
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The proposed method

 If there is not a boundary between p and q,             is zero
 If there is a boundary,              is not zero, but proportional to the boundary 

strength between them.
Our trilateral filter weight function
 use the boundary strength term to modify the bilateral filter
 inspired by the cue combination strategy [Cour CVPR’05]
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Experimental results

Evaluation on Middlebury benchmark, using four standard pairs of stereo 
images. http://vision.middlebury.edu/stereo/
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Experimental results
Overall comparison of our TF method with four state-of-the-art methods
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Experimental results
Comparison of weight functions
 Only compare our TF weigh function with BF and GF, fixing other steps ( 

cost computation, disparity optimization, refinement)
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Conclusion & future work

A trilateral filter based ASW method is proposed and the experimental 
results demonstrate its effectiveness.
We will evaluate the proposed method on a large dataset.
We will improve the computational efficiency of the proposed method.
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Thank you for your attention!
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