Optimised object decection: a completely non-unified approach

Edward Rosten

COMPUTER VISION CONSULTING computervisionconsulting.com

Detecting stuff

- 'Traditional' object detection Identifiable 'object', in this case small objects.
- Superresolution fluorescence microscopy Objects are now just featureless dots—harder than it sounds.
- Corner detection Objects are now...? What are corners anyway?

Object detection

Everingham, Van Gool, Williams, Winn, Zisserman. The PASCAL Visual Object Classes Challenge 2011.

Object detection

Everingham, Van Gool, Williams, Winn, Zisserman. The PASCAL Visual Object Classes Challenge 2011.

Object detection

Target detection

Eads, Rosten, Helmbold. BMVC 2009

Rosten, Loveland, Hickman. arXiv:0912.1310

Object detection: difficulties

Which ones are cars?

- Problem is unstructured Image $\rightarrow \{(x_1, y_1), (x_2, y_2), \dots \}$
- Number of objects unknown a priori
- Not a fixed set of labels

What is object detection?

- Target detection:
 Within boundary
- Tracking
 - Nearby, but with unique assignment

What is object detection?

- Target detection:
 Within boundary
- Tracking
 - Nearby, but with unique assignment

Features

Spatial boosting

Training:

- Markup: Image, and list of (x, y) pairs.
- Thresholdable weak detectors

Runtime:

• Image \rightarrow list of (x, y) pairs.

Goal:

• Find weighted sum of weak detectors

Cheat:

• Actual detection stage not included

Does it work?

- Treating foreground and background differently makes a big difference.
- No ad-hoc data weighting.

Eads, Rosten, Helmbold. arXiv:1309.1080 2013

Abbé Limit: Wavelength limits resolution (250 nm)

J Benutzer, Wikipedia, 2005

Abbé Limit: Wavelength limits resolution (250 nm)

- Separate fluorophore emission in time
- Localise individual spots

• Frame by frame: threshold and fit Gaussians

Betzig, Patterson, Sougrat, Lindwasser, Olenych, Bonifacino, Davidson, Lippincott-Schwartz, Hess. Science 2006

Frames: 4

Frames: 16

Frames: 1024

Frames: 4096

More realistic data

Bayesian analysis of Blinking and Bleaching (3B)

Model entire data set in one go:

- Statistical temporal model of fluorophores
- Resolution improved by multiple fluorophore reappearances
- Acquisition time use data from overlapping fluorophores: far fewer images needed
- Fluorophore choice suitable for answering biologically useful questions: improved data analysis needed to cope with worse data.

Cox, Rosten, Monypenny, Jovanovic-Talisman, Burnette, Lippincott-Schwartz, Jones, Heintzmann. Nature Methods 2012.

Bayesian analysis

• Generative model for images

- Integrate over all state sequences (MCMC)
- Max likelihood estimate and error bars for pos/size/brightness (difficult optimization)

Bayesian analysis

• Generative model for images

• Integrate over all state sequences (MCMC)

• Max likelihood estimate and error bars for pos/size/brightness (difficult optimization)

Results: first, some biology (Podosomes)

- Cytoskeletal structures at the cell membrane
- Actin core, surrounded by a ring of other proteins including vinculin and talin

Confocal

STED

500nm

Live cells: truly awful data

Live cell podosomes

What is corner detection?

Useful for:

• 2D tracking, 3D tracking, live 3D reconstruction, object recognition, etc.

- Visually 'salient' features.
- Localized in 2D.
- Sparse.
- High 'information' content.
- Repeatable between images.

FAST-ER: Enhanced Repeatability

• Define feature detector as:

A collection of FAST-like tests which detects points with a high repeatability.

- To evaluate repeatability:
 - 1. Detect features in all frames.
 - 2. Compute repeatability.
- That is hard to optimize! Optimize tree using simulated-annealing. Brute force and ignorance?

Rosten, Porter, Drummond. PAMI 2010

FAST: features from accelerated segment test

Contiguous arc of 9 or more pixels:

• All much brighter than p (brighter than p + t).

or

• All much darker than p (darker than p - t).

Rosten, Drummond. ECCV 2006, ICCV 2005

FAST-ER: Enhanced Repeatability

• Define feature detector as:

A collection of FAST-like tests which detects points with a high repeatability.

- To evaluate repeatability:
 - 1. Detect features in all frames. Slow
 - 2. Compute repeatability.
- That is hard to optimize!
 - Optimize tree using simulated-annealing. Many iterations required. Use machine code!
 - Brute force and ignorance?

Results: datasets

Cambridge Repeatability Dataset, Oxford Affine Covariant Regions Dataset

Aggregate results

Detector	AUR							
FAST-ER	1313.6	-	1 📻					
FAST-9	1304.57		0.8			~~~~ × ×	x 	× ×
DoG	1275.59	ability	0.6		×			
Shi & Tomasi	1219.08	epeat	0.4			AUR		
Harris	1195.2	Ā	0.2					
Harris-Laplace	1153.13		0		500	1000	1500	200
FAST-12	1121.53		Corners per frame					
SUSAN	1116.79							
Random	271.73							

Conclusions

- Detection is meaningless without defining the task
- Task defines the objective function
 - Objects
 - Cost based on performance in tracking system. (sort of)
 - Fluorophores
 - \star Cost based reconstructing image from detections
 - Corners
 - \star No real definition, but they need to be repeatable.
 - These may not be easy to optimize (might have to cheat)
- Optimization works (of course)
- Are they the objective functions the best choices?

Acknowledgements

- Susan Cox (KCL)
- Damian Eads (UCSC, LANL, Cambridge, now wise.io, Inc)
- Tijana Jovanovic-Talisman, Dylan Burnette, Jennifer Lippincott-Schwartz (NIH)
- James Monypenny, Gareth Jones (KCL)
- Finale Doshi (Cambridge, MIT)
- Reid Porter, Andy Fraser (LANL)
- Tom Drummond (Cambridge, now Monash University)
- Rainer Heintzmann (University of Jena, KCL)
- David Helmbold (UCSC)

Correlative

Live cell podosomes

Results: Perspective (box) dataset

<u>─</u>

Results: Geometric dataset

Results: Bas-relief dataset

───────

Results: Scale and rotation (bark) dataset

Results: Blur (bikes) dataset

Results: Scale and rotation (boat) dataset

—▼—

Results: Perspective (graffiti) dataset

Results: Lighting dataset

Results: Blur (trees) dataset

Results: JPEG compression dataset

Results: Perspective (wall) dataset

—▼—