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• Traditional Structure-from-Motion (SfM)
• Using multiple images
• Usually point based
• Delivers accurate results for highly textured objects
many feature points

• Untextured scenes? (wiry objects, …)

Motivation
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• Alternative: Line-based 3D Reconstruction
• Suitable for urban- and indoor scenes

containing texture-less objects
• Procedure similar to point-based methods:

Motivation

Points Line-segments

Feature detection
e.g. SIFT [Lowe, 2004]

e.g. LSD [Gioi et al., 
2010]

Feature description + 
matching

e.g. MSLD [Zhiheng et 
al., 2009]

Pose estimation + 
reconstruction

e.g. [Irschara et al., 
2010]

e.g. [Elqursh and 
Elgammal, 2011] 
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• Usually appearance-based
• Local descriptor based on gradient and color information from 

rectangular patch around the segment
MSLD [Zhiheng et al., 2009], SILT [Khaleghi et al., 2009]

• Color histograms along the line
[Bay et al., 2005]

• Does not work for wiry structures!

Line-segment Matching
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• Usually appearance-based
• Local descriptor based on gradient and color information from 

rectangular patch around the segment
MSLD [Zhiheng et al., 2009], SILT [Khaleghi et al., 2009]

• Color histograms along the line
[Bay et al., 2005]

• Does not work for wiry structures!

Line-segment Matching

≠
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• Jain et al., 2010
• Assumes known cameras
• Line-segments are not directly matched
• Estimation of 3D line position:

• Compute all possible locations in a certain sweeping range

• Evaluate using multi-view backprojection
and gradient scoring

• Obtain final result and remove outliers
by spatial clustering

• Accurate results,
but very
time-consuming!
(several hours for one
image sequence, reported
in the paper)

Appearance-less Approaches
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Appearance-less Approaches
• Hofer et al., 2013

• Lines cannot be located at any 3D position
• Use epipolar guided multi-view matching to compute discrete 

hypotheses set for each segment
• Adapt gradient scoring and

clustering from [Jain et al., 2010]
• Faster, but still slow…
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Appearance-less Approaches

camera rays

• Hofer et al., 2013
• Lines cannot be located at any 3D position
• Use epipolar guided multi-view matching to compute discrete 

hypotheses set for each segment
• Adapt gradient scoring and

clustering from [Jain et al., 2010]
• Faster, but still slow…
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Appearance-less Approaches

camera rays possible 3D
locations

• Hofer et al., 2013
• Lines cannot be located at any 3D position
• Use epipolar guided multi-view matching to compute discrete 

hypotheses set for each segment
• Adapt gradient scoring and

clustering from [Jain et al., 2010]
• Faster, but still slow…
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Appearance-less Approaches

camera rays possible 3D
locations

• Hofer et al., 2013
• Lines cannot be located at any 3D position
• Use epipolar guided multi-view matching to compute discrete 

hypotheses set for each segment
• Adapt gradient scoring and

clustering from [Jain et al., 2010]
• Faster, but still slow…
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Example Result
• Power Pylon (106 images)

• Using [Hofer et al., 2013]
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Example Result
• Power Pylon (106 images)

• Using [Hofer et al., 2013]
•Time: 67min (lines only…)



14

TU Graz I Aerial Vision Group
http://aerial.icg.tugraz.at

Incremental Line-based 3D Reconstruction | BMVC2013 | M.Hofer

Remaining Challenges
• Mentioned algorithms deliver accurate results for the general 

case, but…
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Remaining Challenges
• Mentioned algorithms deliver accurate results for the general 

case, but…

1.Cameras have to be known beforehand
• Not useful for real-time applications (e.g. model-based tracking)
• Is it possible to perform appearance-less 3D reconstruction online?
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Remaining Challenges
• Mentioned algorithms deliver accurate results for the general 

case, but…

1.Cameras have to be known beforehand
• Not useful for real-time applications (e.g. model-based tracking)
• Is it possible to perform appearance-less 3D reconstruction online?

2.Very time-consuming
• Bottlenecks are the gradient scoring and the clustering procedure at the 

end
• Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?
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Remaining Challenges
• Mentioned algorithms deliver accurate results for the general 

case, but…

1.Cameras have to be known beforehand
• Not useful for real-time applications (e.g. model-based tracking)
• Is it possible to perform appearance-less 3D reconstruction online?

2.Very time-consuming
• Bottlenecks are the gradient scoring and the clustering procedure at the 

end
• Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?
3.Reconstruction scale has to be known

• Spatial clustering otherwise not possible
• Is it possible to derive the clustering radius from the image space 

without knowing the exact reconstruction scale?
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• We integrate the line reconstruction process into an online 
SfM system [Hoppe et al., 2012], to obtain live camera poses

• Uses SIFT feature matching [Lowe, 2004]

Incremental 3D Reconstruction
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• We integrate the line reconstruction process into an online 
SfM system [Hoppe et al., 2012], to obtain live camera poses

• Uses SIFT feature matching [Lowe, 2004]

Incremental 3D Reconstruction

Line-based 3D
Reconstruction

image + camera pose
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• We integrate the line reconstruction process into an online 
SfM system [Hoppe et al., 2012], to obtain live camera poses

• Uses SIFT feature matching [Lowe, 2004]

Incremental 3D Reconstruction

Line-based 3D
Reconstruction

image + camera pose

Incremental 
result
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• Line matching procedure similar to [Hofer et al., 2013]
• Epipolar guided matching
• One 2D segment  several possible matches

• Instead of keeping one hypothesis per 2D segment, we keep 
all possible hypotheses until a decision can be made
• Scene coverage may be still too small to decide which hypothesis 

is correct

• We perform on the fly grouping to cluster corresponding 
segments together
• New line segments are added to existing hypotheses rather than 

creating new ones for each segment
 new incremental result after each new image

Incremental 3D Reconstruction
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• Reconstruction procedure:
• Create an initial hypotheses

set H

Incremental 3D Reconstruction
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• Reconstruction procedure:
• Create an initial hypotheses

set H

I1

I2

C1

C2

matching

Incremental 3D Reconstruction



25

TU Graz I Aerial Vision Group
http://aerial.icg.tugraz.at

Incremental Line-based 3D Reconstruction | BMVC2013 | M.Hofer

• Reconstruction procedure:
• Create an initial hypotheses

set H

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

find matching candidates
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h1

• Reconstruction procedure:
• Create an initial hypotheses

set H

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

find matching candidates
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h1

h2
• Reconstruction procedure:

• Create an initial hypotheses
set H

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

find matching candidates
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• Each hypothesis h consists of:
• Triangulated line segment Kh
• Set of corresponding 2D line segments L, and cameras C
• Score s(h) and corresponding camera C*(h) defined as follows:

 score high for hypotheses with a large angle between the 3D 
line segment and one of the referenced cameras

3D Line Segment Hypothesis
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h1

h2
• Reconstruction procedure:

• Integrate new image

I1

I2

C1

C2

matching

Incremental 3D Reconstruction
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h1

h2
• Reconstruction procedure:

• Integrate new image

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

C3

I3

matching
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h1

h2
• Reconstruction procedure:

• Integrate new image

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

C3

I3

matching

check existing hypotheses!

find matching candidates

triangulate
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h1

h2
• Reconstruction procedure:

• Integrate new image

I1

I2

C1

C2

matching

Incremental 3D Reconstruction

C3

I3

matching

check existing hypotheses!

find matching candidates

match!

no match!

triangulate
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• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

Matching Constraints
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• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

Matching Constraints

I1

I2

h

C1

C2
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• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

•Shift by σ in same orthogonal direction
and triangulate as h’

Matching Constraints

σ

σ
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h

C1

C2
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h’

• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

•Shift by σ in same orthogonal direction
and triangulate as h’

Matching Constraints

σ

σ

I1

I2

h

C1

C2
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h’

• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

•Shift by σ in same orthogonal direction
and triangulate as h’
•r is the distance between the
original and
the shifted 3D segment

Matching Constraints

σ

σ

I1

I2

h

C1

C2
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h’

• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

•Shift by σ in same orthogonal direction
and triangulate as h’
•r is the distance between the
original and
the shifted 3D segment

•For robustness, compute characteristic r(C)
for each camera
(median of referenced hypotheses)

•Use r(C*(h)) for further matching procedures involving h

Matching Constraints

σ

σ

I1

I2

h

C1

C2

r
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h’

• When do we add a new line segment to an existing hypothesis?
• If distance in 3D is lower than r and distance in image space is lower than σ (

backprojection)

• How to define these thresholds?
• r requires scale information…

• σ can be chosen more easily (e.g. 1px)

•Deriving r from σ:
•Project hypotheses h ∈ H back into
corresponding images

•Shift by σ in same orthogonal direction
and triangulate as h’
•r is the distance between the
original and
the shifted 3D segment

•For robustness, compute characteristic r(C)
for each camera
(median of referenced hypotheses)

•Use r(C*(h)) for further matching procedures involving h

Matching Constraints

σ

σ

I1

I2

h

C1

C2

r

 No dependence on 
reconstruction scale!
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• Simple greedy algorithm:
• Sort current hypotheses set H by

number of participating line
segments (hypothesis size)

• If equal, sort by reprojection error
• Iterate over sorted set:

• If hypothesis size >= λ and
s(h) > 0.5  inlier
[all other hypotheses
referenced by any segment
in h are considered
to be outliers and skipped
(not erased!)]

• Else  outlier
• Remove unpromising hypotheses

to prevent performance break-down

Incremental Results
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• Simple greedy algorithm:
• Sort current hypotheses set H by

number of participating line
segments (hypothesis size)

• If equal, sort by reprojection error
• Iterate over sorted set:

• If hypothesis size >= λ and
s(h) > 0.5  inlier
[all other hypotheses
referenced by any segment
in h are considered
to be outliers and skipped
(not erased!)]

• Else  outlier
• Remove unpromising hypotheses

to prevent performance break-down

Incremental Results

 Purely geometric hypothesis verification!
No gradient scoring necessary!
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• Pylon Sequence:
• 106 ground-level images

Comparison: Offline vs. Online

Offline Online
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• Pylon Sequence:
• 106 ground-level images

Comparison: Offline vs. Online

Offline
Runtime: 67 minutes (lines only)

Online
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• Pylon Sequence:
• 106 ground-level images

Comparison: Offline vs. Online

Offline
Runtime: 67 minutes (lines only)

Online
Runtime: 9 minutes (incl. SfM)
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• Timber-frame Sequence
• Synthetic sequence (240 images)
• Evaluation in terms of root mean square (RMS)

error compared to ground truth CAD model

Evaluation

Hofer et al., 2013
RMSE: 0.094

Jain et al., 2010
RMSE: 0.291

Hofer et al., 2013a
RMSE: 0.196
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• Timber-frame Sequence
• Synthetic sequence (240 images)
• Evaluation in terms of root mean square (RMS)

error compared to ground truth CAD model

Evaluation

Hofer et al., 2013
RMSE: 0.094

Jain et al., 2010
RMSE: 0.291
Runtime: several hours...

Hofer et al., 2013a
RMSE: 0.196



51

TU Graz I Aerial Vision Group
http://aerial.icg.tugraz.at

Incremental Line-based 3D Reconstruction | BMVC2013 | M.Hofer

• Timber-frame Sequence
• Synthetic sequence (240 images)
• Evaluation in terms of root mean square (RMS)

error compared to ground truth CAD model

Evaluation

Hofer et al., 2013
RMSE: 0.094
Runtime: 45 minutes

Jain et al., 2010
RMSE: 0.291
Runtime: several hours...

Hofer et al., 2013a
RMSE: 0.196
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• Timber-frame Sequence
• Synthetic sequence (240 images)
• Evaluation in terms of root mean square (RMS)

error compared to ground truth CAD model

Evaluation

Hofer et al., 2013
RMSE: 0.094
Runtime: 45 minutes

Jain et al., 2010
RMSE: 0.291
Runtime: several hours...

Hofer et al., 2013a
RMSE: 0.196
Runtime: 12 minutes



53

TU Graz I Aerial Vision Group
http://aerial.icg.tugraz.at

Incremental Line-based 3D Reconstruction | BMVC2013 | M.Hofer

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?
• Yes, it is possible to extend the principles introduced by [Jain et 

al., 2010] and [Hofer et al., 2013] for online processing!

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?
• Yes, it is possible to extend the principles introduced by [Jain et 

al., 2010] and [Hofer et al., 2013] for online processing!
2. Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?
• Yes, it is possible to extend the principles introduced by [Jain et 

al., 2010] and [Hofer et al., 2013] for online processing!
2. Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?
• Yes, we can group corresponding line segments together on-the-

fly and verify them through their cluster size, without the need 
for backprojection and gradient scoring.

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?
• Yes, it is possible to extend the principles introduced by [Jain et 

al., 2010] and [Hofer et al., 2013] for online processing!
2. Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?
• Yes, we can group corresponding line segments together on-the-

fly and verify them through their cluster size, without the need 
for backprojection and gradient scoring.

3. Is it possible to derive the clustering radius from the image space 
without knowing the exact reconstruction scale?

Conclusion
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1. Is it possible to perform appearance-less 3D reconstruction online?
• Yes, it is possible to extend the principles introduced by [Jain et 

al., 2010] and [Hofer et al., 2013] for online processing!
2. Is it possible to avoid the scoring process at all and cluster 

corresponding hypotheses on-the-fly?
• Yes, we can group corresponding line segments together on-the-

fly and verify them through their cluster size, without the need 
for backprojection and gradient scoring.

3. Is it possible to derive the clustering radius from the image space 
without knowing the exact reconstruction scale?
• Yes, it is possible to derive the clustering radius directly from the 

image space using a pre-defined maximum uncertainty σ.

Conclusion
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More information available at
http://aerial.icg.tugraz.at
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