

Real Projective Plane Mapping for Detection of Orthogonal Vanishing Points

Markéta DUBSKÁ
Adam HEROUT

Graph@FIT

Brno University of Technology

Motivation

- Camera orientation/localization
- Video compass
- Navigation

Motivation

- Camera orientation/localization
- Video compass
- Navigation

Motivation

- Camera orientation/localization
- Video compass
- Navigation

Motivation

- Camera orientation/localization
- Video compass
- Navigation

Vanishing Points

- Manhattan worlds
- Parallel lines in 3D can intersect after perspective projection to 2D
- Vanishing points (regular/ideal, gauss sphere,...)

Our Solution

- Hough based method
- Piecewise linear mapping
o Line is mapped to a polyline
- Regular/ideal point is mapped to a regular point

Parallel Coordinates

- Coordinate axes are mutually parallel
- A point is represented by a polyline

Parallel Coordinates

- Coordinate axes are mutually parallel
- A point is represented by a polyline
- Representations of collinear points intersect in a common point

Parallel Coordinates

- Coordinate axes are mutually parallel
- A point is represented by a polyline
- Representations of collinear points intersect in a common point

Dubska et al., PClines - line detection using parallel coordinates, CVPR 2011

Parallel Coordinates

- Cascaded Hough Transform (T. Tuytelaars et al.: The cascaded Hough transform, CIIP 1998)
- Regular point represented by a point
- Ideal point represented by a point

Parallel Coordinates

- Cascaded Hough Transform (т. Tuytelaars et al.: The cascaded Hough transform, CIIP 1998)
- Regular point represented by a point
- Ideal point represented by a point

Diamond space

- Four different transformation (different axes arrangement)
- Four subspaces
- All points representations are regular

Diamond space

- Four different transformation (different axes arrangement)
- Four subspaces
- All points representations are regular

Diamond space

- Four different transformation (different axes arrangement)
- Four subspaces
- All points representations are regular

Algorithm

1. Manhattan image

Algorithm

2. Edge points

Algorithm

3. Edgelets

Algorithm

4. Accumulation

Algorithm

5. Search for maxima

Algorithm

6. Remove lines

Algorithm

6. Remove lines
... repeat

Algorithm

7. Vanishing points with corresponding edgelets

Algorithm

7. Vanishing points with corresponding edgelets

Algorithm

7. Orthogonalization

- camera parameters required!
- max response in accumulator
- orthogonal in 3D world

Results on YUD

$\mathbf{9 8 . 0 4}$ \% success rate at 10° angular error tolerance

with average error $\mathbf{1 . 4 1}^{\circ}$

[YUD] P. Denis: Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery, 2008 [GS] S. T. Barnard: Interpreting perspective images, 1983
[EM] J. Košecká, W. Zhang: Video compass, 2002
[Casc1D] B. Li: Vanishing point detection using cascaded 1D hough transform from single images, 2012

Conclusion

Pros

- ideal/regular points mapped to regular points
- piecewise linear mapping
- simple accumulation and maxima search

Cons

- linear structures required
- dependent on edgelets detection

You can map infinite plane to a finite subspace using piecewise linear mapping
http://medusa.fit.vutbr.cz/pclines/

