Multi-view Body Part Recognition with Random Forests

Vahid Kazemi, Magnus Burenius, Hossein Azizpour, Josephine Sullivan. KTH.

Problem

Multi-view human 3D pose estimation in the wild

The Typical 3D Pose Data Set

HumanEva data set

Our New 3D Pose Data Set

Challenges: moving cameras, dynamic backgrounds, motion blur, occlusion.

2D \& 3D Pose Estimation using Pictorial Structures / Part-based Models

- Appearance model for each part
- Pose model connecting the parts

Pictorial Structures \& Part-based Models

- Position of the parts $X=\left(X_{1}, \ldots, X_{N}\right)$
- Image evidence for the parts $I=\left(I_{1}, \ldots, I_{N}\right)$
- Appearance model for each part $P\left(I_{n} \mid X_{n}\right)$

- Pose model connecting the parts $P(X)$
- Joint distribution

$$
P(X, I)=P(X) \prod_{n=1}^{N} P\left(I_{n} \mid X_{n}\right)
$$

Pictorial Structures \& Part-based Models

$$
\begin{aligned}
& P(X, I)=P(X) \prod_{n=1}^{N} P\left(I_{n} \mid X_{n}\right) \\
& \log P(X, I)=\log P(X)+\sum_{n=1}^{N} \log P\left(I_{n} \mid X_{n}\right)
\end{aligned}
$$

$$
\underset{X}{\operatorname{argmax}} P(X \mid I)=\underset{X}{\operatorname{argmax}} \log P(X, I)
$$

Can use dynamic programming to find global solution:

- For 2D pose estimation see Felzenszwalb et al. CVPR 2000.
- For 3D pose estimation see Burenius et al. CVPR 2013.

Part Appearance Model

1. Single view 2D
2. Multiple view 3D

2D Part Appearance Model

 $P\left(I_{n} \mid X_{n}\right)$

Body Part Classification as 2D Appearance Model

- Inspired by Kinect approach:

Real-Time Human Pose Recognition in Parts from a Single Depth Image. Shotton et al. CVPR 2011.

> HOG image Position

- Input:

$$
x=(h, p)
$$

- Output: $y \in\{0,1, \ldots, N\}$

Joint-based part representation

Decision Tree for Pixel Classification

- Weak classifier: $w=(d, n, t)$

Position Offset HOG-dimension Threshold

- Decision: $\quad \underset{4}{h}(p+\grave{d}, \vec{n})<t$

Random Forest

Depth of trees:

Number of trees:
1

2D Pose Estimation Demo Movie

2D part appearance likelihoods and pose estimation using a pose prior. Estimation is done independently for each frame.

3D Part Appearance Model

Assume calibrated cameras and bounding cube of player

3D Part Appearance Model

Back-project from 2D pixels to a 3D voxel grid (64x64x64) covering the bounding cube:

2D part position
Camera projection

$$
-X_{n}^{c}=\stackrel{\boldsymbol{\nu}}{T^{c}}\left(X_{n}\right)
$$

3D part position

Multi-view appearance model

$$
P\left(I_{n} \mid X_{n}\right)=\prod_{c=1}^{C} P\left(I_{n}^{c} \mid X_{n}^{c}\right)
$$

The Problem of Symmetric Body Parts

Left and right parts look similar.

The Problem of Symmetric Body Parts

Approach 1:
Classify left/right parts of the person.

Disadvantage:

- Too Difficult

The Problem of Symmetric Body Parts

Approach 2:
Ignore the left/right label of parts.

Disadvantages:

- Double counting
- Correspondences across views

Aggregating Scores Across Views

$$
P\left(I_{n} \mid X_{n}\right)
$$

Approach1:
Assuming we know the left/right label, relative the person, for each view.

Approach 2:
Ignoring left/right label of parts.

Naive Multi-view Pose Estimation

Ground truth
Estimation

The Problem of Symmetric Body Parts

Approach 3:
Classify the left/right parts of the image.

Disadvantage:

- Correspondences across views

Handle Left-Right Correspondences with a Latent Variable

- Match left and right leg of the image with left and right leg of the person.
- For each view we have 2 choices for the legs and 2 for the arms.
- For C views we have $4^{\wedge} \mathrm{C}$ choices.
- Let the latent random variable S describe this unknown mapping.

Multi-view Inference

$$
P(X, I, S)=P(X) P(S) \prod_{n=1}^{N} P\left(I_{n} \mid X_{n}, S\right)
$$

$\max P(X, S \mid I)=$ max $\max \log P(X, I, S)$

3D Part Appearance Model

$P\left(I_{n} \mid X_{n}, \tilde{S}\right) \&$ ground truth pose

Multi-view Pose Estimation

Ground truth Estimation

- Just using 3D part appearance model.
- No 3D pose model. No motion model.
- Latent variable handles mirror symmetry.

Conclusions

- New data set available at our web-page.

Conclusions

- Random forest classification works well for body part recognition in ordinary images.

Conclusions

- Problem of symmetric body parts, for multi-view part-based models.
- Latent variable solution.

Thank you!

