Deep Learning for Vision BMVC 2013

Adam Coates Stanford University (Visiting Scholar: Indiana University, Bloomington)

What do we want ML to do?

• Given image, predict complex high-level patterns:

"Cat"

Object recognition

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition

Detection

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition

Detection

Segmentation [Martin et al., 2001]

How is ML done?

- Machine learning often uses common pipeline with hand-designed feature extraction.
 - Final ML algorithm learns to make decisions starting from the higher-level representation.
 - Sometimes layers of increasingly high-level abstractions.
 - Constructed using prior knowledge about problem domain.

"Deep Learning"

- Deep Learning
 - Train *multiple layers* of features/abstractions from data.
 - Try to discover *representation* that makes decisions easy.

"Deep Learning"

- Why do we want "deep learning"?
 - Some decisions require many stages of processing.
 - Easy to invent cases where a "deep" model is compact but a shallow model is very large / inefficient.
 - We already, intuitively, hand-engineer "layers" of representation.
 - Let's replace this with something automated!
 - Algorithms scale well with data and computing power.
 - In practice, one of the most consistently successful ways to get good results in ML.
 - Can try to take advantage of *unlabeled* data to learn representations before the task.

Have we been here before?

≻ Yes.

- Basic ideas common to past ML and neural networks research.
 - Supervised learning is straight-forward.
 - Standard ML development strategies still relevant.
 - Some knowledge carried over from problem domains.

≻ No.

- Faster computers; more data.
- Better optimizers; better initialization schemes.
 - "Unsupervised pre-training" trick [Hinton et al. 2006; Bengio et al. 2006]
- Lots of empirical evidence about what works.
 - Made useful by ability to "mix and match" components. [See, e.g., Jarrett et al., ICCV 2009]

Real impact

• DL systems are high performers in many tasks over *many domains*.

Outline

- ML refresher / crash course
 - Logistic regression
 - Optimization
 - Features
- Supervised deep learning
 - Neural network models
 - Back-propagation
 - Training procedures
- Supervised DL for images
 - Neural network architectures for images.
 - Application to Image-Net
- Debugging
- Unsupervised DL
- References / Resources

Outline

- ML refresher / crash course
- Supervised deep learning
- Supervised DL for images
- Debugging
- Unsupervised DL
 - Representation learning, unsupervised feature learning.
 - Greedy layer-wise training.
 - Example: sparse auto-encoders.
 - Other unsupervised learning algorithms.
- References / Resources

MACHINE LEARNING REFRESHER

Crash Course

Supervised Learning

• Given *labeled* training examples:

$$\mathcal{X} = \{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$$

• For instance: $x^{(i)}$ = vector of pixel intensities. $y^{(i)}$ = object class ID.

- Goal: find f(x) to predict y from x on training data.
 - Hopefully: learned predictor works on "test" data.

Logistic Regression

- Simple binary classification algorithm
 - Start with a function of the form:

$$f(x;\theta) \equiv \sigma(\theta^{\top}x) = \frac{1}{1 + \exp(-\theta^{\top}x)}$$

- Interpretation: f(x) is probability that y = 1.
 - Sigmoid "nonlinearity" squashes linear function to [0,1].

– Find choice of θ that minimizes objective:

$$\mathcal{L}(\theta) = -\sum_{i}^{m} \mathbb{1}\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta)) + \mathbb{P}(y^{(i)} = 0 | x^{(i)} + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta))$$

(i)

Optimization

- How do we tune θ to minimize $\mathcal{L}(\theta)$?
- One algorithm: gradient descent
 - Compute gradient:

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{i}^{m} x^{(i)} \cdot (y^{(i)} - f(x^{(i)}; \theta))$$

– Follow gradient "downhill":

$$\theta := \theta - \eta \nabla_{\theta} \mathcal{L}(\theta)$$

 Stochastic Gradient Descent (SGD): take step using gradient from only small batch of examples.
– Scales to larger datasets. [Bottou & LeCun, 2005]

Is this enough?

- Loss is convex \rightarrow we always find minimum.
- Works for simple problems:
 - Classify digits as 0 or 1 using pixel intensity.
 - Certain pixels are highly informative --- e.g., center pixel.

• Fails for even slightly harder problems.

– Is this a coffee mug?

"Coffee Mug"

Pixel Intensity

177	153	118	91	85	100	124	145
151	124	93	77	86	115	148	168
115	93	78	83	108	145	177	191
88	79	84	104	136	168	190	197
82	85	103	127	152	170	180	182
91	101	120	138	150	157	159	159
103	114	127	136	140	140	140	141
111	119	126	130	130	129	128	130

Pixel intensity is a very poor representation.

- + Coffee Mug
- Not Coffee Mug

- + Coffee Mug
- Not Coffee Mug

- + Coffee Mug
- Not Coffee Mug

handle? cylinder?

cylinder?

- + Coffee Mug
- Not Coffee Mug

handle?

Features

dle?

- + Coffee Mug
- Not Coffee Mug

- Features are usually hard-wired transformations built into the system.
 - Formally, a function that maps raw input to a "higher level" representation.

$$\Phi(x): \Re^n \to \Re^K$$

– Completely static --- so just substitute $\phi(x)$ for x and do logistic regression like before.

- Features are usually hard-wired transformations built into the system.
 - Formally, a function that maps raw input to a "higher level" representation.

$$\Phi(x): \Re^n \to \Re^K$$

– Completely static --- so just substitute $\phi(x)$ for x and do logistic regression like before.

Where do we get good features?

- Huge investment devoted to building applicationspecific feature representations.
 - Find higher-level patterns so that final decision is easy to learn with ML algorithm.

Object Bank [Li et al., 2010]

SIFT [Lowe, 1999]

Super-pixels [Gould et al., 2008; Ren & Malik, 2003]

Spin Images [Johnson & Hebert, 1999]

SUPERVISED DEEP LEARNING

Extension to neural networks

 We saw how to do supervised learning when the "features" φ(x) are fixed.

- We saw how to do supervised learning when the "features" φ(x) are fixed.
 - Let's extend to case where features are given by tunable functions with their own parameters.

$$\mathbb{P}(y=1|x) = f(x;\theta,W) = \sigma(\theta^{\top}\sigma(Wx))$$

- We saw how to do supervised learning when the "features" φ(x) are fixed.
 - Let's extend to case where features are given by tunable functions with their own parameters.

$$\mathbb{P}(y=1|x) = f(x;\theta,W) = \sigma(\theta^{\top} \underline{\sigma(Wx)})$$

Outer part of function is same as logistic regression.

Inputs are "features"---one feature for each row of W:

 $\begin{bmatrix} \sigma(w_1 x) \\ \sigma(w_2 x) \\ \cdots \\ \sigma(w_K x) \end{bmatrix}$

• To do supervised learning for two-class classification, minimize:

$$\mathcal{L}(\theta, W) = -\sum_{i}^{m} \mathbb{1}\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))$$

 Same as logistic regression, but now f(x) has multiple stages ("layers", "modules"):

 $f(x;\theta,W) = \sigma(\theta^{\top}\sigma(Wx))$

• To do supervised learning for two-class classification, minimize:

$$\mathcal{L}(\theta, W) = -\sum_{i}^{m} \mathbb{1}\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))$$

 Same as logistic regression, but now f(x) has multiple stages ("layers", "modules"):

$$f(x;\theta,W) = \sigma(\theta^{\top}\sigma(Wx))$$

$$x \longrightarrow \sigma(Wx) \longrightarrow h \longrightarrow \sigma(\theta^{\top}h) \longrightarrow f$$

Prediction for $\mathbb{P}(y=1|x)$

Intermediate representation ("features")

• This model is a sigmoid "neural network":

• Can stack up several layers:

 W_2 h_K h_1 h_2 W_1 x_n x_1 x_2

Must learn multiple stages of internal "representation".

• Can stack up several layers:

Must learn multiple stages of internal "representation".

 $f(x;\theta, W_1, W_2) = \sigma(\theta^\top \sigma(W_2 \sigma(W_1 x)))$

• Can stack up several layers:

Must learn multiple stages of internal "representation".

$$x \longrightarrow \sigma(W_1 x) \longrightarrow h \twoheadrightarrow \sigma(W_2 h) \longrightarrow h' \twoheadrightarrow \sigma(\theta^\top h') \longrightarrow f$$

Back-propagation

• Minimize:

$$\mathcal{L}(\theta, W) = -\sum_{i}^{m} \mathbb{1}\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))$$

• To minimize $\mathcal{L}(\theta, W)$ we need gradients:

 $\nabla_{\theta} \mathcal{L}(\theta, W)$ and $\nabla_{W} \mathcal{L}(\theta, W)$

- Then use gradient descent algorithm as before.

Formula for \(\nabla_\theta\) L(\(\theta\), W)\) can be found by hand (same as before); but what about W?

• Suppose we have a module that looks like:

$$\begin{bmatrix} z & & \\ W & & \\ W & & \\ \end{bmatrix}_{j} = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_{j}} \qquad \frac{\partial h_{j}}{\partial z_{k}}$$

• Suppose we have a module that looks like:

$$\begin{array}{c}z \longrightarrow \\ W \longrightarrow \\ h(z;W) \end{array} \xrightarrow{} h$$

• And we know $[\nabla_h \mathcal{L}]_j = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j}$ and $\frac{\partial h_j}{\partial z_k}$, chain rule gives: $\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \Rightarrow \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})$

• Suppose we have a module that looks like:

$$\begin{array}{c}z \longrightarrow \\ W \longrightarrow \\ h(z;W) \end{array} \longrightarrow h$$

• And we know
$$[\nabla_h \mathcal{L}]_j = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j}$$
 and $\frac{\partial h_j}{\partial z_k}$, chain rule gives:
 $\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \Rightarrow \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})$

Similarly for W:

$$\frac{\partial \mathcal{L}(\theta, W)}{\partial W_{kl}} = \sum_{j} \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial W_{kl}} \Rightarrow \nabla_W \mathcal{L} = J_{h,W}(\nabla_h \mathcal{L})$$

• Suppose we have a module that looks like:

$$\begin{array}{c}z \longrightarrow \\ W \longrightarrow \\ h(z;W) \end{array} \longrightarrow h$$

• And we know $[\nabla_h \mathcal{L}]_j = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j}$ and $\frac{\partial h_j}{\partial z_k}$, chain rule gives: $\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \Rightarrow \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})$

Similarly for W:

$$\frac{\partial \mathcal{L}(\theta, W)}{\partial W_{kl}} = \sum_{j} \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial W_{kl}} \Rightarrow \nabla_W \mathcal{L} = J_{h,W}(\nabla_h \mathcal{L})$$

Given gradient with respect to output, we can build a new "module" that finds gradient with respect to inputs.

• Easy to build toolkit of known rules to compute gradients given $\delta \equiv \nabla_h \mathcal{L}$

Function $h(z)$	Gradient w.r.t. input $ abla_z \mathcal{L}$	Gradient w.r.t. parameters $ abla _W \mathcal{L}$
h = Wz	$W^{ op}\delta$	δz^{\top}
$h = \sigma(z)$	$\delta \odot \sigma(z) \odot (1 - \sigma(z))$	
$h = \sqrt{Wz^2}$	$(W^{ op} rac{\delta}{h}) \odot z$	$rac{\delta}{2h}(z^2)^ op$
$h = \max_{j} \{z_j\}$	$1\{z_j = h\}\delta$	

- Easy to build toolkit of known rules to compute gradients given $\delta \equiv \nabla_h \mathcal{L}$
 - Automated differentiation! E.g., Theano [Bergstra et al., 2010]

Back-propagation

• Can re-apply chain rule to get gradients for all intermediate values and parameters.

'Backward" modules for each forward stage.

Example

• Given $\nabla_f \mathcal{L}$, compute $\nabla_W \mathcal{L}$:

$$x \longrightarrow \sigma(Wx) \longrightarrow h \longrightarrow \sigma(\theta^{\top}h) \longrightarrow f$$

$$\downarrow J_{h,W} \longrightarrow \nabla_h \mathcal{L} \longleftarrow J_{f,h} \longrightarrow \nabla_f \mathcal{L}$$

$$\nabla_W \mathcal{L} \longleftarrow J_{h,W} \longrightarrow \nabla_h \mathcal{L} \longleftarrow \nabla_f \mathcal{L}$$

Using several items from our table:

$$\nabla_h \mathcal{L} = \theta[f(1-f)(\nabla_f \mathcal{L})]$$
$$\nabla_W \mathcal{L} = [h \odot (1-h) \odot (\nabla_h \mathcal{L})]x^\top$$

Training Procedure

Collect labeled training data

 For SGD: Randomly shuffle after each epoch!

$$\mathcal{X} = \{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$$

- For a batch of examples:
 - Compute gradient w.r.t. all parameters in network. $\Delta_{\theta} := \nabla_{\theta} \mathcal{L}(\theta, W)$

$$\Delta_W := \nabla_W \mathcal{L}(\theta, W)$$

- Make a small update to parameters.

$$\theta := \theta - \eta_{\theta} \Delta_{\theta}$$
$$W := W - \eta_{W} \Delta_{W}$$

Repeat until convergence.

Training Procedure

- Historically, this has not worked so easily.
 - Non-convex: Local minima; convergence criteria.
 - Optimization becomes difficult with many stages.
 - "Vanishing gradient problem"
 - Hard to diagnose and debug malfunctions.

Training Procedure

- Historically, this has not worked so easily.
 - Non-convex: Local minima; convergence criteria.
 - Optimization becomes difficult with many stages.
 - "Vanishing gradient problem"
 - Hard to diagnose and debug malfunctions.
- Many things turn out to matter:
 - Choice of nonlinearities.
 - Initialization of parameters.
 - Optimizer parameters: step size, schedule.

Nonlinearities

- Choice of functions inside network matters.
 - Sigmoid function turns out to be difficult.
 - Some other choices often used:

Initialization

- Usually small random values.
 - Try to choose so that typical input to a neuron avoids saturating / non-differentiable areas.

Occasionally inspect units for saturation / blowup.

- Larger values may give faster convergence, but worse models!
- Initialization schemes for particular units:

- tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

$$r = \sqrt{6/(\text{fan-in} + \text{fan-out})}$$

See [Glorot et al., AISTATS 2010]

• Later in this tutorial: unsupervised pre-training.

Optimization: Step sizes

- Choose SGD step size carefully.
 - Up to factor ~2 can make a difference.
- Strategies:
 - Brute-force: try many; pick one with best result.
 - Choose so that typical "update" to a weight is roughly 1/1000 times weight magnitude. [Look at histograms.]
 - Smaller if fan-in to neurons is large.
 - Racing: pick size with best error on validation data after T steps.
 - Not always accurate if T is too small.
- Step size schedule:
 - Simple 1/t schedule:

 Or: fixed step size. But if little progress is made on objective after T steps, cut step size in half.

Bengio, 2012: "Practical Recommendations for Gradient-Based Training of Deep Architectures" Hinton, 2010: "A Practical Guide to Training Restricted Boltzmann Machines"

Optimization: Momentum

"Smooth" estimate of gradient from several steps of SGD:

 $v := \mu v + \epsilon_t \nabla_{\theta} \mathcal{L}(\theta)$ $\theta := \theta + v$

Bengio, 2012: "Practical Recommendations for Gradient-Based Training of Deep Architectures" Hinton, 2010: "A Practical Guide to Training Restricted Boltzmann Machines"

Optimization: Momentum

"Smooth" estimate of gradient from several steps of SGD:

 $v := \mu v + \epsilon_t \nabla_\theta \mathcal{L}(\theta)$ $\theta := \theta + v$

- A little bit like second-order information.
 - High-curvature directions cancel out.
 - Low-curvature directions "add up" and accelerate.

Bengio, 2012: "Practical Recommendations for Gradient-Based Training of Deep Architectures" Hinton, 2010: "A Practical Guide to Training Restricted Boltzmann Machines"

Optimization: Momentum

• "Smooth" estimate of gradient from several steps of SGD:

 $v := \mu v + \epsilon_t \nabla_{\theta} \mathcal{L}(\theta)$ $\theta := \theta + v$

- Start out with μ = 0.5; gradually increase to 0.9, or 0.99 after learning is proceeding smoothly.
- Large momentum appears to help with hard training tasks.
- "Nesterov accelerated gradient" is similar; yields some improvement. [Sutskever et al., ICML 2013]

Other factors

- "Weight decay" penalty can help.
 - Add small penalty for squared weight magnitude.

- For modest datasets, LBFGS or second-order methods are easier than SGD.
 - See, e.g.: Martens & Sutskever, ICML 2011.
 - Can crudely extend to mini-batch case if batches are large. [Le et al., ICML 2011]

SUPERVISED DL FOR VISION

Application

Working with images

- Major factors:
 - Choose functional form of network to roughly match the computations we need to represent.
 - E.g., "selective" features and "invariant" features.
 - Try to exploit knowledge of images to accelerate training or improve performance.
- Generally try to avoid wiring detailed visual knowledge into system --- prefer to learn.

• Neural network view of single neuron:

- Reduce parameters with local connections.
 - Weight vector is a spatially localized "filter".

- Sometimes think of neurons as viewing small adjacent windows.
 - Specify connectivity by the size ("receptive field" size) and spacing ("step" or "stride") of windows.
 - Typical RF size = 5 to 20
 - Typical step size = 1 pixel up to RF size.

Rows of W are sparse. Only weights connecting to inputs in the window are non-zero.

- Spatial organization of filters means output features can also be organized like an image.
 - X,Y dimensions correspond to X,Y position of neuron window.
 - "Channels" are different features extracted from same spatial location. (Also called "feature maps", or "maps".)

1-dimensional example:

"Channel" or "map" index

We can treat output of a layer like an image and re-use the same tricks.

1-dimensional example:

"Channel" or "map" index

Weight-Tying

- Even with local connections, may still have too many weights.
 - Trick: constrain some weights to be equal if we know that some parts of input should learn same kinds of features.
 - Images tend to be "stationary": different patches tend to have similar low-level structure.
 - ➤Constrain weights used at different spatial positions to be the equal.

Weight-Tying

Before, could have neurons with different weights at different locations. But can reduce parameters by making them equal.

1-dimensional example:

"Channel" or "map" index

Sometimes called a "convolutional" network. Each unique filter is spatially convolved with the input to produce responses for each map.
 [LeCun et al., 1989; LeCun et al., 2004]

Weight-Tying

Before, could have neurons with different weights at different locations. But can reduce parameters by making them equal.

1-dimensional example:

"Channel" or "map" index

 Sometimes called a "convolutional" network. Each unique filter is spatially convolved with the input to produce responses for each map.
 [LeCun et al., 1989; LeCun et al., 2004]

Pooling

- Functional layers designed to represent invariant features.
- Usually locally connected with specific nonlinearities.
 - Combined with convolution, corresponds to hard-wired translation invariance.
- Usually fix weights to local box or gaussian filter.
 - Easy to represent max-, average-, or 2-norm pooling.

Contrast Normalization

- Empirically useful to soft-normalize magnitude of groups of neurons.
 - Sometimes we subtract out the local mean first.

Application: Image-Net

- System from Krizhevsky et al., NIPS 2012:
 - Convolutional neural network.
 - Max-pooling.
 - Rectified linear units (ReLu).
 - Contrast normalization.
 - Local connectivity.

Application: Image-Net

• Top result in LSVRC 2012: ~85%, Top-5 accuracy.

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Application: Image-Net

• Top result in LSVRC 2012: ~85%, Top-5 accuracy.

More applications

• Segmentation: predict classes of pixels / super-pixels.

Farabet et al., ICML 2012 \rightarrow

← Ciresan et al., NIPS 2012

- Detection: combine classifiers with sliding-window architecture.
 - Economical when used with convolutional nets.

Pierre Sermanet (2010) \rightarrow

• Robotic grasping. [Lenz et al., RSS 2013]

http://www.youtube.com/watch?v=f9CuzqI1SkE

DEBUGGING TIPS

YMMV

Getting the code right

- Numerical gradient check.
- Verify that objective function decreases on a small training set.
 - Sometimes reasonable to expect 100% classifier accuracy on small datasets with big model. If you can't reach this, why not?
- Use off-the-shelf optimizer (e.g., LBFGS) with small model and small dataset to verify that your own optimizer reaches good solutions.

Bias vs. Variance

- After training, performance on test data is poor.
 What is wrong?
 - Training accuracy is an upper bound on expected test accuracy.
 - If gap is small, try to improve training accuracy:
 - A bigger model. (More features!)
 - Run optimizer longer or reduce step size to try to lower objective.
 - If gap is large, try to improve generalization:
 - More data.
 - Regularization.
 - Smaller model.

UNSUPERVISED DL

Representation Learning

 In supervised learning, train "features" to accomplish top-level objective.

Representation Learning

Can we train the "representation" without using top-down supervision?

Representation Learning

- What makes a good representation?
 - Distributed: roughly, K features represents more than K types of patterns.
 - E.g., K binary features that can vary independently to represent 2^κ patterns.
 - Invariant: robust to local changes of input; more abstract.
 - E.g., pooled edge features: detect edge at several locations.
 - Disentangling factors: put separate concepts (e.g., color, edge orientation) in separate features.

Unsupervised Feature Learning

- Train representations with unlabeled data.
 - Minimize an *unsupervised* training loss.
 - Often based on generic priors about characteristics of good features (e.g., sparsity).
 - Usually train 1 layer of features at a time.
 - Then, e.g., train supervised classifier on top.
 AKA "Self-taught learning" [Raina et al., ICML 2007]

Greedy layer-wise training

- Train representations with unlabeled data.
 - Start by training bottom layer alone.

Greedy layer-wise training

- Train representations with unlabeled data.
 - When complete, train a new layer on top using inputs from below as a new training set.

UFL Example

- Simple priors for good features:
 - Reconstruction: recreate input from features.

$$\mathcal{L}_{\text{recons}}(W_2, W_1) = \sum_i ||W_2 h(W_1 x^{(i)}) - x^{(i)}||_2^2$$

Sparsity: explain the input with as few features as possible.

$$\mathcal{L}_{\text{sparse}}(W_1) = \sum_i ||h(W_1 x^{(i)})||_1$$

Sparse auto-encoder

• Train two-layer neural network by minimizing:

 $\underset{W_1, W_2}{\text{minimize}} \sum_{i} ||W_2 h(W_1 x^{(i)}) - x^{(i)}||_2^2 + \lambda ||h(W_1 x^{(i)})||_1$ h(z) = ReLu(z)

• Remove "decoder" and use learned features (h).

Sparse auto-encoder

• Train two-layer neural network by minimizing:

 $\underset{W_1, W_2}{\text{minimize}} \sum_{i} ||W_2 h(W_1 x^{(i)}) - x^{(i)}||_2^2 + \lambda ||h(W_1 x^{(i)})||_1$ h(z) = ReLu(z)

• Remove "decoder" and use learned features (h).

What features are learned?

• Applied to image patches, well-known result:

Sparse auto-encoder [Ranzato et al., 2007]

Sparse auto-encoder

[Olshausen & Field, 1996]

K-means

Sparse RBM [Lee et al., 2007]

Sparse RBM

Pre-processing

- Unsupervised algorithms more sensitive to preprocessing.
 - Whiten your data. E.g., ZCA whitening:

$$\begin{split} [V,D] &:= \operatorname{eig}(\operatorname{cov}(X)) \\ \hat{x}^{(i)} &:= V(D+I\epsilon)^{-1/2} V^{\top}(x^{(i)}-\operatorname{mean}(X)) \end{split}$$

- Contrast normalization often useful.

$$\hat{x} = \frac{x}{\sqrt{Wx^2 + \epsilon}}$$

- Do these before unsupervised learning at each layer.

[See, e.g., Coates et al., AISTATS 2011; Code at www.stanford.edu/~acoates/]

Group-sparsity

• Simple priors for good features:

- Group-sparsity:

$$\mathcal{L}_{\text{group-sparse}}(W_1) = \sum_i \sqrt{V[h(W_1 x^{(i)})^2]}$$

V chosen to have a "neighborhood" structure.
 Typically in 2D grid.

$$V_{ij} = \begin{cases} 1 & \text{if neuron } i \text{ adjacent to } j. \\ 0 & \text{otherwise} \end{cases}$$

Hyvärinen et al., Neural Comp. 2001 Ranzato et al., NIPS 2006 Kavukcuoglu et al., CVPR 2009 Garrigues & Olshausen, NIPS 2010

What features are learned?

- Applied to image patches:
 - Pool over adjacent neurons to create invariant features.
 - These are *learned* invariances without video.

Predictive Sparse Decomposition [Kavukcuoglu et al., CVPR 2009]

Works with auto-encoders too. [See, e.g., Le et al. NIPS 2011]

High-level features?

- Quite difficult to learn 2 or 3 levels of features that perform better than 1 level on supervised tasks.
 - Increasingly abstract features, but unclear how much abstraction to allow or what information to leave out.

Unsupervised Pre-training

- Use as initialization for supervised learning!
 - Features may not be perfect for task, but probably a good starting point.
 - AKA "supervised fine-tuning".
- Procedure:
 - Train each layer of features greedily unsupervised.
 - Add supervised classifier on top.
 - Optimize entire network with back-propagation.
- Major impetus for renewed interest in deep learning.
 [Hinton et al., Neural Comp. 2006]
 [Bengio et al., NIPS 2006]

Unsupervised Pre-training

• Pre-training not always useful --- but sometimes gives better results than random initialization.

Results from [Le et al., ICML 2011]:

Image-Net Version	9M images, 10K classes	14M images, 22K classes
Without pre-training	16.1%	13.6%
With pre-training	19.2 %	15.8%

Notes: exact classification (not top-5). Random guessing = 0.01%.

See also [Erhan et al., JMLR 2010]

High-level features

- Recent work [Le et al., 2012; Coates et al., 2012] suggests high-level features can learn non-trivial concepts.
 - E.g., able to find single features that respond strongly to cats, faces:

[Le et al., ICML 2012]

[Coates, Karpathy & Ng, NIPS 2012]

Other Unsupervised Criteria

- Neural networks with other unsupervised training criteria.
 - Denoising, in-painting. [Vincent et al., 2008]
 - "Contraction" [Rifai et al., ICML 2011].
 - Temporal coherence [Zou et al., NIPS 2012]
 [Mobahi et al., ICML 2009]

RBMs

- Restricted Boltzmann Machine
 - Similar to auto-encoder, but probabilistic.
 - Bipartite, binary MRF.
 - Pretraining of RBMs used to initialize "deep belief network" [Hinton et al., 2006] and "deep boltzmann machine" [Salakhutdinov & Hinton, AISTATS 2009].
 - Intractable
 - Gibbs sampling.
 - Train with contrastive divergence [Hinton, Neural Comp. 2002]

Sparse Coding

- Another class of models frequently used in UFL
 - Neuron responses are free variables.

$$\underset{W,h}{\text{minimize}} \sum_{i} ||Wh^{(i)} - x^{(i)}||^2 + \lambda ||h^{(i)}||_1$$

[Olshausen & Field, 1996]

- Solve by alternating optimization over W and responses h.
- Like sparse auto-encoder, but "encoder" to compute h is now a convex optimization algorithm.
 - Can replace encoder with a deep neural network. [Gregor & LeCun, ICML 2010]
 - Highly optimized implementations [Mairal, JMLR 2010]

Summary

- Supervised deep-learning
 - Practical and highly successful in practice. A generalpurpose extension to existing ML.
 - Optimization, initialization, architecture matter!
- Unsupervised deep-learning
 - Pre-training often useful in practice.
 - Difficult to train many layers of features without labels.
 - Some evidence that useful high-level patterns are captured by top-level features.

Resources

Tutorials

Stanford Deep Learning tutorial: http://ufldl.stanford.edu/wiki

Deep Learning tutorials list: http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:

http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial

http://www.iro.umontreal.ca/~bengioy/talks/deep-learningtutorial-2012.html

References

http://www.stanford.edu/~acoates/bmvc2013refs.pdf Overviews:

Yoshua Bengio,

"Practical Recommendations for Gradient-Based Training of Deep Architectures"

Yoshua Bengio & Yann LeCun, "Scaling Learning Algorithms towards AI"

Yoshua Bengio, Aaron Courville & Pascal Vincent, "Representation Learning: A Review and New Perspectives"

Software:

Theano GPU library: <u>http://deeplearning.net/software/theano</u> SPAMS toolkit: http://spams-devel.gforge.inria.fr/