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What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition

“Cat”
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What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

“Cat”

[Martin et al., 2001]
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How is ML done?

• Machine learning often uses common pipeline with 
hand-designed feature extraction.
• Final ML algorithm learns to make decisions starting from 

the higher-level representation.
• Sometimes layers of increasingly high-level abstractions.

– Constructed using prior knowledge about problem domain.

Feature Extraction Machine Learning
Algorithm “Cat”?

Prior Knowledge,
Experience
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“Deep Learning”

• Deep Learning
• Train multiple layers of features/abstractions from data.
• Try to discover representation that makes decisions easy.

Low-level
Features

Mid-level
Features

High-level
Features Classifier “Cat”?

Deep Learning:  train layers of features so that classifier works well.

More abstract representation
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“Deep Learning”

• Why do we want “deep learning”?
– Some decisions require many stages of processing.

• Easy to invent cases where a “deep” model is compact but a 
shallow model is very large / inefficient.

– We already, intuitively, hand-engineer “layers” of 
representation.

• Let’s replace this with something automated!

– Algorithms scale well with data and computing power.
• In practice, one of the most consistently successful ways to 

get good results in ML.
• Can try to take advantage of unlabeled data to learn 

representations before the task.
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Have we been here before?
 Yes.

– Basic ideas common to past ML and neural networks 
research.

• Supervised learning is straight-forward.
• Standard ML development strategies still relevant.
• Some knowledge carried over from problem domains.

 No.
– Faster computers;  more data.
– Better optimizers;  better initialization schemes.

• “Unsupervised pre-training” trick 
[Hinton et al. 2006; Bengio et al. 2006]

– Lots of empirical evidence about what works.
• Made useful by ability to “mix and match” components.

[See, e.g., Jarrett et al., ICCV 2009]
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Real impact

• DL systems are high performers in many tasks 
over many domains.

Image recognition
[E.g., Krizhevsky et al., 2012]

Speech recognition
[E.g., Heigold et al., 2013]

NLP
[E.g., Socher et al., ICML 2011;

Collobert & Weston, ICML 2008]

[Honglak Lee]



10

Outline
• ML refresher / crash course

– Logistic regression
– Optimization
– Features

• Supervised deep learning
– Neural network models
– Back-propagation
– Training procedures

• Supervised DL for images
– Neural network architectures for images.
– Application to Image-Net

• Debugging
• Unsupervised DL
• References / Resources
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Outline
• ML refresher / crash course
• Supervised deep learning
• Supervised DL for images
• Debugging

• Unsupervised DL
– Representation learning, unsupervised feature learning.
– Greedy layer-wise training.
– Example:  sparse auto-encoders.
– Other unsupervised learning algorithms.

• References / Resources



MACHINE LEARNING 
REFRESHER

Crash Course
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Supervised Learning

• Given labeled training examples:

• For instance:  x(i) = vector of pixel intensities.
y(i) = object class ID.

• Goal:  find f(x) to predict y from x on training data.
– Hopefully:  learned predictor works on “test” data.

255
98
93
87
…

f(x) y = 1   (“Cat”)
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Logistic Regression
• Simple binary classification algorithm

– Start with a function of the form:

– Interpretation:  f(x) is probability that y = 1.
• Sigmoid “nonlinearity” squashes linear function to [0,1].

– Find choice of     that minimizes objective:

1
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Optimization

• How do we tune     to minimize        ?
• One algorithm:  gradient descent

– Compute gradient:

– Follow gradient “downhill”:

• Stochastic Gradient Descent (SGD):  take step 
using gradient from only small batch of examples.
– Scales to larger datasets.  [Bottou & LeCun, 2005]
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Is this enough?

• Loss is convex  we always find minimum.
• Works for simple problems:

– Classify digits as 0 or 1 using pixel intensity.
– Certain pixels are highly informative --- e.g., center pixel.

• Fails for even slightly harder problems.
– Is this a coffee mug?
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Why is vision so hard?

“Coffee Mug”

Pixel Intensity

Pixel intensity is a very poor representation.
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pixel 1

pixel 2

+ Coffee Mug

Not Coffee Mug-

Why is vision so hard?

+
-
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pixel 2

+

Pixel Intensity[72  160]
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Why is vision so hard?

+

pixel 1

pixel 2

-
+

+

-
-

+ -
+

+ Coffee Mug

Not Coffee Mug-



20

Why is vision so hard?
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Is this a Coffee Mug?

Learning Algorithm
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Features
cylinder?handle?
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Features
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Features
• Features are usually hard-wired 

transformations built into the system.
– Formally, a function that maps raw input to a 

“higher level” representation.

– Completely static --- so just substitute φ(x) for x and 
do logistic regression like before.
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Features
• Features are usually hard-wired 

transformations built into the system.
– Formally, a function that maps raw input to a 

“higher level” representation.

– Completely static --- so just substitute φ(x) for x and 
do logistic regression like before.

Where do we get good features?
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Features

• Huge investment devoted to building application-
specific feature representations.
– Find higher-level patterns so that final decision is easy 

to learn with ML algorithm.

Object Bank [Li et al., 2010] Super-pixels
[Gould et al., 2008;  Ren & Malik, 2003]

SIFT [Lowe, 1999] Spin Images [Johnson & Hebert, 1999]



SUPERVISED
DEEP LEARNING

Extension to neural networks
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Basic idea

• We saw how to do supervised learning when 
the “features” φ(x) are fixed.
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Basic idea

• We saw how to do supervised learning when 
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by 

tunable functions with their own parameters.



30

Basic idea

• We saw how to do supervised learning when 
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by 

tunable functions with their own parameters.

Inputs are “features”---one 
feature for each row of W:Outer part of function is same 

as logistic regression.
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Basic idea

• To do supervised learning for two-class 
classification, minimize:

• Same as logistic regression, but now f(x) has 
multiple stages (“layers”, “modules”):
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Basic idea

• To do supervised learning for two-class 
classification, minimize:

• Same as logistic regression, but now f(x) has 
multiple stages (“layers”, “modules”):

Intermediate representation (“features”) Prediction for
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Neural network

• This model is a sigmoid “neural network”:
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Neural network

• This model is a sigmoid “neural network”:

“Neuron”
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Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”
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Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”
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Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”
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Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.
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Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.
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Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.
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Back-propagation

• Minimize:

• To minimize              we need gradients:

– Then use gradient descent algorithm as before.

• Formula for                 can be found by hand 
(same as before);  but what about W?
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The Chain Rule
• Suppose we have a module that looks like:


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The Chain Rule
• Suppose we have a module that looks like:

• And we know                                and        , chain rule gives:



Jacobian matrix.
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The Chain Rule
• Suppose we have a module that looks like:

• And we know                                and        , chain rule gives:

Similarly for W:



Jacobian matrix.
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The Chain Rule
• Suppose we have a module that looks like:

• And we know                                and        , chain rule gives:

Similarly for W:

 Given gradient with respect to output, we can build a new 
“module” that finds gradient with respect to inputs.  

Jacobian matrix.
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The Chain Rule
• Easy to build toolkit of known rules to compute 

gradients given

Function Gradient w.r.t. input Gradient w.r.t. parameters
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The Chain Rule
• Easy to build toolkit of known rules to compute 

gradients given
– Automated differentiation!  E.g., Theano [Bergstra et al., 2010]

Function Gradient w.r.t. input Gradient w.r.t. parameters
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Back-propagation
• Can re-apply chain rule to get gradients for all 

intermediate values and parameters.

“Backward” modules for each forward stage.
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Example

• Given        , compute          :

Using several items from our table:
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Training Procedure
• Collect labeled training data

– For SGD:  Randomly shuffle after each epoch!

• For a batch of examples:
– Compute gradient w.r.t. all parameters in network.

– Make a small update to parameters.

– Repeat until convergence.
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Training Procedure

• Historically, this has not worked so easily.
– Non-convex:  Local minima;  convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.



52

Training Procedure

• Historically, this has not worked so easily.
– Non-convex:  Local minima;  convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.

• Many things turn out to matter:
– Choice of nonlinearities.
– Initialization of parameters.
– Optimizer parameters:  step size, schedule.
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Nonlinearities

• Choice of functions inside network matters.
– Sigmoid function turns out to be difficult.
– Some other choices often used:

1

-1

1

tanh(z) ReLu(z) = max{0, z}

“Rectified Linear Unit”
 Increasingly popular.

1

abs(z)

[Nair & Hinton, 2010]
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Initialization

• Usually small random values.
– Try to choose so that typical input to a neuron avoids saturating 

/ non-differentiable areas.

– Occasionally inspect units for saturation / blowup.
– Larger values may give faster convergence, but worse models!

• Initialization schemes for particular units:
– tanh units:  Unif[-r, r];  sigmoid:  Unif[-4r, 4r].

See [Glorot et al., AISTATS 2010]

• Later in this tutorial:  unsupervised pre-training.

1
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Optimization:  Step sizes
• Choose SGD step size carefully.

– Up to factor ~2 can make a difference.
• Strategies:

– Brute-force:  try many;  pick one with best result.
– Choose so that typical “update” to a weight is roughly 1/1000 times 

weight magnitude.  [Look at histograms.]
• Smaller if fan-in to neurons is large.

– Racing:  pick size with best error on validation data after T steps.
• Not always accurate if T is too small.

• Step size schedule:
– Simple 1/t schedule:

– Or:  fixed step size.  But if little progress is made on objective after T 
steps, cut step size in half.

Bengio, 2012:  “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010:  “A Practical Guide to Training Restricted Boltzmann Machines”
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Optimization:  Momentum
• “Smooth” estimate of gradient from several 

steps of SGD:

Bengio, 2012:  “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010:  “A Practical Guide to Training Restricted Boltzmann Machines”
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Optimization:  Momentum
• “Smooth” estimate of gradient from several 

steps of SGD:

• A little bit like second-order information.
– High-curvature directions cancel out.
– Low-curvature directions “add up” and accelerate.

Bengio, 2012:  “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010:  “A Practical Guide to Training Restricted Boltzmann Machines”
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Optimization:  Momentum
• “Smooth” estimate of gradient from several 

steps of SGD:

– Start out with μ = 0.5;  gradually increase to 0.9, 
or 0.99 after learning is proceeding smoothly.

– Large momentum appears to help with hard 
training tasks.

– “Nesterov accelerated gradient” is similar; yields 
some improvement.
[Sutskever et al., ICML 2013]
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Other factors

• “Weight decay” penalty can help.
– Add small penalty for squared weight magnitude.

• For modest datasets, LBFGS or second-order 
methods are easier than SGD.
– See, e.g.:  Martens & Sutskever, ICML 2011.
– Can crudely extend to mini-batch case if batches 

are large.  [Le et al., ICML 2011]



SUPERVISED DL FOR 
VISION

Application
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Working with images

• Major factors:
– Choose functional form of network to roughly match 

the computations we need to represent.
• E.g., “selective” features and “invariant” features.

– Try to exploit knowledge of images to accelerate 
training or improve performance.

• Generally try to avoid wiring detailed visual 
knowledge into system --- prefer to learn.
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Local connectivity

• Neural network view of single neuron:
Extremely large number of connections.
More parameters to learn from.
Higher computational expense.
Turn out not to be helpful in practice.
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Local connectivity
• Reduce parameters with local connections.

– Weight vector is a spatially localized “filter”.
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Local connectivity

• Sometimes think of neurons as viewing small 
adjacent windows.
– Specify connectivity by the size (“receptive field” size) 

and spacing (“step” or “stride”) of windows.
• Typical RF size = 5 to 20
• Typical step size = 1 pixel up to RF size.

Rows of W are sparse.
Only weights connecting to inputs 
in the window are non-zero.
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Local connectivity

• Spatial organization of filters means output features 
can also be organized like an image.
– X,Y dimensions correspond to X,Y position of neuron 

window.
– “Channels” are different features extracted from same 

spatial location.  (Also called “feature maps”, or “maps”.)

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index
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Local connectivity
 We can treat output of a layer like an image and re-use the 

same tricks.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index
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Weight-Tying

• Even with local connections, may still have too 
many weights.
– Trick:  constrain some weights to be equal if we 

know that some parts of input should learn same 
kinds of features.

– Images tend to be “stationary”:  different patches 
tend to have similar low-level structure.
Constrain weights used at different spatial positions to 

be the equal.
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Weight-Tying
 Before, could have neurons with different weights at different 

locations.  But can reduce parameters by making them equal.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

• Sometimes called a “convolutional” network.  Each unique 
filter is spatially convolved with the input to produce 
responses for each map. 
[LeCun et al., 1989;  LeCun et al., 2004]
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Weight-Tying
 Before, could have neurons with different weights at different 

locations.  But can reduce parameters by making them equal.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

• Sometimes called a “convolutional” network.  Each unique 
filter is spatially convolved with the input to produce 
responses for each map. 
[LeCun et al., 1989;  LeCun et al., 2004]
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Pooling
• Functional layers designed to represent invariant features.
• Usually locally connected with specific nonlinearities.

– Combined with convolution, corresponds to hard-wired 
translation invariance.

• Usually fix weights to local box or gaussian filter.
– Easy to represent max-, average-, or 2-norm pooling.

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]
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Contrast Normalization

• Empirically useful to soft-normalize magnitude of 
groups of neurons.
– Sometimes we subtract out the local mean first.

[Jarrett et al., ICCV 2009]



72

Application: Image-Net
• System from Krizhevsky et al., NIPS 2012:

– Convolutional neural network.
– Max-pooling.
– Rectified linear units (ReLu).
– Contrast normalization.
– Local connectivity.
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Application: Image-Net

• Top result in LSVRC 2012:  ~85%, Top-5 accuracy.
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Application: Image-Net

• Top result in LSVRC 2012:  ~85%, Top-5 accuracy.

What’s an Agaric!?
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More applications
• Segmentation:  predict classes of pixels / super-pixels.

• Detection:  combine classifiers with sliding-window architecture.
– Economical when used with convolutional nets.

• Robotic grasping.   [Lenz et al., RSS 2013]

 Ciresan et al., NIPS 2012

Farabet et al., ICML 2012

Pierre Sermanet (2010) 

http://www.youtube.com/watch?v=f9CuzqI1SkE

http://www.youtube.com/watch?v=f9CuzqI1SkE


DEBUGGING TIPS
YMMV
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Getting the code right

• Numerical gradient check.

• Verify that objective function decreases on a 
small training set.
– Sometimes reasonable to expect 100% classifier 

accuracy on small datasets with big model.  If you 
can’t reach this, why not?

• Use off-the-shelf optimizer (e.g., LBFGS) with 
small model and small dataset to verify that your 
own optimizer reaches good solutions.
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Bias vs. Variance

• After training, performance on test data is poor.  
What is wrong?
– Training accuracy is an upper bound on expected test 

accuracy.
• If gap is small, try to improve training accuracy:

– A bigger model.  (More features!)
– Run optimizer longer or reduce step size to try to lower objective.

• If gap is large, try to improve generalization:
– More data.
– Regularization.
– Smaller model.



UNSUPERVISED DL
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Representation Learning
• In supervised learning, train “features” to 

accomplish top-level objective.

But what if we have too 
few labels to train all 
these parameters?
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Representation Learning
• Can we train the “representation” without using 

top-down supervision?

Learn a “good” 
representation directly?
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Representation Learning

• What makes a good representation?
– Distributed:  roughly, K features represents more than 

K types of patterns. 
• E.g., K binary features that can vary independently to 

represent 2K patterns.

– Invariant:  robust to local changes of input;  more 
abstract.

• E.g., pooled edge features:  detect edge at several locations.

– Disentangling factors:  put separate concepts (e.g., 
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)
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Unsupervised Feature Learning
• Train representations with unlabeled data.

– Minimize an unsupervised training loss.
• Often based on generic priors about characteristics of good 

features (e.g., sparsity).
• Usually train 1 layer of features at a time.

– Then, e.g., train supervised classifier on top.
AKA “Self-taught learning” [Raina et al., ICML 2007]

W
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Greedy layer-wise training
• Train representations with unlabeled data.

– Start by training bottom layer alone.

W
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Greedy layer-wise training
• Train representations with unlabeled data.

– When complete, train a new layer on top using 
inputs from below as a new training set.

W

Forward pass only. 
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UFL Example

• Simple priors for good features:
– Reconstruction:  recreate input from features.

– Sparsity:  explain the input with as few features as 
possible.
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Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1

W2

[Ranzato et al., NIPS 2006]
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Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1 [Ranzato et al., NIPS 2006]
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What features are learned?

• Applied to image patches, well-known result:

K-meansSparse auto-encoder Sparse RBM

Sparse auto-encoder
[Ranzato et al., 2007]

Sparse RBM
[Lee et al., 2007]

Sparse coding
[Olshausen & Field, 1996]
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Pre-processing

• Unsupervised algorithms more sensitive to pre-
processing.
– Whiten your data.  E.g., ZCA whitening:

– Contrast normalization often useful.

– Do these before unsupervised learning at each layer.
[See, e.g., Coates et al., AISTATS 2011;
Code at www.stanford.edu/~acoates/]
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Group-sparsity

• Simple priors for good features:
– Group-sparsity:

– V chosen to have a “neighborhood” structure.  
Typically in 2D grid.

Hyvärinen et al., Neural Comp. 2001
Ranzato et al., NIPS 2006 
Kavukcuoglu et al., CVPR 2009
Garrigues & Olshausen, NIPS 2010
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What features are learned?

• Applied to image patches:
– Pool over adjacent neurons to create invariant features.
– These are learned invariances without video.

Predictive Sparse Decomposition
[Kavukcuoglu et al., CVPR 2009]

Works with auto-encoders too.
[See, e.g., Le et al. NIPS 2011]
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High-level features?

• Quite difficult to learn 2 or 3 levels of features 
that perform better than 1 level on supervised 
tasks.
– Increasingly abstract features, but unclear how 

much abstraction to allow or what information to 
leave out.
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Unsupervised Pre-training
• Use as initialization for supervised learning!

– Features may not be perfect for task, but probably a good 
starting point.

– AKA “supervised fine-tuning”.

• Procedure:
– Train each layer of features greedily unsupervised.
– Add supervised classifier on top.
– Optimize entire network with back-propagation.

 Major impetus for renewed interest in deep learning.
[Hinton et al., Neural Comp. 2006]
[Bengio et al., NIPS 2006]
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Unsupervised Pre-training
• Pre-training not always useful --- but sometimes gives 

better results than random initialization.

Results from [Le et al., ICML 2011]:

Image-Net Version 9M images, 10K classes 14M images, 22K classes

Without pre-training 16.1% 13.6%

With pre-training 19.2% 15.8%

Notes:  exact classification (not top-5).  Random guessing = 0.01%.

See also [Erhan et al., JMLR 2010]
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High-level features

• Recent work [Le et al., 2012;  Coates et al., 2012]
suggests high-level features can learn non-trivial 
concepts.
– E.g., able to find single features that respond strongly 

to cats, faces:

[Le et al., ICML 2012]

[Coates, Karpathy & Ng, NIPS 2012]
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Other Unsupervised Criteria

• Neural networks with other unsupervised 
training criteria.
– Denoising, in-painting.  [Vincent et al., 2008]
– “Contraction” [Rifai et al., ICML 2011].
– Temporal coherence [Zou et al., NIPS 2012] 

[Mobahi et al., ICML 2009]
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RBMs

• Restricted Boltzmann Machine
– Similar to auto-encoder, but probabilistic.
– Bipartite, binary MRF.
– Pretraining of RBMs used to initialize “deep belief 

network” [Hinton et al., 2006] and “deep boltzmann
machine” [Salakhutdinov & Hinton, AISTATS 2009].

– Intractable
• Gibbs sampling.
• Train with contrastive divergence 

[Hinton, Neural Comp. 2002]
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Sparse Coding

• Another class of models frequently used in UFL
– Neuron responses are free variables.

[Olshausen & Field, 1996]

– Solve by alternating optimization over W and 
responses h.

– Like sparse auto-encoder, but “encoder” to compute h
is now a convex optimization algorithm. 

• Can replace encoder with a deep neural network.  
[Gregor & LeCun, ICML 2010]

• Highly optimized implementations [Mairal, JMLR 2010]



100

Summary

• Supervised deep-learning
– Practical and highly successful in practice.  A general-

purpose extension to existing ML.
– Optimization, initialization, architecture matter!

• Unsupervised deep-learning
– Pre-training often useful in practice.
– Difficult to train many layers of features without 

labels.
– Some evidence that useful high-level patterns are 

captured by top-level features.
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Resources

Tutorials
Stanford Deep Learning tutorial:

http://ufldl.stanford.edu/wiki

DeepLearning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html
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References
http://www.stanford.edu/~acoates/bmvc2013refs.pdf
Overviews:
Yoshua Bengio, 

“Practical Recommendations for Gradient-Based Training of Deep Architectures”

Yoshua Bengio & Yann LeCun, 
“Scaling Learning Algorithms towards AI”

Yoshua Bengio, Aaron Courville & Pascal Vincent, 
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library:  http://deeplearning.net/software/theano
SPAMS toolkit:  http://spams-devel.gforge.inria.fr/

http://deeplearning.net/software/theano
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