
Deep Learning for Vision
BMVC 2013

Adam Coates
Stanford University

(Visiting Scholar: Indiana University, Bloomington)

2

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition

“Cat”

3

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition Detection

“Cat”

4

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

“Cat”

[Martin et al., 2001]

5

How is ML done?

• Machine learning often uses common pipeline with
hand-designed feature extraction.
• Final ML algorithm learns to make decisions starting from

the higher-level representation.
• Sometimes layers of increasingly high-level abstractions.

– Constructed using prior knowledge about problem domain.

Feature Extraction Machine Learning
Algorithm “Cat”?

Prior Knowledge,
Experience

6

“Deep Learning”

• Deep Learning
• Train multiple layers of features/abstractions from data.
• Try to discover representation that makes decisions easy.

Low-level
Features

Mid-level
Features

High-level
Features Classifier “Cat”?

Deep Learning: train layers of features so that classifier works well.

More abstract representation

7

“Deep Learning”

• Why do we want “deep learning”?
– Some decisions require many stages of processing.

• Easy to invent cases where a “deep” model is compact but a
shallow model is very large / inefficient.

– We already, intuitively, hand-engineer “layers” of
representation.

• Let’s replace this with something automated!

– Algorithms scale well with data and computing power.
• In practice, one of the most consistently successful ways to

get good results in ML.
• Can try to take advantage of unlabeled data to learn

representations before the task.

8

Have we been here before?
 Yes.

– Basic ideas common to past ML and neural networks
research.

• Supervised learning is straight-forward.
• Standard ML development strategies still relevant.
• Some knowledge carried over from problem domains.

 No.
– Faster computers; more data.
– Better optimizers; better initialization schemes.

• “Unsupervised pre-training” trick
[Hinton et al. 2006; Bengio et al. 2006]

– Lots of empirical evidence about what works.
• Made useful by ability to “mix and match” components.

[See, e.g., Jarrett et al., ICCV 2009]

9

Real impact

• DL systems are high performers in many tasks
over many domains.

Image recognition
[E.g., Krizhevsky et al., 2012]

Speech recognition
[E.g., Heigold et al., 2013]

NLP
[E.g., Socher et al., ICML 2011;

Collobert & Weston, ICML 2008]

[Honglak Lee]

10

Outline
• ML refresher / crash course

– Logistic regression
– Optimization
– Features

• Supervised deep learning
– Neural network models
– Back-propagation
– Training procedures

• Supervised DL for images
– Neural network architectures for images.
– Application to Image-Net

• Debugging
• Unsupervised DL
• References / Resources

11

Outline
• ML refresher / crash course
• Supervised deep learning
• Supervised DL for images
• Debugging

• Unsupervised DL
– Representation learning, unsupervised feature learning.
– Greedy layer-wise training.
– Example: sparse auto-encoders.
– Other unsupervised learning algorithms.

• References / Resources

MACHINE LEARNING
REFRESHER

Crash Course

13

Supervised Learning

• Given labeled training examples:

• For instance: x(i) = vector of pixel intensities.
y(i) = object class ID.

• Goal: find f(x) to predict y from x on training data.
– Hopefully: learned predictor works on “test” data.

255
98
93
87
…

f(x) y = 1 (“Cat”)

14

Logistic Regression
• Simple binary classification algorithm

– Start with a function of the form:

– Interpretation: f(x) is probability that y = 1.
• Sigmoid “nonlinearity” squashes linear function to [0,1].

– Find choice of that minimizes objective:

1

15

Optimization

• How do we tune to minimize ?
• One algorithm: gradient descent

– Compute gradient:

– Follow gradient “downhill”:

• Stochastic Gradient Descent (SGD): take step
using gradient from only small batch of examples.
– Scales to larger datasets. [Bottou & LeCun, 2005]

16

Is this enough?

• Loss is convex  we always find minimum.
• Works for simple problems:

– Classify digits as 0 or 1 using pixel intensity.
– Certain pixels are highly informative --- e.g., center pixel.

• Fails for even slightly harder problems.
– Is this a coffee mug?

17

Why is vision so hard?

“Coffee Mug”

Pixel Intensity

Pixel intensity is a very poor representation.

18

pixel 1

pixel 2

+ Coffee Mug

Not Coffee Mug-

Why is vision so hard?

+
-

-

pixel 1

pixel 2

+

Pixel Intensity[72 160]

19

Why is vision so hard?

+

pixel 1

pixel 2

-
+

+

-
-

+ -
+

+ Coffee Mug

Not Coffee Mug-

20

Why is vision so hard?

+

pixel 1

pixel 2

-
+

+

-
-

+ -
+

+ Coffee Mug

Not Coffee Mug-

+

pixel 1

pixel 2

-
+

+

-
-

+ -
+

Is this a Coffee Mug?

Learning Algorithm

21

Features
cylinder?handle?

22

Features

+
handle?

cylinder?

-
+
+-
-

+

- +

+ Coffee Mug

Not Coffee Mug-

cylinder?handle?

23

Features

+
handle?

cylinder?

-
+
+-
-

+

- +

+ Coffee Mug

Not Coffee Mug-

cylinder?handle?

Is this a Coffee Mug?

Learning Algorithm +
handle?

cylinder?

-
+
+-
-

+

- +

24

Features
• Features are usually hard-wired

transformations built into the system.
– Formally, a function that maps raw input to a

“higher level” representation.

– Completely static --- so just substitute φ(x) for x and
do logistic regression like before.

25

Features
• Features are usually hard-wired

transformations built into the system.
– Formally, a function that maps raw input to a

“higher level” representation.

– Completely static --- so just substitute φ(x) for x and
do logistic regression like before.

Where do we get good features?

26

Features

• Huge investment devoted to building application-
specific feature representations.
– Find higher-level patterns so that final decision is easy

to learn with ML algorithm.

Object Bank [Li et al., 2010] Super-pixels
[Gould et al., 2008; Ren & Malik, 2003]

SIFT [Lowe, 1999] Spin Images [Johnson & Hebert, 1999]

SUPERVISED
DEEP LEARNING

Extension to neural networks

28

Basic idea

• We saw how to do supervised learning when
the “features” φ(x) are fixed.

29

Basic idea

• We saw how to do supervised learning when
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by

tunable functions with their own parameters.

30

Basic idea

• We saw how to do supervised learning when
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by

tunable functions with their own parameters.

Inputs are “features”---one
feature for each row of W:Outer part of function is same

as logistic regression.

31

Basic idea

• To do supervised learning for two-class
classification, minimize:

• Same as logistic regression, but now f(x) has
multiple stages (“layers”, “modules”):

32

Basic idea

• To do supervised learning for two-class
classification, minimize:

• Same as logistic regression, but now f(x) has
multiple stages (“layers”, “modules”):

Intermediate representation (“features”) Prediction for

33

Neural network

• This model is a sigmoid “neural network”:

34

Neural network

• This model is a sigmoid “neural network”:

“Neuron”

35

Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”

36

Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”

37

Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”

38

Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.

39

Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.

40

Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.

41

Back-propagation

• Minimize:

• To minimize we need gradients:

– Then use gradient descent algorithm as before.

• Formula for can be found by hand
(same as before); but what about W?

42

The Chain Rule
• Suppose we have a module that looks like:



43

The Chain Rule
• Suppose we have a module that looks like:

• And we know and , chain rule gives:



Jacobian matrix.

44

The Chain Rule
• Suppose we have a module that looks like:

• And we know and , chain rule gives:

Similarly for W:



Jacobian matrix.

45

The Chain Rule
• Suppose we have a module that looks like:

• And we know and , chain rule gives:

Similarly for W:

 Given gradient with respect to output, we can build a new
“module” that finds gradient with respect to inputs.

Jacobian matrix.

46

The Chain Rule
• Easy to build toolkit of known rules to compute

gradients given

Function Gradient w.r.t. input Gradient w.r.t. parameters

47

The Chain Rule
• Easy to build toolkit of known rules to compute

gradients given
– Automated differentiation! E.g., Theano [Bergstra et al., 2010]

Function Gradient w.r.t. input Gradient w.r.t. parameters

48

Back-propagation
• Can re-apply chain rule to get gradients for all

intermediate values and parameters.

“Backward” modules for each forward stage.

49

Example

• Given , compute :

Using several items from our table:

50

Training Procedure
• Collect labeled training data

– For SGD: Randomly shuffle after each epoch!

• For a batch of examples:
– Compute gradient w.r.t. all parameters in network.

– Make a small update to parameters.

– Repeat until convergence.

51

Training Procedure

• Historically, this has not worked so easily.
– Non-convex: Local minima; convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.

52

Training Procedure

• Historically, this has not worked so easily.
– Non-convex: Local minima; convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.

• Many things turn out to matter:
– Choice of nonlinearities.
– Initialization of parameters.
– Optimizer parameters: step size, schedule.

53

Nonlinearities

• Choice of functions inside network matters.
– Sigmoid function turns out to be difficult.
– Some other choices often used:

1

-1

1

tanh(z) ReLu(z) = max{0, z}

“Rectified Linear Unit”
 Increasingly popular.

1

abs(z)

[Nair & Hinton, 2010]

54

Initialization

• Usually small random values.
– Try to choose so that typical input to a neuron avoids saturating

/ non-differentiable areas.

– Occasionally inspect units for saturation / blowup.
– Larger values may give faster convergence, but worse models!

• Initialization schemes for particular units:
– tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

See [Glorot et al., AISTATS 2010]

• Later in this tutorial: unsupervised pre-training.

1

55

Optimization: Step sizes
• Choose SGD step size carefully.

– Up to factor ~2 can make a difference.
• Strategies:

– Brute-force: try many; pick one with best result.
– Choose so that typical “update” to a weight is roughly 1/1000 times

weight magnitude. [Look at histograms.]
• Smaller if fan-in to neurons is large.

– Racing: pick size with best error on validation data after T steps.
• Not always accurate if T is too small.

• Step size schedule:
– Simple 1/t schedule:

– Or: fixed step size. But if little progress is made on objective after T
steps, cut step size in half.

Bengio, 2012: “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010: “A Practical Guide to Training Restricted Boltzmann Machines”

56

Optimization: Momentum
• “Smooth” estimate of gradient from several

steps of SGD:

Bengio, 2012: “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010: “A Practical Guide to Training Restricted Boltzmann Machines”

57

Optimization: Momentum
• “Smooth” estimate of gradient from several

steps of SGD:

• A little bit like second-order information.
– High-curvature directions cancel out.
– Low-curvature directions “add up” and accelerate.

Bengio, 2012: “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010: “A Practical Guide to Training Restricted Boltzmann Machines”

58

Optimization: Momentum
• “Smooth” estimate of gradient from several

steps of SGD:

– Start out with μ = 0.5; gradually increase to 0.9,
or 0.99 after learning is proceeding smoothly.

– Large momentum appears to help with hard
training tasks.

– “Nesterov accelerated gradient” is similar; yields
some improvement.
[Sutskever et al., ICML 2013]

59

Other factors

• “Weight decay” penalty can help.
– Add small penalty for squared weight magnitude.

• For modest datasets, LBFGS or second-order
methods are easier than SGD.
– See, e.g.: Martens & Sutskever, ICML 2011.
– Can crudely extend to mini-batch case if batches

are large. [Le et al., ICML 2011]

SUPERVISED DL FOR
VISION

Application

61

Working with images

• Major factors:
– Choose functional form of network to roughly match

the computations we need to represent.
• E.g., “selective” features and “invariant” features.

– Try to exploit knowledge of images to accelerate
training or improve performance.

• Generally try to avoid wiring detailed visual
knowledge into system --- prefer to learn.

62

Local connectivity

• Neural network view of single neuron:
Extremely large number of connections.
More parameters to learn from.
Higher computational expense.
Turn out not to be helpful in practice.

63

Local connectivity
• Reduce parameters with local connections.

– Weight vector is a spatially localized “filter”.

64

Local connectivity

• Sometimes think of neurons as viewing small
adjacent windows.
– Specify connectivity by the size (“receptive field” size)

and spacing (“step” or “stride”) of windows.
• Typical RF size = 5 to 20
• Typical step size = 1 pixel up to RF size.

Rows of W are sparse.
Only weights connecting to inputs
in the window are non-zero.

65

Local connectivity

• Spatial organization of filters means output features
can also be organized like an image.
– X,Y dimensions correspond to X,Y position of neuron

window.
– “Channels” are different features extracted from same

spatial location. (Also called “feature maps”, or “maps”.)

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

66

Local connectivity
 We can treat output of a layer like an image and re-use the

same tricks.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

67

Weight-Tying

• Even with local connections, may still have too
many weights.
– Trick: constrain some weights to be equal if we

know that some parts of input should learn same
kinds of features.

– Images tend to be “stationary”: different patches
tend to have similar low-level structure.
Constrain weights used at different spatial positions to

be the equal.

68

Weight-Tying
 Before, could have neurons with different weights at different

locations. But can reduce parameters by making them equal.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

• Sometimes called a “convolutional” network. Each unique
filter is spatially convolved with the input to produce
responses for each map.
[LeCun et al., 1989; LeCun et al., 2004]

69

Weight-Tying
 Before, could have neurons with different weights at different

locations. But can reduce parameters by making them equal.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

• Sometimes called a “convolutional” network. Each unique
filter is spatially convolved with the input to produce
responses for each map.
[LeCun et al., 1989; LeCun et al., 2004]

70

Pooling
• Functional layers designed to represent invariant features.
• Usually locally connected with specific nonlinearities.

– Combined with convolution, corresponds to hard-wired
translation invariance.

• Usually fix weights to local box or gaussian filter.
– Easy to represent max-, average-, or 2-norm pooling.

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]

71

Contrast Normalization

• Empirically useful to soft-normalize magnitude of
groups of neurons.
– Sometimes we subtract out the local mean first.

[Jarrett et al., ICCV 2009]

72

Application: Image-Net
• System from Krizhevsky et al., NIPS 2012:

– Convolutional neural network.
– Max-pooling.
– Rectified linear units (ReLu).
– Contrast normalization.
– Local connectivity.

73

Application: Image-Net

• Top result in LSVRC 2012: ~85%, Top-5 accuracy.

74

Application: Image-Net

• Top result in LSVRC 2012: ~85%, Top-5 accuracy.

What’s an Agaric!?

75

More applications
• Segmentation: predict classes of pixels / super-pixels.

• Detection: combine classifiers with sliding-window architecture.
– Economical when used with convolutional nets.

• Robotic grasping. [Lenz et al., RSS 2013]

 Ciresan et al., NIPS 2012

Farabet et al., ICML 2012

Pierre Sermanet (2010) 

http://www.youtube.com/watch?v=f9CuzqI1SkE

http://www.youtube.com/watch?v=f9CuzqI1SkE

DEBUGGING TIPS
YMMV

77

Getting the code right

• Numerical gradient check.

• Verify that objective function decreases on a
small training set.
– Sometimes reasonable to expect 100% classifier

accuracy on small datasets with big model. If you
can’t reach this, why not?

• Use off-the-shelf optimizer (e.g., LBFGS) with
small model and small dataset to verify that your
own optimizer reaches good solutions.

78

Bias vs. Variance

• After training, performance on test data is poor.
What is wrong?
– Training accuracy is an upper bound on expected test

accuracy.
• If gap is small, try to improve training accuracy:

– A bigger model. (More features!)
– Run optimizer longer or reduce step size to try to lower objective.

• If gap is large, try to improve generalization:
– More data.
– Regularization.
– Smaller model.

UNSUPERVISED DL

80

Representation Learning
• In supervised learning, train “features” to

accomplish top-level objective.

But what if we have too
few labels to train all
these parameters?

81

Representation Learning
• Can we train the “representation” without using

top-down supervision?

Learn a “good”
representation directly?

82

Representation Learning

• What makes a good representation?
– Distributed: roughly, K features represents more than

K types of patterns.
• E.g., K binary features that can vary independently to

represent 2K patterns.

– Invariant: robust to local changes of input; more
abstract.

• E.g., pooled edge features: detect edge at several locations.

– Disentangling factors: put separate concepts (e.g.,
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)

83

Unsupervised Feature Learning
• Train representations with unlabeled data.

– Minimize an unsupervised training loss.
• Often based on generic priors about characteristics of good

features (e.g., sparsity).
• Usually train 1 layer of features at a time.

– Then, e.g., train supervised classifier on top.
AKA “Self-taught learning” [Raina et al., ICML 2007]

W

84

Greedy layer-wise training
• Train representations with unlabeled data.

– Start by training bottom layer alone.

W

85

Greedy layer-wise training
• Train representations with unlabeled data.

– When complete, train a new layer on top using
inputs from below as a new training set.

W

Forward pass only.

86

UFL Example

• Simple priors for good features:
– Reconstruction: recreate input from features.

– Sparsity: explain the input with as few features as
possible.

87

Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1

W2

[Ranzato et al., NIPS 2006]

88

Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1 [Ranzato et al., NIPS 2006]

89

What features are learned?

• Applied to image patches, well-known result:

K-meansSparse auto-encoder Sparse RBM

Sparse auto-encoder
[Ranzato et al., 2007]

Sparse RBM
[Lee et al., 2007]

Sparse coding
[Olshausen & Field, 1996]

90

Pre-processing

• Unsupervised algorithms more sensitive to pre-
processing.
– Whiten your data. E.g., ZCA whitening:

– Contrast normalization often useful.

– Do these before unsupervised learning at each layer.
[See, e.g., Coates et al., AISTATS 2011;
Code at www.stanford.edu/~acoates/]

91

Group-sparsity

• Simple priors for good features:
– Group-sparsity:

– V chosen to have a “neighborhood” structure.
Typically in 2D grid.

Hyvärinen et al., Neural Comp. 2001
Ranzato et al., NIPS 2006
Kavukcuoglu et al., CVPR 2009
Garrigues & Olshausen, NIPS 2010

92

What features are learned?

• Applied to image patches:
– Pool over adjacent neurons to create invariant features.
– These are learned invariances without video.

Predictive Sparse Decomposition
[Kavukcuoglu et al., CVPR 2009]

Works with auto-encoders too.
[See, e.g., Le et al. NIPS 2011]

93

High-level features?

• Quite difficult to learn 2 or 3 levels of features
that perform better than 1 level on supervised
tasks.
– Increasingly abstract features, but unclear how

much abstraction to allow or what information to
leave out.

94

Unsupervised Pre-training
• Use as initialization for supervised learning!

– Features may not be perfect for task, but probably a good
starting point.

– AKA “supervised fine-tuning”.

• Procedure:
– Train each layer of features greedily unsupervised.
– Add supervised classifier on top.
– Optimize entire network with back-propagation.

 Major impetus for renewed interest in deep learning.
[Hinton et al., Neural Comp. 2006]
[Bengio et al., NIPS 2006]

95

Unsupervised Pre-training
• Pre-training not always useful --- but sometimes gives

better results than random initialization.

Results from [Le et al., ICML 2011]:

Image-Net Version 9M images, 10K classes 14M images, 22K classes

Without pre-training 16.1% 13.6%

With pre-training 19.2% 15.8%

Notes: exact classification (not top-5). Random guessing = 0.01%.

See also [Erhan et al., JMLR 2010]

96

High-level features

• Recent work [Le et al., 2012; Coates et al., 2012]
suggests high-level features can learn non-trivial
concepts.
– E.g., able to find single features that respond strongly

to cats, faces:

[Le et al., ICML 2012]

[Coates, Karpathy & Ng, NIPS 2012]

97

Other Unsupervised Criteria

• Neural networks with other unsupervised
training criteria.
– Denoising, in-painting. [Vincent et al., 2008]
– “Contraction” [Rifai et al., ICML 2011].
– Temporal coherence [Zou et al., NIPS 2012]

[Mobahi et al., ICML 2009]

98

RBMs

• Restricted Boltzmann Machine
– Similar to auto-encoder, but probabilistic.
– Bipartite, binary MRF.
– Pretraining of RBMs used to initialize “deep belief

network” [Hinton et al., 2006] and “deep boltzmann
machine” [Salakhutdinov & Hinton, AISTATS 2009].

– Intractable
• Gibbs sampling.
• Train with contrastive divergence

[Hinton, Neural Comp. 2002]

99

Sparse Coding

• Another class of models frequently used in UFL
– Neuron responses are free variables.

[Olshausen & Field, 1996]

– Solve by alternating optimization over W and
responses h.

– Like sparse auto-encoder, but “encoder” to compute h
is now a convex optimization algorithm.

• Can replace encoder with a deep neural network.
[Gregor & LeCun, ICML 2010]

• Highly optimized implementations [Mairal, JMLR 2010]

100

Summary

• Supervised deep-learning
– Practical and highly successful in practice. A general-

purpose extension to existing ML.
– Optimization, initialization, architecture matter!

• Unsupervised deep-learning
– Pre-training often useful in practice.
– Difficult to train many layers of features without

labels.
– Some evidence that useful high-level patterns are

captured by top-level features.

101

Resources

Tutorials
Stanford Deep Learning tutorial:

http://ufldl.stanford.edu/wiki

DeepLearning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html

102

References
http://www.stanford.edu/~acoates/bmvc2013refs.pdf
Overviews:
Yoshua Bengio,

“Practical Recommendations for Gradient-Based Training of Deep Architectures”

Yoshua Bengio & Yann LeCun,
“Scaling Learning Algorithms towards AI”

Yoshua Bengio, Aaron Courville & Pascal Vincent,
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library: http://deeplearning.net/software/theano
SPAMS toolkit: http://spams-devel.gforge.inria.fr/

http://deeplearning.net/software/theano

	Deep Learning for Vision�BMVC 2013
	What do we want ML to do?
	What do we want ML to do?
	What do we want ML to do?
	How is ML done?
	“Deep Learning”
	“Deep Learning”
	Have we been here before?
	Real impact
	Outline
	Outline
	Machine Learning Refresher
	Supervised Learning
	Logistic Regression
	Optimization
	Is this enough?
	Why is vision so hard?
	Why is vision so hard?
	Why is vision so hard?
	Why is vision so hard?
	Features
	Features
	Features
	Features
	Features
	Features
	Supervised�Deep Learning
	Basic idea
	Basic idea
	Basic idea
	Basic idea
	Basic idea
	Neural network
	Neural network
	Neural network
	Neural network
	Neural network
	Neural network
	Neural network
	Neural network
	Back-propagation
	The Chain Rule
	The Chain Rule
	The Chain Rule
	The Chain Rule
	The Chain Rule
	The Chain Rule
	Back-propagation
	Example
	Training Procedure
	Training Procedure
	Training Procedure
	Nonlinearities
	Initialization
	Optimization: Step sizes
	Optimization: Momentum
	Optimization: Momentum
	Optimization: Momentum
	Other factors
	Supervised DL for VISION
	Working with images
	Local connectivity
	Local connectivity
	Local connectivity
	Local connectivity
	Local connectivity
	Weight-Tying
	Weight-Tying
	Weight-Tying
	Pooling
	Contrast Normalization
	Application: Image-Net
	Application: Image-Net
	Application: Image-Net
	More applications
	Debugging TIPS
	Getting the code right
	Bias vs. Variance
	UNSUPERVISED DL
	Representation Learning
	Representation Learning
	Representation Learning
	Unsupervised Feature Learning
	Greedy layer-wise training
	Greedy layer-wise training
	UFL Example
	Sparse auto-encoder
	Sparse auto-encoder
	What features are learned?
	Pre-processing
	Group-sparsity
	What features are learned?
	High-level features?
	Unsupervised Pre-training
	Unsupervised Pre-training
	High-level features
	Other Unsupervised Criteria
	RBMs
	Sparse Coding
	Summary
	Resources
	References

