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How to learn who influences whom?




Multiple object detection

How to locate multiple objects in an image?




Segmentation & MAP inference

max p(x | z)
I

How find the MAP labeling in discrete graphical models
efficiently?



What’'s common?

¢ Formalization:
Optimize a set function F(S) under constraints

] F i e

° ger: ﬂ)\(w Frard

] e

¢ but: structure helps!
... if Fis submodular, we can ...
¢ solve optimization problems with strong guarantees

¢ solve complex structured learning problems



Outline

¢ What is submodularity?

¢ Optimization

¢ Minimization

¢ Maximization

¢ Applications

¢ Outlook and pointers



submodularity.org
slides, code, references, workshops, ...



Example: placing sensors

Place sensors to monitor temperature



Set functions

B

o finite ground set V = {1,2,...,n}

» set function F-9Y 4R o J@g

o willassume F () =0 (wlog)

» assume black box that can evaluate F'(A)
forany A CV



Example: placing sensors

Utility '(A) of having sensors at subset A of all locations

2 o
X 4

A={1,2,3}: Very informative A={1,4,5}: Redundant info
High value F(A) Low value F(A)
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Marginal gain

» Given set function F :2¥ — R

¢ Marginal gain:

Ar(s|A) = F({s;UA) = F(4)

New Sensor S
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Decreasing gains: submodularity

- pIacementA {1, 2} placement B ={1,...,5}
: X, ¥

‘ Blgga\ln/_l Q Addlngsdol small gain Jich
g

B F(AUs)— F(A) = F(BUs)— F(B)
b A(s | A)

+ ®s

VI
™HIN
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Equivalent characterizations

 Diminishing returns: forall A C B and s ¢ B

@ -

F(AUs)— F(A) > F(BUs)— F(B)

¢ Union-Intersection: forall A, B CV

F(A) + F(B) Q B) + F(AN B)
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Submodular, modular & supermodular

A set function F is called
e supermodular if -F is submodular

¢ modular if Fis both submodular and supermodular.
Such functions can be written as

F(A) =) w

1€A
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Questions

How do | prove my problem is
submodular?

Why is submodularity useful?
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Example: Set cover

place sensors \ goal: cover floorplan Wlth discs
in building POSSIb|e/’ ' o °
locations, 2 .
| 4 P o
)
> o
o~ == '®
Node predicts ACV: F(A) —
values of positions “area covered by sensors placed at A”
with some radius
/ Formally:

Finite set W] collection of n subsets S; C W
For A CV define — |
F(4) ‘ UieA SZ‘



Set cover is submodular

M~
i




More complex model for sensing

Y.: temperature
at location s

X.: sensor value
at location s

X, =Y, + noise

Joint probability distribution
P(Xl,...,Xn,Yl,...,Yn) = P(Yl,...,Yn) P(Xl,...,Xn | Yl,...,Yn)

H_!\ J
Y
Prior Likelihood

18



Example: Sensor placement

Utility of having sensors at subset A of all locations

F(A) Z/H7(Y) — H(Y | X4)

. T
Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing
\ o=l

e ”;iﬂ/ @ m@ of o

A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)



Submodularity of Information Gain

Yy, Y Xq, .., X, random variables
F(A) = 1(Y; Xa) = H(Y)-H(Y | X,)

e F(A)is NOT always submodular

If X. are all conditionally independent given'Y,

then F(A) is submodular! [Krause & Guestrin "05]

Proof:
“information never hurts”

20



Another example: Cut functions

-~

(55

TN
cAG

"

\

J

1 ° 3 a v={a,b,c,d,e,f,g,h}

Cut function is submodular!

21



Why are cut functions submodular?

S F.b(S)
ANB |{ 0

{a} W

{b} W

{a,b} 0

Submodularif w=0!

Cut function in subgraph {i,j}

=» Submodular!

22



Closedness under linear combinations

F,,...,F, submodular functions on Vand A,,...,.A_ 20
Then: F(A) = 2. A, F,(A) is submodular

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact:

o Fo(A) submodular =» >, P(6) Fy(A) submodular!
¢ Multicriterion optimization

¢ A basic proof technique! ©

23



Submodularity ...

discrete convexity ....

V'

(\ ... Or concavity?
2

24



Convex aspects

@ convex extension
¢ duality

; ¢ efficient minimization

But this is only
half of the story...




Concave aspects

e submodularity:

ACB, s¢ B
F(AUs) — F(A)
+* s
@ concavity:
a<b s>0:

fla+s)— f(a)

N‘intuitively”
<

| A|

[V

v
=
Ny
-
N
|
=
=
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Submodularity and concavity

osuppose g:N—R and F(A)=g(4])

F(A) submodular ifandonlyif ... g isconcave

g(|A])
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Maximum of submodular functions

o Fi(A), F5(A) submodular.  What about

F(A) =max{ F1(A), F>2(A)} 2

F(A) = max(Fy(A),F2(A))

>
A
max(F,F,) not submodular in general! A
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Minimum of submodular functions

Well, maybe F(A) = min(F,(A),F,(A)) instead?

Fi(A) | Fy(A)
{1 0 0
{a} 1 0
{b} 0 1
{a,b} |1 1

F({b}) — F(})=0

<

F({a.b}) - F{ap=1

min(F,F,) not submodular in general!
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Two faces of submodular functions

I

Convex aspects
=» minimization!

Concave aspects
=» maximization!




What to do with submodular functions

N

Learning

31



Here we focus on optimization & applications

Minimization and maximization not the same??

32



Submodular minimization

B

-

clustering structured sparsity

min F(S) regularization
S GWVS

/’,
’
7
7’
A
2 -

MAP inference minimum cut
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Submodular minimization

min F'(.5)
S CHE

=» submodularity and convexity

34



Set functions and energy functions

any set function
with|V]| = n

F:2Y 3R

P@EE®|x>

1>

... is a function on
binary vectors!

F:{0,1}" - R

I — €A

a
b
C

1
il
o
o| @

pseudo-boolean function
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Submodularity and convexity

extension
>  f:]0,1]"

S

\_

Lovasz extension

f(z)

o\ — Rﬁ

— max -y
yePr

convex

Lovész, 1982/

¢ minimum of fis a minimum of F

¢ submodular minimization as convex minimization:
polynomial time!

Grotschel, Lovasz, Schrijver 1981
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Submodularity and convexity

extension
F:{Ojl}”—>R > f:[O,l]”’—>R
4 Lovasz extension )
f(x) = X/
\_ conve Lovasz, 198

@ minimum of fis a minimum of F

@ submodular minimization as convex minimization:
polynomial time!
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The submodular polyhedron P

Pr={xeR":2(A) < F(A) forall ACV} Example: V = {a,b}
\ A |FA)

p(A) =) =z o o

i€A {a} -1

{b} 2

,b 0

f Xe {a,b}
27 x({b}) < F{b})
P- 1

—T— X({a,b}) = F({a,b})

2 -] 0 1 ;({a}
\

"x({a}) = F({a})



Evaluating the Lovasz extension

Pr={reR":2(A) < F(A) forall ACV}

Linear maximization over P, y* .
X (o}
r) = max I - 2
flz) = max -y |/
Exponentially many constraints!!! ®
Computable in O(n log n) time © 2 0 1>
[Edmonds ‘70] X{a}

greedy algorithm:
* sortx
o order definessets S; = {1,...,i}

* y; = F(S;) — F(Si-1)

e Subgradient
e Separation oracle

39



P
>

T

u—

Lovasz extension: example

1

F(a,b)

0.9
0.6

0.4

0.2

0k
1

A

F(A)

{}
{a}
{b}
{a,b}

o o P O
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Submodular minimization

min F(A)
/ ACV \
minimize convex combinatorial
extension algorithms
¢ ellipsoid algorithm ¢ Fulkerson prize
[Grétschel et al. "81] lwata, Fujishige, Fleischer ‘01 &
Schrijver 00

¢ subgradient method,

smoothing [stobbe & K 10
& [Stobbe & Krause "10] o state of the art:

¢ duality: minimum norm O(n*T + n°’logM)  [iwata’03]
point algorithm O(n® + n°T) [Orlin "09]
[Fujishige & Isotani’11]

T = time for evaluating F A1



The minimum-norm-point algorithm

Example: V = {a,b}
Lewa karikté)psioinlem dual: minimum norm problem

U . |0 «
enminingf (z) + L|z) u* = arg min\; ||ul|’
50,4
{ab} |0 Base polytope 5.
u({a,b})=F({a,b}) A

e 2o} A* = {i | u*(i) <0}

2
u* minimizes F:
[-1,1] 1 A* = arg min F'(A)
ACV
> Fujishige ‘91, Fujishige & Isotani ‘11

-2 1 0 1
X{a}

42



Empirical comparison

T —— Y | |
HYBRID - Y Cut functions
— [ TS e /" _combinatorial
= 1000 ¢ LEX2 -8 e worith 1 from DIMACS
< | = * algorithms Challenge
Lm) = 100 |- o E
t;.o S el
2 \% ) -
S’ ) 10 l -
5 | E . \
5| w . .
Q| < r Minimum norm point-
c .
w | < algorithm
w | & 0.1 b __
v
=
3 0.01 '
\ 4 64 128 256 512 1024 >

Problem size (log-scale!)

Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani’11]

43



Example |: Sparsity

I

i .1 . _I_.4 ' _l_.2 .

Want ,representative” Want ,simple” explanations
dictionaries (e.g., use few columns of M)

44



d

wideband
signal
samples

Many natural signals sparse in suitable basis.

Example I: Sparsity

frequency

time

k<<d
large
wavelet
coefficients

k<<d
large
Gabor (TF)
coefficients

Can exploit for learning/regularization/compressive sensing...

45



Sparse reconstruction
min ||y — Mz|* +XQ(z)

explain y with few columns
of M: few x;

discrete regularization on support S of x
Qz) = ||lzllo =5
relax to convex envelope

Az) = ||l

in nature: sparsity pattern often not random...

46



Structured sparsity

Incorporate tree preferer_| rularizer?

Set fpAiction: \

L—) <— L

/T is. itre 3?\

eandSn
L ——L 2!

F(S) = U ancestors(s)

seS

47



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

g F(T) < F(S)
If Tis a tree and S not,
1S =|T]

F(S) = U ancestors(s)

seS

L F(T) =3

48



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

F(T) < F(S)
If Tis a tree and S not,
1S =|T]

7 N\ || | . /N

Function F is ...
submodular! ©

F(T) =3

49



Sparsity-inducing norms through submodular functions
[Bach NIPS 2010]

min ||y — Mz|* +XQ(z)

explain y with few columns prior knowledge: patterns of
of M: few x; . nonzeros

discrete regularization on support S of x

submodular function
Q) = |lzfo = 1S Qz) = F(S)

relax to convex envelope
=» Lovasz extension
Qz) = [z i Q(z) = f(|z])
Optimization: submodular minimization

50



Further connections: Dictionary Selection

min ||y — Mz|*+\Q(z)

Where does the dictionary M come from?

Want to learn it from data:  {y1,...,Yn} C R .

Selecting a dictionary with near-max. variance reduction
< Maximization of approximately submodular function
[Krause & Cevher ‘10; Das & Kempe "11]
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Structured sparse dictionary learning
[Bach et al, 2011]

BIECH NZUENE IrENA

Pt 'HE SrIEME ENEAEE
- THHTY BEPBeY BUENAY
4FPL dEREAR NEENER
SHET 25 hESaNY NEINNE
GLETFE POSWES BEEEaE

Original images Dictionary from NMF Structured-sparse Dictionary
(SSPCA)




max
xcq{0,1}n

Example II: MAP inference

P(x|z) xexp(—FE(x;2))
/

labels pixel

values o min  F(x;z)
xe{0,1}"

53



Example II: MAP inference

Recall: equivalence

y fu?)cgc()r]% bCiDrgaé \I/)e(cloE(X;Z)jet function

X G

71Jn

E(ea;z) = F(A)

if F'is submodular, thes min  F(x
MAP inference = submodula?‘ﬁﬁ%%ﬁzation!
polynomial-time

54



Special cases

Minimizing general submodular functions:

poly-time, but not very scalable

Special structure =» faster algorithms

¢ Symmetric functions

¢ Graph cuts

¢ Concave functions

¢ Sums of functions with bounded support

9 ...

55



MAP inference

if each E;;is submodular (“attractive”):

® @®

then F'is a graph cut function.

MAP inference = Minimum cut: fast ©

56



Pairwise is not enough...

color + pairwise

E(z) =
Z E;(z;) + Z Eij(xi, z5)

Pixels in one tile should
have the same label

[Kohli et al.”09] 57



Enforcing label consistency

. . . T T U T
Pixels in a superpixel should have the same label g =3

& B s

E(X) A
meaX --/ \
T >
000 | X NO) 000
000 [ NONO) 000
000 @00 000

concave function of cardinality = submodular ©

Can still be transformed into a graph cut instance!

58



Other special cases

¢ Symmetric: F(S)=F(V\S)
¢ Queyranne’s algorithm: O(n3) [Queyranne, 1998]
» Concave of modular: Zgz( > (s )
sesS

[Stobbe & Krause 10, Kohli et al, "09]

¢ Sum of submodular functions, each bounded support

[Kolmogorov "12]

59



Submodular minimization

Lea rnir@

Online/
adaptive
optim.

60



Submodular minimization

» unconstrained: min F(A) st. ACV

¢ nontrivial algorithms, special case:

balanced

polynomial time cut

» constraints: e.g. min F'(A) s.t. |A| >k

¢ limited cases doable: o
odd/even cardinality, inclusion/exclusion of a set

General case: NP hard
* hard to approximate within polynomial factors!
e But: special cases often still work well

[Lower bounds: Goel et al."09, Iwata & Nagano 09, Jegelka & Bilmes "11]
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Constraints

B

minimum...

matching path spanning tree

S BN

ground set: edges in a graph

min w(e) —) min F'(.5)
SeC SeC

ecS
Constrained modular Constrained submodular

minimization minimization

62



Submodular (“cooperative”) cut
[Jegelka & Bilmes CVPR ‘11]

Graph cut

63



Efficient constrained optimization

Idea: minimize a series of modular surrogate functions

1. compute linear upper bound ﬁZ(SZ) — F(SZ)

F'(S) =) w'(S)
eeS
2. Solve easy sum-of-weights (modular) problem:

i . i
5" =arg %lé?F (5) and repeat.

spanning
tree

cut e efficient
@ e only need to solve sum-of-weights problems '@
* Provides certain approximation guarantees path

matching E t

[Jegelka & Bilmes "11, lyer et al. ICML "13, see also Krause et al ‘06] ¢4



Outline

¢ What is submodularity?

¢ Optimization — ﬁ fﬁ
¢ Minimize costs e > J

¢ Maximize utility %

£
|
L -
¢ Applications

¢ Outlook and pointers
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Submodular maximization

¥
< e
O AR
covering sensing
max F'(S)
SCV

summarization network inference

66



Two faces of submodular functions

I

Convex aspects
=» minimization!

Concave aspects
=» maximization!




Submodular maximization

max F'(.S)
SCV

=» submodularity and concavity

68



Concave aspects

e submodularity:
ACB, s¢ B
F(AUs)— F(A)

@ concavity:
a<b s>0:

fla+s)— f(a)

N‘intuitively”
<

| A|

[V

F(BUs) — F(B)

f(b+s)— f(b)

69



Optimization

Online/

adaptive
optim.

Lea rnir@
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Optimization

Online/

adaptive
optim.

Lea rnir@
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Maximizing submodular functions

maximum
o Suppose we want for submodular F
A" = arg max F(A)st. ACV
9 Example: | IAI

e F(A) = U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

¢ In general: NP hard. Moreover:

¢ If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)

72



Exact maximization of SFs

¢ Mixed integer programming

¢ Series of mixed integer programs [Nemhauser et al ‘81]
¢ Constraint generation [Kawahara et al ‘09]

¢ Branch-and-bound
¢ ,Data-Correcting Algorithm® [Goldengorin et al "99]

Useful for small/moderate problems

All algorithms worst-case exponential!
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz '12]

Theorem
Given a nonnegative submodular function F,

RandomizedUSM returns set Ag such that
F(AR) 2 1/2 max, F(A)

e Cannot do better in general than %2 unless P = NP

74



Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:
max F(A)—C(A) max F(A)
st. ACV s.t. C(A) < B
“Scalarization” “Constrained maximization”
Can get 1/2 What is possible?
approx...
if F(A)-C(A) = 0
for all sets A

Positiveness is a
strong requirement ® N



Optimization

Online/

adaptive
optim.

Lea rnir@
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Monotonicity
PIacement/A ={1,2} Placement B ={1,...,5}

Fis monotonic: VA, s: F(AU{s}) — F(A) >0

A(s | A) >0

Adding sensors can only help



Cardinality constrained maximization

¢ Given: finite set V, monotone submodular F

¢ Want:

A* C V such that

A" = argmax F'(A)
[A|<Ek

NP-hard!

2
%4

=

&

78



Greedy algorithm

¢ Given: finite set V, monotone submodular F

o Want: | 4A® C YV such that

A" = argmax F'(A)
A<k

NP-hard!

Greedy algorithm:
Start with 4 — ()

Fori=1tok
s* «— argmax F (AU {s})

A AU {s*)

%9
oy

@

How well can this simple heuristic do?

79



Information gain

Performance of greedy

Optimal -~

Temperature data
from sensor network

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]
For monotonic submodular functions,

Greedy algorithm gives constant factor approximation

F(Agrees,) = (1-1/€) F(A, )

greedy

~—63%0

¢ Greedy algorithm gives near-optimal solution!

¢ In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey '78]

¢ Also many special cases are hard (set cover, mutual information, ...)
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Even greedy can be slow...

|
ol ¢ 300 »
g 405') Exhaustive search ‘/
}) = / (All subsets)
= é 200 - |
L) w Naive
S £ greedy
Ol -
% £ 100 - I |
c
—1 5 - Sensor placement
e 1 - .
v or&"% . . . |

\ \ \
1 2 3 4 5 6 7 8 9 10
Number of sensors selected

Placing 10 sensors takes 5 hours on highly optimized implementation
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Scaling up the greedy algorithm [Minoux * 78]

In round i+1,
¢ have picked A, = {s,,...,S}
e picks,,; = argmax, F(A, U {s})-F(A,)
l.e., maximize “marginal benefit” &®(s | A)

&(s | Ai) - F(Ai U {5})'F(Ai)

Key observation: Submodularity implies

®(s | A) 2&s | Aisy)

s [l |

i<j => ®s|A) 2 Qs|A)

Marginal benefits can never increase!
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“Lazy~ greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm:

- First iteration as usual Benefit (s | A)
- Keep an ordered list of marginal a -
benefits & from previous iteration " .
- Re-evaluate & only for top .
element
- If @ stays on top, use it, d
otherwise re-sort 6

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. " 07]



Empirical improvements [Leskovec, Krause et al’06]

Lower IS better

<

N w
o o
o o

[EEY
o
o

Running time (minutes)

\ |
) ./A 5
Exhaustive search ‘/ (O] Bo]
. (Al subsets) ] B3
/‘/ — g g
Naive e nl o
greedy\/}" | =
g o
.//, _ q;) %D
A Fast greedy | g| <
L | =
¢.¢".’/
= | I L v
1 2 3 4 5 6 7 8 9 10

Number of sensors selected

30x speedup

400

w
o
o

N
o
o

=
o
o

Exhaustive search
(All subsets)

Naive
greedy

Fast greedy

??????&'

1

¢
2 3 4 5 6 7 8 9
Number of blogs selected

Blog selection — ¢

700x speedup

85



IVIuItipIe ObjECt detection [Barinova et al.’12]

x; = index of hypothesis
explaining x; Xc

y. = 1: object |
present
y, = 0: object i
not present

Voting elements Hypotheses

[llustrations courtesy of Pushmeet Kohli 86



I\/Iultiple ObjECt detection [Barinova et al.’12]

: . X,=2 i

X, = index of hypothesis =% " o
explaining x. x=2 [ y; = 1: object i
J ° present

submodular =0l /. Jomt MAP inference:

maximization cwn /| Z
© S jE€S
8~ < e

Voting elements Weight element i wrt hyp. j

[llustrations courtesy of Pushmeet Kohli 87



Inference

th% - ¢

Datasets from [Andriluka et al. CVPR 2008]
(with strongly occluded pedestrians added)

Using the Hough forest trained in [Gall&Lempitsky CVPR0O9]

[llustrations courtesy of Pushmeet Kohli



Results for pedestrians detection

uoIsIdaid

TUD-campus TUD-crossing
1- - — - - -1 . —
0.8 \ - 0.8
0.6 . 5 06
-
D
(@]
0.4 & 0.4
o)
>
0.2 - 0.2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall

Blue = Hough transform + non-maximum suppression
Light-blue = greedy detection

submodularity for detection also in [Blaschko’11]



Network inference

our entire economy
is in danger
decent person and a person

effort to protect the american

economy must not fail that you do not have to be
scared of as president of

the united states

lipstick on a pig
& to help me

nunity
ilities
vho

the most serious
financial crisls since this is something that all of us will

the great depression swallow hard and go forward with

i think when you s
the wealth around

fundamentals of
who is the real
good for everybod

our economy are
barack obama

strong
resident's -
jF:'Jb to deal he's palling around i am not
with more with terrorists Erﬁ‘?_:dﬁ‘ﬁt )
s
than one . o
thing at hey can she is a diva .
i call you takes no adv »
from anyone

once

joe \

10117 10/24

9/26 10/3 10/10

29 9/6 9/12 9/19

How can we learn who influences whom??
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Time

Cascades in the Blogosphere

—ra aremow—r o ae—1
e p— s .
T —— S e
g e—— ey ——
e
Pty Wi bl e i el
B e e e e
e o = e 2
et e, et e, e R i - 1 B B
bl il B - -8 A

Machine Learning I rslsm engadgetﬁi\

(Theory)

S ———

Information

cascade
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Inferring diffusion networks
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given: Want:

engadget® g _—» engadget

e~ | o= -
. Vo Z
& 3 hnin..:!.,l_:jlf.i.n.:!ﬁ sisu ) buinaboingg

Given traces of influence, wish to infer sparse
directed network G=(V,E)

=» Formulate as optimization problem

E* = F(E
arg mpax ()
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Estimation problem

B

! EngadgEF‘ m EngadgEF‘
=

\ -~
sisu | @ boinabuinad sisu @ boinabuinad

¢ Many influence trees T consistent with data
e For cascade C, model P(C,| T)

¢ Find sparse graph that maximizes likelihood for all
observed cascades

=» Log likelihood monotonic submodular in selected edges

F(E)zZlog max P(C; | T)

tree T'CE 93



Precision

Evaluation: Synthetic networks

1 | | ] 1 1 . . .
INELITI “\
Baseline
0.8 . 08 |
C
06 L - :% 06
@
04 4 a 044
02 |
0.2 - Netinf T
o LB3seline | | | Do olz 0|4 ols ola 1
0 02 04 06 08 1 ' ' ' '
Recall
Recall

1024 node hierarchical Kronecker
exponential transmission model

o Performance does not depend on't
structure:

1000 node Forest Fire (oo =1.1)
power law transmission model

ne network

¢ Synthetic Networks: Forest Fire, Kronecker, etc.

¢ Transmission time distribution: Exponential, Power Law

¢ Break-even point of > 90%
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Diffusion Network
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

~+/e @ Mainstream media

Actual network inferred from 172 million
articles from 1 million news sources
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Submodular Sensing Problems
[with Guestrin, Leskovec, Singh, Sukhatme, ...]

. — Water distribution networks
Environmental monitoring [J WRPM "08]
[UAI'O5, JAIR '08, ICRA “10]
ek R o
X boinaboinag [sisulll
| engadgeﬁ\
. Recommending blogs & news
Experiment design [KDD ‘07, ’10]

[NIPS ‘10, '11, PNAS’13]

Can all be reduced to monotonic submodular maximization

96



Maximization: More complex constraints

¢ Approximate submodular maximization possible
under a variety of constraints:

¢ (Multiple) matroid constraints Greedy
» Knapsack (non-constant cost functions) works well
¢ Multiple matroid and knapsack constraints ~
¢ Path constraints (Submodular orienteering) Need

4 Submodular Stei L non-greedy
¢ Connectedness (Submodular Steiner) algorithms
¢ Robustness (minimax)

‘ see

¢ Survey on ,, Submodular Function Maximization
[Krause & Golovin ‘12] on submodularity.org
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Two-faces of submodular functions

Cuts, | Coverage,
clustering, diversity
similarity

Convex aspects
=>» minimization!

summarization

MAP inference

Concave aspects
=>» maximization!

structured sparsity

regularization SENsINg
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== Unconstrained

Constrained

Maximization

NP-hard, but
well-approximable
(if nonnegative)

NP-hard but well-
approximable
,Greedy-(like)” for
cardinality, matroid
constraints;

Non-greedy for more
complex (e.g.,
connectivity) constraints

Minimization
Polynomial time!
Generally inefficent
(n?6), but can exploit
special cases

(cuts; symmetry;
decomposable; ...)

NP-hard; hard to
approximate in general,
still useful algorithms



Further topics in submodularity & ML

e Learning submodular functions
¢ Goal: learn a submodular function from few samples
¢ Applications: Preference elicitation, graph sketching, ...
¢ Generally very hard
¢ Possible under special structure (e.g., sparsity)

@ Online submodular optimization
¢ Goal: Repeatedly solve submodular optimization problems
¢ Applications: Recommender systems
¢ No regret algorithms for online submodular min & max

e Active learning with submodular functions
¢ Goal: Adaptive select elements given feedback

¢ Applications: Active learning, experimental design
¢ Adaptive submodularity generalizes SFs to policies 100



From sets to policies
[Golovin & Krause JAIR 2011, 1JCAI-JAIR Best Paper 2013]

Submodularity

Applies to: set functions
AC B= Ap(s| A) > Ap(s| B)

¢08 ®S

max F(A)

Greedy algorithm provides

- (1-1/e) for max. w card. const.

- 1/(p+1) for p-indep. systems

- log Q
. 4 for min-sum-cover

for min-cost-cover

Adaptive submodularity

policies, value functions

x4 2xp = Ap(s|xa) > Ap(s| xp)

N L N
A e’
max F'()

Greedy policy provides
- (1-1/e) for max. w card. const.
- 1/(p+1) for p-indep. systems

- log Q

. 4 for min-sum-cover
101
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Other directions

e Game theory
¢ Equilibria in cooperative (supermodular) games / fair allocations
¢ Price of anarchy in non-cooperative games
¢ Incentive compatible submodular optimization

o Generalizations of submodular functions

¢ L#t-convex / discrete convex analysis
¢ XOS/Subadditive functions

e More optimization algorithms
¢ Robust submodular maximization
¢ Maximization and minimization under complex constraints
¢ Multilinear extension and applications

¢ Submodular-supermodular procedure / semigradient methods
102



Further resources

e submodularity.org
¢ Tutorial Slides
¢ Annotated bibliography
¢ Matlab Toolbox for Submodular Optimization
¢ Links to workshops and related meetings

e discml.cc
¢ NIPS Workshops on Discrete Optimization in Machine Learning
¢ Videos of invited talks on videolectures.net

Invited Tallchy, Invited Talk '}’ Keynote Talk
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Conclusions

¢ Discrete optimization abundant in applications

¢ Fortunately, some of those have structure:
submodularity

¢ Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

» Many exciting research directions! ©
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