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Network Inference

How to learn who influences whom?
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Multiple object detection

How to locate multiple objects in an image?
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Segmentation & MAP inference

How find the MAP labeling in discrete graphical models 
efficiently?

sky

tree
house

grass
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What’s common?
Formalization:

Optimize a set function F(S)  under constraints

generally very hard

but: structure helps!     
… if F is submodular, we can …

solve optimization problems with strong guarantees
solve complex structured learning problems
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Outline
What is submodularity?

Optimization
Minimization

Maximization

Applications

Outlook and pointers
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submodularity.org
slides, code, references, workshops, …
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Example: placing sensors

Place sensors to monitor temperature
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Set functions
finite ground set
set function  

will assume                           (w.l.o.g.)

assume black box that can evaluate
for any 

9



Utility            of having sensors at subset     of all locations

X1

X2

X3

A={1,2,3}: Very informative
High value F(A)

X4

X5
X1

A={1,4,5}: Redundant info
Low value F(A)

Example: placing sensors
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Marginal gain
Given set function

Marginal gain:

X1
X2

Xs

new sensor s
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B

Decreasing gains: submodularity

X1
X2

X3

X4
X5

placement B = {1,…,5}

X1
X2

placement A = {1,2}

Adding s helps a lot! Xs

new sensor s
A +      s+      s

Big gain Adding s doesn’t help muchsmall gain
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Equivalent characterizations
Diminishing returns:  for all and 

Union-Intersection: for all 

A B+    s +    s
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Submodular, modular & supermodular

A set function F is called
supermodular if -F is submodular
modular if F is both submodular and supermodular.
Such functions can be written as
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Questions

How do I prove my problem is
submodular?

Why is submodularity useful?
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Example: Set cover

Node predicts
values of positions
with some radius

goal: cover floorplan with discsplace sensors
in building Possible

locations 

: 
“area covered by sensors placed at A”

Formally: 
Finite set     , collection of n subsets
For                 define
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Set cover is submodular

S1 S2

S1 S2

S3

S4 S’

S’

A={s1,s2}

B = {s1,s2,s3,s4}

F(A U {s’}) – F(A)

F(B U {s’}) – F(B)

≥
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More complex model for sensing

Joint probability distribution 
P(X1,…,Xn,Y1,…,Yn)  = P(Y1,…,Yn) P(X1,…,Xn | Y1,…,Yn)

Ys: temperature
at location s

Xs: sensor value
at location s

Xs = Ys + noise

Prior Likelihood

Y1 Y2 Y3

Y6

Y5
Y4

X1

X4

X3

X6
X5

X2
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Example: Sensor placement
Utility of having sensors at subset A of all locations

X1

X2

X3

A={1,2,3}: High value F(A)

X4

X5
X1

A={1,4,5}: Low value F(A)

Uncertainty
about temperature Y
before sensing

Uncertainty
about temperature Y
after sensing
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Submodularity of Information Gain

Y1,…,Ym, X1, …, Xn random variables
F(A) = I(Y; XA) = H(Y)-H(Y | XA)

F(A) is  NOT always submodular

If Xi are all conditionally independent given Y,
then F(A) is submodular!         [Krause & Guestrin `05]

Y1

X1

Y2

X2

Y3

X4X3

Proof:
“information never hurts”
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Another example: Cut functions

a c

db

e g

hf

V={a,b,c,d,e,f,g,h}2

2

2

2
2 2

1

1

3

3

3

3
3 3

Cut function is submodular!
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Why are cut functions submodular?

a b
S Fab(S)
{} 0
{a} w
{b} w
{a,b} 0

Submodular if

w

a c

db

e g

hf

2

2

2

2
2 2

1

1

3

3

3

3
3 3

Cut function in subgraph {i,j}
 Submodular!

w ≥ 0!
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Closedness under linear combinations
F1,…,Fm submodular functions on V and λ1,…,λm ≥ 0
Then: F(A) = ∑i λi Fi(A) is submodular

Submodularity closed under nonnegative linear 
combinations!

Extremely useful fact:
Fθ(A) submodular ∑θ P(θ) Fθ(A) submodular!
Multicriterion optimization
A basic proof technique! 
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Submodularity …

discrete convexity ….

… or concavity?
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Convex aspects

convex extension
duality
efficient minimization

But this is only 
half of the story…
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Concave aspects
submodularity:

concavity:
A +    s B +    s

|A|

F(A) “intuitively”
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Submodularity and concavity
suppose                                and

submodular if and only if   … is concave
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Maximum of submodular functions
submodular. What about

?

|A|

F2(A)
F1(A)

F(A) = max(F1(A),F2(A))

max(F1,F2) not submodular in general!
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Minimum of submodular functions
Well, maybe F(A) = min(F1(A),F2(A)) instead?

F1(A) F2(A) F(A)
{} 0 0 0
{a} 1 0 0
{b} 0 1 0
{a,b} 1 1 1

F({b}) – F({})=0

F({a,b}) – F({a})=1
<

min(F1,F2) not submodular in general!
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Two faces of submodular functions

Convex aspects
minimization!

Concave aspects
maximization!
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What to do with submodular functions

Optimization

Minimization

Maximization

Learning

Online/
adaptive
optim.
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Here we focus on optimization & applications

Optimization

Minimization

Maximization

Minimization and maximization not the same?? 
32



Submodular minimization

structured sparsity
regularization

clustering

MAP inference minimum cut

ts
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Submodular minimization

 submodularity and convexity
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Set functions and energy functions
any set function

with               .
… is a function on 

binary vectors!

a

b

d

c

A

1
1
0
0

a
b
c
d

pseudo-boolean function
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Submodularity and convexity

minimum of f is a minimum of F
submodular minimization  as  convex minimization:
polynomial time! Grötschel, Lovász, Schrijver 1981

extension

convex

Lovász extension

Lovász, 1982
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Submodularity and convexity

convex

Lovász extension

Lovász, 1982
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The submodular polyhedron PF

Example: V = {a,b}

x({a}) ≤ F({a})

x({b}) ≤ F({b})

x({a,b}) ≤ F({a,b})
PF

-1 x{a}

x{b}

0 1

1

2

-2

A F(A)
{} 0
{a} -1
{b} 2
{a,b} 0
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Evaluating the Lovász extension

-1
x{a}

x{b}

0 1

1
2

-2

Linear maximization over PF

Exponentially many constraints!!! 
Computable in O(n log n) time 

[Edmonds ‘70]

y*

• Subgradient
• Separation oracle

x

greedy algorithm:
• sort x
• order defines sets
•
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Lovász extension: example

A F(A)
{} 0
{a} 1
{b} .8
{a,b} .2

F(a)
F(b)

F(a,b)

F({})
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Submodular minimization

combinatorial 
algorithms

Fulkerson prize
Iwata, Fujishige, Fleischer ‘01 & 
Schrijver ’00

state of the art:
O(n4T + n5logM)      [Iwata ’03]

O(n6 + n5T) [Orlin ’09]

minimize convex 
extension

ellipsoid algorithm
[Grötschel et al. `81]

subgradient method,
smoothing [Stobbe & Krause `10]

duality: minimum norm 
point algorithm

[Fujishige & Isotani ’11]

T = time for evaluating F 41



-1
x{a}

x{b}

0 1

1

2

-2

regularized problemLovász extension

minimizes F:

Fujishige ‘91, Fujishige & Isotani ‘11 

[-1,1]

u({a,b})=F({a,b})

u*

Base polytope BF

Example: V = {a,b}
A F(A)
{} 0
{a} -1
{b} 2
{a,b} 0

The minimum-norm-point algorithm
dual: minimum norm problem
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Empirical comparison

Minimum norm point algorithm: usually orders of magnitude faster

Cut functions 
from DIMACS 
Challenge

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

Lo
w

er
 is

 b
et

te
r (

lo
g-

sc
al

e!
)

Problem size (log-scale!)
512 102425612864

Minimum norm point 
algorithm

[Fujishige & Isotani ’11]

combinatorial
algorithms
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Example I: Sparsity

Want „simple“ explanations
(e.g., use few columns of M)

Want „representative“
dictionaries
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Example I: Sparsity

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor (TF)
coefficients

time

fr
eq

ue
nc

y

Many natural signals sparse in suitable basis.
Can exploit for learning/regularization/compressive sensing...
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Sparse reconstruction

explain y with few columns 
of M: few xi

discrete regularization on support S of x

relax to convex envelope

in nature: sparsity pattern often not random…

subset
selection:
S = {1,3,4,7}
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S

Structured sparsity

x

m3

m2

m4

m5

m7m6

m1m1

m2

m3 m4 m6 m7

Incorporate tree preference in regularizer?

Set function: 

if T is a tree and S not
|S| = |T|
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S

Structured sparsity

x

m3

m2

m4

m5

m7m6

m1m1

m2

m3

Incorporate tree preference in regularizer?

Set function: 

If T is a tree and S not,
|S| = |T|
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x

m3

m2

m4

m5

m7m6

m1

m7m6m4

Set function: 

If T is a tree and S not,
|S| = |T|

Structured sparsity

Incorporate tree preference in regularizer?

S

S

Function  F  is …            
submodular!  
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Sparsity-inducing norms through submodular functions
[Bach NIPS 2010]

Optimization: submodular minimization

explain y with few columns 
of M: few xi

prior knowledge: patterns of 
nonzeros

submodular function

 Lovász extension

discrete regularization on support S of x

relax to convex envelope
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Further connections: Dictionary Selection

Where does the dictionary M come from?

Want to learn it from data:

Selecting a dictionary with near-max. variance reduction
 Maximization of approximately submodular function

[Krause & Cevher ‘10; Das & Kempe ’11]
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Structured sparse dictionary learning
[Bach et al, 2011]

Original images Dictionary from NMF Structured-sparse Dictionary
(SSPCA)
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Example II: MAP inference

labels pixel 
values

label

pixel
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Example II: MAP inference

Recall:  equivalence

a
b

d
c

A
1
1
0
0

a
b
c
d

function on binary vectors set function

if      is submodular, then
MAP inference = submodular minimization!
polynomial-time

1

1 1

1 0 0

00

0000
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Special cases
Minimizing general submodular functions:

poly-time, but not very scalable

Special structure  faster algorithms

Symmetric functions
Graph cuts
Concave functions
Sums of functions with bounded support
...
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0

1 1

1 1

0 0

00

000

MAP inference

if each         is submodular (“attractive”):

MAP inference  =  Minimum cut: fast  

then      is a graph cut function.

a b a b
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Pairwise is not enough…

color + pairwise

[Kohli et al.`09]

Pixels in one tile should 
have the same label

color + pairwise  +  
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Pixels in a superpixel should have the same label

Enforcing label consistency

E(x)

concave function of cardinality   submodular 

Can still be transformed into a graph cut instance!
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Symmetric:
Queyranne‘s algorithm: O(n3)  [Queyranne, 1998]

Concave of modular:

[Stobbe & Krause `10, Kohli et al, `09]

Sum of submodular functions, each bounded support
[Kolmogorov `12]

Other special cases
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Submodular minimization

Optimization

unconstrained

constrained
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Submodular minimization
unconstrained:

nontrivial algorithms, 
polynomial time

constraints: e.g.
limited cases doable:
odd/even cardinality, inclusion/exclusion of a set

General case:  NP hard
• hard to approximate within polynomial factors!
• But: special cases often still work well

[Lower bounds: Goel et al.`09, Iwata & Nagano `09, Jegelka & Bilmes `11]

special case:
balanced
cut

61



Constraints

cut matching path spanning tree

ground set: edges in a graph

minimum…

Constrained modular
minimization

Constrained submodular
minimization
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Submodular (“cooperative”) cut
[Jegelka & Bilmes CVPR ‘11]

Graph cut Cooperative cut
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Efficient constrained optimization

cut

matching
path

spanning 
tree

[Jegelka & Bilmes `11, Iyer et al. ICML `13, see also Krause et al ‘06]

2. Solve easy sum-of-weights (modular) problem:

and repeat.

Idea: minimize a series of modular surrogate functions

1. compute linear upper bound  

• efficient
• only need to solve sum-of-weights problems
• Provides certain approximation guarantees
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Outline
What is submodularity?

Optimization
Minimize costs

Maximize utility

Applications

Outlook and pointers

X
1

X
5

X
2

X
4
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Submodular maximization

sensingcovering

summarization network inference

.
.

.
.

.

.. . . ..

X1

X5

X2

X4
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Two faces of submodular functions

Convex aspects
minimization!

Concave aspects
maximization!

67



Submodular maximization

 submodularity and concavity
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Concave aspects
submodularity:

concavity:

|A|

F(A) “intuitively”
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Optimization

Maximization
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Optimization

unconstrained

constrained
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Maximizing submodular functions
Suppose we want for submodular F 

Example:
F(A) = U(A) – C(A) where U(A) is submodular utility, 
and C(A) is supermodular cost function

In general: NP hard. Moreover:
If F(A) can take negative values:
As hard to approximate as maximum independent set 
(i.e., NP hard to get O(n1-ε) approximation)

|A|

maximum
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Exact maximization of SFs
Mixed integer programming

Series of mixed integer programs [Nemhauser et al ‘81]
Constraint generation [Kawahara et al ‘09]

Branch-and-bound
„Data-Correcting Algorithm“ [Goldengorin et al ’99]

All algorithms worst-case exponential!

Useful for small/moderate problems
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz ’12]

Cannot do better in general than ½ unless P = NP

Theorem
Given a nonnegative submodular function F, 
RandomizedUSM returns set AR such that 

F(AR) ≥ 1/2  maxA F(A)
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Unconstrained vs. constraint maximization
Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:

Can get 1/2  
approx…
if F(A)-C(A) ≥ 0 
for all sets A

What is possible?

Positiveness is a 
strong requirement 

“Scalarization” “Constrained maximization”
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Optimization

unconstrained

constrained
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Monotonicity

X1
X2

X3

X4
X5

Placement B = {1,…,5}

X1
X2

Placement A = {1,2}

F is monotonic:

Adding sensors can only help



Cardinality constrained maximization
Given: finite set V, monotone submodular F
Want:       such that

NP-hard!
X1

X5

X3

X2

X4

78



Greedy algorithm
Given: finite set V, monotone submodular F
Want:       such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:
Start with
For i = 1 to k

X1

X5

X3

X2

X4
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Performance of greedy

Greedy empirically close to optimal. Why?

Greedy

Optimal

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

5

8

7

4

34

1

2

35
40

Temperature data
from sensor network

In
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n 
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey ’78]
For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

F(Agreedy) ≥ (1-1/e) F(Aopt)

Greedy algorithm gives near-optimal solution!
In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey ’78]

Also many special cases are hard (set cover, mutual information, …)

~63%
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0
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Number of sensors selected
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(m
in
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es

)

Exhaustive search
(All subsets)

Naive
greedy

Sensor placement

Even greedy can be slow…

Placing 10 sensors takes 5 hours on highly optimized implementation

82



Scaling up the greedy algorithm [Minoux ’78]
In round i+1, 

have picked Ai = {s1,…,si}
pick si+1 = argmaxs F(Ai U {s})-F(Ai)

I.e., maximize “marginal benefit” ⊗(s | Ai)

⊗(s | Ai) = F(Ai U {s})-F(Ai)

Key observation: Submodularity implies 

i ≤ j => ⊗(s | Ai) ?? ⊗(s | Aj)

Marginal benefits can never increase!

s

⊗(s | Ai) ≥ ⊗(s | Ai+1)≥ 
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“Lazy” greedy algorithm [Minoux ’78]

Lazy greedy algorithm:
 First iteration as usual
 Keep an ordered list of marginal 

benefits ⊗i from previous iteration
 Re-evaluate ⊗i only for top 

element
 If ⊗i stays on top, use it,

otherwise re-sort

a

b

c

d

Benefit ⊗(s | A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. ’07]
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Blog selection
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Exhaustive search
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Naive
greedy

Fast greedyLo
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0
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Number of sensors selected

Ru
nn
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tim
e 

(m
in
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)

Exhaustive search
(All subsets)

Naive
greedy

Fast greedy

Sensor placement

Empirical improvements [Leskovec, Krause et al’06]

30x speedup 700x speedup
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Multiple object detection [Barinova et al.’12]

Voting elements Hypotheses

yi = 1: object i
present

yi = 0: object i
not present 

xj = index of hypothesis 
explaining xj

y1

y2

y3

x1=1

x2=1

x3=1

x4=1

x5=1

x6=1

x7=1

x8=1

Illustrations courtesy of Pushmeet Kohli 86



Multiple object detection [Barinova et al.’12]

Voting elements Hypotheses

y1=1

yi = 1: object i
present

yi = 0: object i
not present 

xj = index of hypothesis 
explaining xj

y2=1

y3=0

x1=1

x2=1

x3=1

x4=2

x5=2

x6=0

x7=2

x8=2

submodular
maximization



Illustrations courtesy of Pushmeet Kohli

Joint MAP inference:

Weight element i wrt hyp. j
87



Inference

Using the Hough forest trained in [Gall&Lempitsky CVPR09]

Datasets from [Andriluka et al. CVPR 2008]
(with strongly occluded pedestrians added)

Illustrations courtesy of Pushmeet Kohli



Results for pedestrians detection

Blue = Hough transform + non-maximum suppression
Light-blue = greedy detection

Precision
Recall

Precision

Recall

TUD-crossingTUD-campus

submodularity for detection also in [Blaschko’11] 



Network inference

How can we learn who influences whom?
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Ti
m

e

Information 
cascade

Cascades in the Blogosphere
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Inferring diffusion networks
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given traces of influence, wish to infer sparse
directed network G=(V,E)
 Formulate as optimization problem

1

2

3 5

4 13

4 2

Given: Want:
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Estimation problem

Many influence trees T consistent with data
For cascade Ci, model P(Ci| T)
Find sparse graph that maximizes likelihood for all 
observed cascades
 Log likelihood monotonic submodular in selected edges

1

2

3 5

4

1

2

3 5

4
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Evaluation: Synthetic networks

Performance does not depend on the network
structure:

Synthetic Networks:  Forest Fire, Kronecker, etc.
Transmission time distribution:  Exponential, Power Law 

Break-even point of > 90%

1024 node hierarchical Kronecker 
exponential transmission model

1000 node Forest Fire (α = 1.1) 
power law transmission model
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Blogs
Mainstream media

Diffusion Network
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Actual network inferred from 172 million 
articles from 1 million news sources 95



Submodular Sensing Problems
[with Guestrin, Leskovec, Singh, Sukhatme, …]

Can all be reduced to monotonic submodular maximization

Experiment design 
[NIPS ‘10, ’11, PNAS’13]

Recommending blogs & news
[KDD ‘07, ’10]

Water distribution networks
[J WRPM ’08]Environmental monitoring

[UAI’05, JAIR ’08, ICRA ‘10]
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Maximization: More complex constraints
Approximate submodular maximization possible
under a variety of constraints:

(Multiple) matroid constraints
Knapsack (non-constant cost functions)
Multiple matroid and knapsack constraints
Path constraints (Submodular orienteering)
Connectedness (Submodular Steiner)
Robustness (minimax)
...

Survey on „Submodular Function Maximization“ 
[Krause & Golovin ‘12] on submodularity.org

Greedy
works well

Need
non-greedy
algorithms
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Two-faces of submodular functions

Convex aspects
minimization!

Concave aspects
maximization!

Cuts, 
clustering,
similarity

Coverage,
diversity

structured sparsity
regularization

MAP inference summarization

sensing 98



Summary OptimizationMaximization Minimization
Unconstrained NP-hard, but 

well-approximable
(if nonnegative)

Polynomial time!
Generally inefficent
(n^6), but can exploit
special cases
(cuts; symmetry; 
decomposable; ...)

Constrained NP-hard but well-
approximable
„Greedy-(like)“ for
cardinality, matroid
constraints;
Non-greedy for more
complex (e.g., 
connectivity) constraints

NP-hard; hard to
approximate in general,
still useful algorithms
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Further topics in submodularity & ML
Learning submodular functions

Goal: learn a submodular function from few samples
Applications: Preference elicitation, graph sketching, ...
Generally very hard
Possible under special structure (e.g., sparsity)

Online submodular optimization
Goal: Repeatedly solve submodular optimization problems
Applications: Recommender systems
No regret algorithms for online submodular min & max

Active learning with submodular functions
Goal: Adaptive select elements given feedback
Applications: Active learning, experimental design
Adaptive submodularity generalizes SFs to policies 100



From sets to policies
[Golovin & Krause JAIR 2011, IJCAI-JAIR Best Paper 2013]

Applies to: set functions

Greedy algorithm provides
• (1-1/e) for max. w card. const.
• 1/(p+1) for p-indep. systems
• log Q for min-cost-cover
• 4 for min-sum-cover

policies, value functions

Greedy policy provides
• (1-1/e) for max. w card. const.
• 1/(p+1) for p-indep. systems
• log Q for min-cost-cover
• 4 for min-sum-cover

Submodularity Adaptive submodularity

BA A B
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Other directions
Game theory

Equilibria in cooperative (supermodular) games / fair allocations
Price of anarchy in non-cooperative games
Incentive compatible submodular optimization

Generalizations of submodular functions
L#-convex / discrete convex analysis
XOS/Subadditive functions

More optimization algorithms
Robust submodular maximization
Maximization and minimization under complex constraints
Multilinear extension and applications
Submodular-supermodular procedure / semigradient methods
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Further resources
submodularity.org

Tutorial Slides
Annotated bibliography
Matlab Toolbox for Submodular Optimization
Links to workshops and related meetings

discml.cc
NIPS Workshops on Discrete Optimization in Machine Learning
Videos of invited talks on videolectures.net

...
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Conclusions
Discrete optimization abundant in applications
Fortunately, some of those have structure: 
submodularity
Submodularity can be exploited to develop efficient, 
scalable algorithms with strong guarantees
Many exciting research directions! 
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