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Overview

@ | will discuss a methodology to bound

o the Family-Wise Error Rate (FWER)
o the k-FWER
o the False Discovery Proportion (FDP)
by means of randomisation (resampling)
o Want to achieve:
e quantification and understanding of conclusions of multiple

testing
o take account of dependencies between tests

@ (Results build on previous work by Meinshausen and others!
See references)
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Overview

@ Single and multiple hypothesis testing (notation / formalism /
terminology)

@ Randomisation testing
@ Bounding the FWER, k-FWER, FDP by resampling

@ Practical results
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Multiple testing: the formalism
ing a single hypothesis
5 a set of hypotheses

Motivating example

Assumption:

@ Gene A is unrelated to tissue type (e.g. ‘cancerous’ /
‘non-cancerous’)

Observation:

@ Expression of Gene A in a labels:
set of tissue samples I
expression data:
° L.abel of each of these E B TEmm e
tissue samples
Question:

@ Is the observation ‘surprising’, given our assumption?
@ If so, something more interesting than the null hypothesis may
be true...
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Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypothese

A pattern function to quantify the state

@ Aim: draw statistical conclusions about state of the world X
based on a finite sample

@ 'Particular state’: quantified by means of a pattern function
m: X —R

@ For example, 7T = correlation of the expression with the label

(-1/1)
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Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypotheses

The null hypothesis

Which statistical conclusions can we draw?

One computes an upper bound on the probability to see a
pattern as strong as 71 (X) > o, assuming a null hypothesis,
the ‘dull’ assumption

Null hypothesis = a set () of distributions D over X

Hence, level of surprise is quantified by p:

VDEQoip)(ND(ﬂ'(X) ZO’) <p

p is called the p-value
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Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypothese

Rejecting the null hypothesis

o If pis small, the level of surprise is large — ()g rejected
e If (g holds nevertheless: false rejection (aka: type | error)
e If ()y does not hold: true rejection
e If O does not hold but still 77 (X) < o: type Il error
test \ true false
accept | just acceptance | type Il error
reject type | error true rejection

Challenge: keep type | and Il errors small
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Multiple testing: the formalism

hypothesis
Testing a set of hypotheses

Motivating example

labels:
I

expression data:

Back to our genes...

o Microarrays gather data
for all n genes in genome
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Multiple testing: the formalism

Testing

Motivating example

Back to our genes...

@ Microarrays gather data for all n genes in genome
@ Doing n single hypothesis tests will cause many false rejections

@ Assuming the genes are independent and () holds, pn genes
are expected to be rejected! (e.g. for 20,000 genes and
p = 0.01, this is 200)

@ Should all these genes be subjected to a closer look of the
biologist??

@ Need for a new formalism
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Multiple testing: the formalism

Testing

A set of pattern functions

@ Multiple testing: a set of pattern functions, each quantifying
one aspect of the state of the world:

IT={m:a €A}

with A and index set of size |A|

@ For example: 7t, measures correlation of gene a with the
labels

o Now we have |A| different tests

o (X) > 04

(note: X contains all expression data, for all genes)
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Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypotheses

A set of pattern functions

Null hypothesis: ()¢ contains all distributions of X where the
labels and the gene expression data are independent

Each gene may provide evidence to reject null hypothesis now!
If:

Ty (X) > 0%

FWER: probability to reject null hypothesis assuming that it
holds (i.e. the probability than any of the genes motivates
rejection)

The FWER is < p if

VD e Qy:Pxp(BaecA:my(X)>0,) <p
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Multiple testing: the formalism
hypothesis
Testing a set of hypotheses

Alternative null hypotheses

@ Assuming that all genes are unrelated to the labels is probably
too simplistic (hopefully!)

@ Some will be truly unrelated

@ How can we do more than merely reject the null hypothesis or
not, based on some genes as a witness?

@ In particular: can we say anything about these genes that
show surprising behaviour?

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypotheses

Alternative null hypotheses

@ Null hypothesis () (ﬁ) = the sets of all distributions where
all but the subset {7‘[“ Tx € Z} Cllof k= ‘Z‘ pattern
functions is jointly distributed as under a D € ()g

@ Hence: we tolerate k = ’Z} positive genes (i.e. genes that are
potentially related with the labels)

@ Then the probability of at least one false rejection is

VD € () (Z) : Pxp (E]DC S A\Z TTy (X) > O’,X) <p

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Testing
Testing

Alternative null hypotheses

o Further define: B B
Qo= |J D (4)
ACA
e Under any distribution from null hypothesis (g, the
probability of at least one false rejection is bounded by p if:

VA YD € O (A) : Pxop (Fa € A\A: 1, (X) > 04) < p

@ Hence, if p is small and there are rejections &, then we must
conclude that these are true rejections and belong to A
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Multiple testing: the formalism
Testing a
Testing a

Alternative null hypotheses

o Note: we never reject the null hypothesis Qg
e But: we would reject many () (A) with too small sets A

o Namely: we would reject all Qg (A) for which
Jau € A\A: 71y (X) > 0y

Now, how to compute this upper bound p?
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Multiple testing: the formalism
Testing a single hypothesis
Testing a set of hypotheses

Bonferroni correction

Lemma (Bonferroni correction)

Suppose A C N is a countable index set for a class of pattern
functions {71, : @« € A}. Let g € (0,1) such that

angl-

wEA

If we choose o, such that VD € Qy:

PXND (7-[04 (X) Z Uoc) S PAu,

then VA C A,VD € O (Z) -

Px~Dp (E]DC € A\Z Tly (X) > 0’,,‘) <p.
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Multiple testing: the formalism
hypothesis
set of hypotheses

Bonferroni correction

The most well-known approach to bound the FWER
Proof is a straightforward application of the union bound

Correct for all )y — for arbitrary dependencies between genes

Therefore very conservative :-(
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Randomisation testing

Randomisation (permutation) testing

So far for the general introduction to multiple testing...
Now a general introduction to randomisation testing as a
technique!

o Computation intensive method to perform hypothesis testing
I Will first discuss single hypothesis testing
Explicitly taking finiteness of random sample into account

Then expand ideas to multiple hypothesis testing

Everything relies on a transformation group G, such that

Px~p (X) = Px~p (g (X))

forg € G and D € ()
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Randomisation testing

Randomisation (permutation) testing

Theorem (The p-value using randomisation testing)
e Given a pattern function T,
@ a null hypothesis Q)g invariant under g € G,
e afixed p € (0,1),
@ and the set {g (X) : g € G}.
Choose o (X) such that

_#{geG:nm(g(X) > (X)}
P= 1G]

Then, VD € Q) :

Px~p (10 (X) 2 0 (X)) = p.
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Randomisation testing

Subsampling the transformation group

@ Usually, the number of group elements is prohibitively large

@ Then a subsample G, of size |Gy,| = m is used to estimate p:

#{g € Gn:7(g (X)) =2 (X)}

m

b=

@ It can be shown (Langford, see references) that with
probability > 1 — ¢ over the random sample G,

p < Bin (m,pm,$)

~ _ o ~ ~ In(% ~
where p < Bin (m, pm, ) < p+ 1/ r;(—n‘i) approaches p from
above for increasing m
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Randomisation testing

Subsampling the transformation group

@ Upper bound the
bias p
(probabilistically)
by random sampling 0s pro2un 0 P03
e E.g.: 20 coin - -
tosses, 2 successes 01 4 01
ol | LA

e Upper bound Bin (20,2,0.1): largest bias that gives
probability > 0.1 to see 2 or fewer successes

@ Any larger value for p would imply that this few observations
is unlikely
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Randomisation testing

Subsampling the transformation group

Theorem (The p-value using randomisation testing)

e Given a pattern function 7,

@ a null hypothesis Qg invariant under g € G,

e afixedp e (0,1),

e and the set {g (X) : g € Gy} with Gy, a random subset of G.

Choose o (X) such that

#{g € Gn: (g (X)) =20 (X)}

B =

Then, with probability > 1 — § over G, ND € Q) :

Pxp (t(X) >0 (X)) < Bin(m,pm,J) .
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The FWER

The k-FWER
A zoo of error rates A uni bou

The FDP

The FWER

@ Thus far:

o Multiple testing framework
e How to use transformation invariants of the null hypothesis
and randomisation testing to perform single hypothesis testing

@ Now: use of randomisation testing for multiple tests, bounding

FWER

k-FWER

k-FWER uniformly
FDP

o First the FWER: the probability of at least one false rejection

Px.p (Ja € A\A: 1, (X) > 04 (X))
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The FWER
The k-FWER

A zoo of error rates A uniform bound
The FDP

The FWER

Theorem (Bounding the FWER using randomisation testing)

e Given a pattern class 11,

@ a null hypothesis ()g invariant under g € G,

e afixedp e (0,1),

e and the set {g (X) : g € Gy} with Gy, a random subset of G.

Choose o, (X) such that
#{g € Gy :Ta:m, (g (X)) >0a(X)}

m

b=

Then, with probability > 1 — & over Gy VA C A VD € () (A) :

Pxp (Eltx € A\A: 1, (X) > 0y (X)) < Bin(m,pm,§).
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A zoo of error rates

The k-FWER

@ In practice, we are happy to tolerate more than one false
rejection

@ If only one is tolerated: p is very large for any reasonable
choice of o, (X)

@ Overly conservative — very few true rejections (many type Il
errors!)

@ Remedy: upper bound probability to observe at most k false
rejections (instead of at most 1): the k-FWER

@ Instead of bounding
Pxp (G € A\A: 11, (X) > 04 (X))
now bound

Px..p (Hk different & € A\A: 714 (X) > 0, (X)) .
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A zoo of error rates

The k-FWER

The FWER

The k-FWER

A uniform bound
The FDP

Theorem (Bounding the k-FWER using randomisation testing)

e Given a pattern class 11,

@ a null hypothesis ()g invariant under g € G,
e afixedp € (0,1), and a fixed k,
e and the set {g (X) : g € Gy} with Gy, a random subset of G.

Choose o, (X) such that

#{g € G, : Ik different o : 71, (g (X)) > 04 (X)}

B =

Then, with probability > 1 — & over Gy VA C A VD € () (A) :

Pxp (3k different x € A\A : 114 (X) > 0o (X)) < Bin(m, pm, 6)

m
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A zoo of error rates
The FDP

A uniform bound on the k-FWER

@ In practice it may be hard to prespecify the k, the number of
false rejections tolerated

@ However, the previous bound holds for any fixed k, not
uniformly for all k

@ Can we obtain a uniform bound, for all
ke C{1,2,..]|A|}?

@ Here the set /C should be chosen so as to include all
potentially interesting values
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A zoo of error rates A uniform bound
The FDP

A uniform bound on the k-FWER

Instead of considering
Pxp (Jk different & € A\A : 774 (X) > 04 (X))
now consider
Px~p (3k € K : Tk different & € A\A: 1, (X) > 74 (X, k))

o Note that we have different thresholds o, (X, k) for different
k (we have to make this explicit now)

e For larger k, the threshold should be smaller (we tolerate
more false rejections)

@ Hence: the 0, (X, k) should be non-increasing
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The FWER
The k-FWER

A zoo of error rates A uniform bound
The FDP

A uniform bound on the k-FWER

Theorem (Bounding the k-FWER using randomisation testing)

e Given a pattern class 11,

@ a null hypothesis Qg invariant under g € G,
e afixedpe (0,1), aset £ C{1,2,..,]A|},
o and the set {g (X) : g € Gy} with Gy, a random subset of G.

Choose o, (X, k) non-increasing in k, such that

#{g € Gy : Ik € K : 3k different a : 71, (g (X)) > oo (X, k)}

m

B =
Then, with probability > 1 — & over G, YA C A, VD € Qg (Z) :

PXND (3k € K : 3k different w € A\A : 714 (X) > 04 (X, k))
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A zoo of error rates A bou
The FDP

@ We can easily check the total number of rejections for
ou (X, k): #rej(k)

@ The uniform k-FWER provides an immediate upper bound on
the number of false rejections: kK —1

@ = a lower bound on the number of true rejections as:
#trej(k)>#rej(k)-(1 —1)

@ Note however that #trej(k) cannot decrease with increasing
k. Hence:

ihtrei(K) = max (#rei(1) — (1 = 1))

o In particular, #trej(max{k € K}) gives a lower bound on the
total number of positives
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A zoo of error rates

The FDP

@ We already have an upper bound on the false rejections of
k—1

@ But, we can get a possibly tighter one:
#frej(k)=H#rej(k)-#trej(k)

@ Based on these quantities, we can bound the False Discovery
Proportion as:

Hfrej(k)

FDP(k) = Zirei (K)
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Technical details
E> 1ts

In practice

Technical details

o

2 microarray datasets: Alon and Golub

Compare point-wise bound for the k-FWER with the uniform
bound

Do this for different choices of K
One technical issue remains: how to choose o, (X, -)?

In principle, this is entirely free

For convenience, we choose o, (X, -) = ¢ (X, -) independent
of
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Technical details
ents

In practice

How to choose the thresholds?

e Compute {71, (g (X)) : g€ Gn C G, a € A}

e For each g € Gy, sort {71, (g (X)) : @ € A} in decreasing
ordering

@ Then, pick the k'th largest numbers from
{rty (g (X)) : &« € A} (there are m of them), and put this in a
set S (X, k)

o Interpretation: S (X, k) contains an empirical estimate of the
distribution of the k'th strongest correlation with the labels,
under ()

@ Choose 0" (X, k) = the r'th largest value of S (X, k)

@ Result: non-increasing functions of k that vary roughly as the
sorted {7, (g (X)) : 0 € A}
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Technical details
Experiments

i Conclusions
In practice

Alon and Golub datasets

@ Statistics of data sets

# genes | # arrays tissue 1 | # arrays tissue 2
2000 40 22
7129 47 25

@ Pattern functions used: the Wilcoxon rank sum test statistic
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Technical details
Experiments
. Cor ons
In practice

Alon and Golub datasets

300 700,

# true rejections (ower bound)
# true rejections (lower bound)

1000 o 2000

20 00 S0 500 o 150
# false rejections (upper bound) # false rejections (upper bound)

FDP (upper bound)
FDP (upper bound)

800 000 o 500 1000 1500 2000

a0 500
#rejections # rejections




In practice

Achievements

@ Based on randomisation testing, which ensures:

o More limited applicability (need to identify G)
e But all dependencies are adequately taken into account
e For that reason: practical relevance!

@ Finite sample bound for randomisation testing

o Separates randomness in g and X (6 and Bin (m, pm,d))
e This is relevant when one sample g is used for several multiple
tests

@ Uniform bounds over regions of k in k-FWER bounds

e Relevant where a priori unclear how large k should be taken
e Allows to bound FDP
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