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Overview

I will discuss a methodology to bound

the Family-Wise Error Rate (FWER)
the k-FWER
the False Discovery Proportion (FDP)

by means of randomisation (resampling)

Want to achieve:

quanti�cation and understanding of conclusions of multiple
testing
take account of dependencies between tests

(Results build on previous work by Meinshausen and others!
See references)
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In practice

Overview

Single and multiple hypothesis testing (notation / formalism /
terminology)

Randomisation testing

Bounding the FWER, k-FWER, FDP by resampling

Practical results
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Testing a single hypothesis
Testing a set of hypotheses

Motivating example

Assumption:

Gene A is unrelated to tissue type (e.g. �cancerous�/
�non-cancerous�)

Observation:

Expression of Gene A in a
set of tissue samples

Label of each of these
tissue samples

Question:

Is the observation �surprising�, given our assumption?

If so, something more interesting than the null hypothesis may
be true...
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Testing a single hypothesis
Testing a set of hypotheses

A pattern function to quantify the state

Aim: draw statistical conclusions about state of the world X
based on a �nite sample

�Particular state�: quanti�ed by means of a pattern function

π : X ! R

For example, π = correlation of the expression with the label
(-1/1)
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Testing a single hypothesis
Testing a set of hypotheses

The null hypothesis

Which statistical conclusions can we draw?

One computes an upper bound on the probability to see a
pattern as strong as π (X ) � σ, assuming a null hypothesis,
the �dull�assumption

Null hypothesis = a set Ω0 of distributions D over X

Hence, level of surprise is quanti�ed by p:

8D 2 Ω0 : PX�D (π (X ) � σ) � p

p is called the p-value
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Testing a single hypothesis
Testing a set of hypotheses

Rejecting the null hypothesis

If p is small, the level of surprise is large ! Ω0 rejected

If Ω0 holds nevertheless: false rejection (aka: type I error)

If Ω0 does not hold: true rejection

If Ω0 does not hold but still π (X ) < σ: type II error

test n Ω0 true false
accept just acceptance type II error
reject type I error true rejection

Challenge: keep type I and II errors small
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Testing a single hypothesis
Testing a set of hypotheses

Motivating example

Back to our genes...

Microarrays gather data
for all n genes in genome
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In practice

Testing a single hypothesis
Testing a set of hypotheses

Motivating example

Back to our genes...

Microarrays gather data for all n genes in genome

Doing n single hypothesis tests will cause many false rejections

Assuming the genes are independent and Ω0 holds, pn genes
are expected to be rejected! (e.g. for 20, 000 genes and
p = 0.01, this is 200)

Should all these genes be subjected to a closer look of the
biologist??

Need for a new formalism
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Testing a single hypothesis
Testing a set of hypotheses

A set of pattern functions

Multiple testing: a set of pattern functions, each quantifying
one aspect of the state of the world:

Π = fπα : α 2 Ag

with A and index set of size jAj
For example: πα measures correlation of gene α with the
labels

Now we have jAj di¤erent tests

πα (X ) � σα

(note: X contains all expression data, for all genes)
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Testing a single hypothesis
Testing a set of hypotheses

A set of pattern functions

Null hypothesis: Ω0 contains all distributions of X where the
labels and the gene expression data are independent

Each gene may provide evidence to reject null hypothesis now!
If:

πα (X ) � σα

FWER: probability to reject null hypothesis assuming that it
holds (i.e. the probability than any of the genes motivates
rejection)

The FWER is � p if

8D 2 Ω0 : PX�D (9α 2 A : πα (X ) � σα) � p

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Randomisation testing
A zoo of error rates
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Testing a single hypothesis
Testing a set of hypotheses

Alternative null hypotheses

Assuming that all genes are unrelated to the labels is probably
too simplistic (hopefully!)

Some will be truly unrelated

How can we do more than merely reject the null hypothesis or
not, based on some genes as a witness?

In particular: can we say anything about these genes that
show surprising behaviour?

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Randomisation testing
A zoo of error rates

In practice

Testing a single hypothesis
Testing a set of hypotheses

Alternative null hypotheses

Null hypothesis Ω0
�
A
�
= the sets of all distributions where

all but the subset
�

πα : α 2 A
	
� Π of k =

��A�� pattern
functions is jointly distributed as under a D 2 Ω0

Hence: we tolerate k =
��A�� positive genes (i.e. genes that are

potentially related with the labels)

Then the probability of at least one false rejection is

8D 2 Ω0
�
A
�

: PX�D
�
9α 2 AnA : πα (X ) � σα

�
� p
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Testing a single hypothesis
Testing a set of hypotheses

Alternative null hypotheses

Further de�ne:
Ω0 =

[
A�A

Ω0
�
A
�

Under any distribution from null hypothesis Ω0, the
probability of at least one false rejection is bounded by p if:

8A, 8D 2 Ω0
�
A
�

: PX�D
�
9α 2 AnA : πα (X ) � σα

�
� p

Hence, if p is small and there are rejections α, then we must
conclude that these are true rejections and belong to A
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Testing a single hypothesis
Testing a set of hypotheses

Alternative null hypotheses

Note: we never reject the null hypothesis Ω0

But: we would reject many Ω0
�
A
�
with too small sets A

Namely: we would reject all Ω0
�
A
�
for which

9α 2 AnA : πα (X ) � σα

Now, how to compute this upper bound p?
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Testing a single hypothesis
Testing a set of hypotheses

Bonferroni correction

Lemma (Bonferroni correction)

Suppose A � N is a countable index set for a class of pattern
functions fπα : α 2 Ag. Let qα 2 (0, 1) such that

∑
α2A

qα � 1.

If we choose σα such that 8D 2 Ω0:

PX�D (πα (X ) � σα) � pqα,

then 8A � A, 8D 2 Ω0
�
A
�

:

PX�D
�
9α 2 AnA : πα (X ) � σα

�
� p.
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Testing a single hypothesis
Testing a set of hypotheses

Bonferroni correction

The most well-known approach to bound the FWER

Proof is a straightforward application of the union bound

Correct for all Ω0 �for arbitrary dependencies between genes

Therefore very conservative :-(
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Randomisation (permutation) testing

So far for the general introduction to multiple testing...
Now a general introduction to randomisation testing as a
technique!

Computation intensive method to perform hypothesis testing

I Will �rst discuss single hypothesis testing

Explicitly taking �niteness of random sample into account

Then expand ideas to multiple hypothesis testing

Everything relies on a transformation group G , such that

PX�D (X ) = PX�D (g (X ))

for g 2 G and D 2 Ω0

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Randomisation testing
A zoo of error rates

In practice

Randomisation (permutation) testing

Theorem (The p-value using randomisation testing)

Given a pattern function π,

a null hypothesis Ω0 invariant under g 2 G,
a �xed p 2 (0, 1),
and the set fg (X ) : g 2 Gg.

Choose σ (X ) such that

p =
# fg 2 G : π (g (X )) � σ (X )g

jG j

Then, 8D 2 Ω0 :

PX�D (π (X ) � σ (X )) = p.
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Subsampling the transformation group

Usually, the number of group elements is prohibitively large

Then a subsample Gm of size jGm j = m is used to estimate p:

bp = # fg 2 Gm : π (g (X )) � σ (X )g
m

It can be shown (Langford, see references) that with
probability � 1� δ over the random sample Gm ,

p � Bin (m,bpm, δ)
where bp � Bin (m,bpm, δ) � bp +q ln( 1δ )

2m approaches bp from
above for increasing m
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Subsampling the transformation group

Upper bound the
bias p
(probabilistically)
by random sampling

E.g.: 20 coin
tosses, 2 successes
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Upper bound Bin (20, 2, 0.1): largest bias that gives
probability � 0.1 to see 2 or fewer successes
Any larger value for p would imply that this few observations
is unlikely

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Randomisation testing
A zoo of error rates

In practice

Subsampling the transformation group

Theorem (The p-value using randomisation testing)

Given a pattern function π,

a null hypothesis Ω0 invariant under g 2 G,
a �xed bp 2 (0, 1),
and the set fg (X ) : g 2 Gmg with Gm a random subset of G.

Choose σ (X ) such that

bp = # fg 2 Gm : π (g (X )) � σ (X )g
m

Then, with probability � 1� δ over Gm ,8D 2 Ω0 :

PX�D (π (X ) � σ (X )) � Bin (m,bpm, δ) .
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The FWER
The k-FWER
A uniform bound
The FDP

The FWER

Thus far:

Multiple testing framework
How to use transformation invariants of the null hypothesis
and randomisation testing to perform single hypothesis testing

Now: use of randomisation testing for multiple tests, bounding

FWER
k-FWER
k-FWER uniformly
FDP

First the FWER: the probability of at least one false rejection

PX�D
�
9α 2 AnA : πα (X ) � σα (X )

�
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The FWER
The k-FWER
A uniform bound
The FDP

The FWER

Theorem (Bounding the FWER using randomisation testing)

Given a pattern class Π,
a null hypothesis Ω0 invariant under g 2 G,
a �xed bp 2 (0, 1),
and the set fg (X ) : g 2 Gmg with Gm a random subset of G.

Choose σα (X ) such that

bp = # fg 2 Gm : 9α : πα (g (X )) � σα (X )g
m

Then, with probability � 1� δ over Gm ,8A � A, 8D 2 Ω0
�
A
�

:

PX�D
�
9α 2 AnA : πα (X ) � σα (X )

�
� Bin (m,bpm, δ) .
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The FWER
The k-FWER
A uniform bound
The FDP

The k-FWER

In practice, we are happy to tolerate more than one false
rejection
If only one is tolerated: bp is very large for any reasonable
choice of σα (X )
Overly conservative �very few true rejections (many type II
errors!)
Remedy: upper bound probability to observe at most k false
rejections (instead of at most 1): the k-FWER
Instead of bounding

PX�D
�
9α 2 AnA : πα (X ) � σα (X )

�
now bound

PX�D
�
9k di¤erent α 2 AnA : πα (X ) � σα (X )

�
.
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The FWER
The k-FWER
A uniform bound
The FDP

The k-FWER

Theorem (Bounding the k-FWER using randomisation testing)

Given a pattern class Π,
a null hypothesis Ω0 invariant under g 2 G,
a �xed bp 2 (0, 1), and a �xed k,
and the set fg (X ) : g 2 Gmg with Gm a random subset of G.

Choose σα (X ) such that

bp = # fg 2 Gm : 9k di¤erent α : πα (g (X )) � σα (X )g
m

Then, with probability � 1� δ over Gm ,8A � A, 8D 2 Ω0
�
A
�

:

PX�D
�
9k di¤erent α 2 AnA : πα (X ) � σα (X )

�
� Bin (m,bpm, δ) .
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The FWER
The k-FWER
A uniform bound
The FDP

A uniform bound on the k-FWER

In practice it may be hard to prespecify the k, the number of
false rejections tolerated

However, the previous bound holds for any �xed k, not
uniformly for all k

Can we obtain a uniform bound, for all
k 2 K � f1, 2, ..., jAjg?
Here the set K should be chosen so as to include all
potentially interesting values

Tijl De Bie and John Shawe-Taylor Bounding the k-family-wise error rate using resampling methods



Multiple testing: the formalism
Randomisation testing
A zoo of error rates

In practice

The FWER
The k-FWER
A uniform bound
The FDP

A uniform bound on the k-FWER

Instead of considering

PX�D
�
9k di¤erent α 2 AnA : πα (X ) � σα (X )

�
now consider

PX�D
�
9k 2 K : 9k di¤erent α 2 AnA : πα (X ) � σα (X , k)

�
Note that we have di¤erent thresholds σα (X , k) for di¤erent
k (we have to make this explicit now)

For larger k, the threshold should be smaller (we tolerate
more false rejections)

Hence: the σα (X , k) should be non-increasing
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The FWER
The k-FWER
A uniform bound
The FDP

A uniform bound on the k-FWER

Theorem (Bounding the k-FWER using randomisation testing)

Given a pattern class Π,
a null hypothesis Ω0 invariant under g 2 G,
a �xed bp 2 (0, 1), a set K � f1, 2, ..., jAjg,
and the set fg (X ) : g 2 Gmg with Gm a random subset of G.

Choose σα (X , k) non-increasing in k, such that

bp = # fg 2 Gm : 9k 2 K : 9k di¤erent α : πα (g (X )) � σα (X , k)g
m

Then, with probability � 1� δ over Gm ,8A � A, 8D 2 Ω0
�
A
�

:

PX�D
�
9k 2 K : 9k di¤erent α 2 AnA : πα (X ) � σα (X , k)

�
� Bin (m,bpm, δ) .
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The FWER
The k-FWER
A uniform bound
The FDP

The FDP

We can easily check the total number of rejections for
σα (X , k): #rej(k)

The uniform k-FWER provides an immediate upper bound on
the number of false rejections: k � 1
) a lower bound on the number of true rejections as:
#trej(k)�#rej(k)-(l � 1)
Note however that #trej(k) cannot decrease with increasing
k. Hence:

#trej(k) = max
l�k

(#rej(l)� (l � 1))

In particular, #trej(max fk 2 Kg) gives a lower bound on the
total number of positives
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The FWER
The k-FWER
A uniform bound
The FDP

The FDP

We already have an upper bound on the false rejections of
k � 1
But, we can get a possibly tighter one:
#frej(k)=#rej(k)-#trej(k)

Based on these quantities, we can bound the False Discovery
Proportion as:

FDP(k) =
#frej(k)
#rej(k)
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Conclusions

Technical details

2 microarray datasets: Alon and Golub

Compare point-wise bound for the k-FWER with the uniform
bound

Do this for di¤erent choices of K
One technical issue remains: how to choose σα (X , �)?
In principle, this is entirely free

For convenience, we choose σα (X , �) = σ (X , �) independent
of α
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How to choose the thresholds?

Compute fπα (g (X )) : g 2 Gm � G , α 2 Ag
For each g 2 Gm , sort fπα (g (X )) : α 2 Ag in decreasing
ordering

Then, pick the k�th largest numbers from
fπα (g (X )) : α 2 Ag (there are m of them), and put this in a
set S (X , k)
Interpretation: S (X , k) contains an empirical estimate of the
distribution of the k�th strongest correlation with the labels,
under Ω0

Choose σr (X , k) = the r�th largest value of S (X , k)
Result: non-increasing functions of k that vary roughly as the
sorted fπα (g (X )) : α 2 Ag
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Alon and Golub datasets

Statistics of data sets

# genes # arrays tissue 1 # arrays tissue 2
2000 40 22
7129 47 25

Pattern functions used: the Wilcoxon rank sum test statistic
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Alon and Golub datasets
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Achievements

Based on randomisation testing, which ensures:

More limited applicability (need to identify G )
But all dependencies are adequately taken into account
For that reason: practical relevance!

Finite sample bound for randomisation testing

Separates randomness in g and X (δ and Bin (m,bpm, δ))
This is relevant when one sample g is used for several multiple
tests

Uniform bounds over regions of k in k-FWER bounds

Relevant where a priori unclear how large k should be taken
Allows to bound FDP
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