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hould we be interested in causal in

What should a scientific theory be able to do?

@ Explain already observed data
@ Correctly predict future observations

» of systems that are passively observed.
» of systems that are actively intervened upon.

—The aim of causal inference is to predict how a system reacts to an
intervention.

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 2 /41



The potential outcomes framework

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:

Example:

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:

e A population U

Example:

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:

e A population U

Example:
@ U: A set of patients

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U

@ Individual units u e U

Example:
@ U: A set of patients

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U

@ Individual units u e U

Example:
@ U: A set of patients

@ u: An individual patient

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U
o Individual units u € U
o A treatment variable S(u) : U — {t,c}

Example:
@ U: A set of patients

@ u: An individual patient

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U
o Individual units u € U
o A treatment variable S(u) : U — {t,c}

Example:
@ U: A set of patients
@ u: An individual patient

@ S(u): Assignment of patient u to treatment- or control-group

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U
o Individual units u € U
o A treatment variable S(u) : U — {t,c}
e An outcome variable Y (u,S(u)) : U x {t,c} = R

Example:
@ U: A set of patients
@ u: An individual patient

@ S(u): Assignment of patient u to treatment- or control-group

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 3/41



The potential outcomes framework

Notation:
e A population U
o Individual units u € U
o A treatment variable S(u) : U — {t,c}
e An outcome variable Y (u,S(u)) : U x {t,c} = R

Example:
@ U: A set of patients
@ u: An individual patient
@ S(u): Assignment of patient u to treatment- or control-group

@ Y(u,S(u)): The survival time of patient u under treatment S(u)

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)
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e It is impossible to observe Y:(u) and Yc(u) on the same unit.

Solutions:
© Assume unit homogeneity: Y;/c(u1) = Yyc(u2)
@ Assume causal transience: Y¢(u) L Yc(u)
© Compute the average causal effect: T = E(Y;) — E(Yc)
But we can only observe E(Y;/c|S = t/c).
When does it hold that E(Y;/c|S = t/c) = E(Yy/c)?

If Y LS, i.e. if treatment assignments are done randomly.

(Holland PW, Statistics and Causal Inference. Journal of the American Statistical Association, 1986)
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Causal inference in neuroimaging

@ Can we do causal inference based on observational data only?
> In general, no.
» Under (usually untestable) assumptions, yes.

@ So what makes for a good causal inference algorithm?

It is provably correct under reasonable assumptions.

It makes testable predictions on the effect of interventions.
It is able to deal with hidden confounders.

It performs well on finite data.

v vy VvYyy
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@ Granger Causality
© Causal Bayesian Networks
© Dynamic Causal Modelling

@ Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

© Summary
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Outline

@ Granger Causality
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate
past of the first.

Example: First-order autoregressive (AR) process

x[t —1]

x[t] = ax[t — 1] + ex[t]
ylt] = by[t — 1]+ x|t — 1] + ¢, [¢] .
y[t—1]

x[t] x[t+1]

W
W

v
v

yltl ylt+1]

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.

Example: First-order autoregressive (AR) process

x[t —1]

W

x[t]
~

y[t]

x[t+1]

W

x[t] = ax[t — 1] + e[t]
y[t] = by[t — 1] + ex[t — 1] + €, [t]

v

y[t+1]

v

y[t—1]

Inference procedure: x — y?

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.

Example: First-order autoregressive (AR) process

X[t — 1] s x[t] » x[t+1]
(] = ax(t 1] + o1 ™
y[t] = by[t — 1] + ex[t — 1] + €, [t] y[t —1] \ y[t] o y[t+1]

Inference procedure: x — y?
o Predict y[t] from its past values = o2(y[t]|y[t — 1]).

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.

Example: First-order autoregressive (AR) process

x[t] = ax[t — 1] + e[t]

y[t] = by[t — 1] + ex[t — 1] + €, [t]

x[t —1]

» x[t]

¥ x[t + 1]

~.

y[t—1]

~

» y[t]

» y[t + 1]

Inference procedure: x — y?

o Predict y[t] from its past values = o2(y[t]|y[t — 1]).
o Predict y[t] from the past of y and x = o?(y[t]|y[t — 1], x[t — 1]).

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.

Example: First-order autoregressive (AR) process

x[t] = ax[t — 1] + e[t]

y[t] = by[t — 1] + ex[t — 1] + €, [t]

x[t —1]

» x[t]

¥ x[t + 1]

~.

y[t—1]

~

» y[t]

» y[t + 1]

Inference procedure: x — y?

o Predict y[t] from its past values = o2(y[t]|y[t — 1]).
o Predict y[t] from the past of y and x = o?(y[t]|y[t — 1], x[t — 1]).
o If a?(y[t]ly[t — 1], x[t — 1]) < o?(y[t]|y[t — 1]) conclude that x — y.

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality: Confounding

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate

past of the first.
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Granger causality: Confounding

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate
past of the first.

Definition B (by Granger): If 0?(Y|U) < 0?(Y|U — X), we say that X is
causing Y, denoted by X; = Y;.

Confounding:

x[t — 2] = x[t — 1] » x[t] » x[t + 1]
1 e

h(t — 2] > h[t — 1] 3 h(t] 3 ht + 1]

ylt =2 =yt =1 =yt — vt +1]

— Control for h: o(y|y,x, h) < o?(y|y, h)!
(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality: Confounding

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate
past of the first.

Definition B (by Granger): If 0?(Y|U) < 0?(Y|U — X), we say that X is
causing Y, denoted by X; = Y;.

Confounding:

x[t — 2] = x[t — 1] » x[t] » x[t + 1]
7 / -

h(t — 2] > h[t — 1] 3 h(t] s h[t + 1]

ylt — 2] - yle — 1 =y el =3[y fe + 1

— Control for h: o?(y|y, X, h) < a?(y|y, h)!Impossible for latent variables.

(Granger C.W.J., Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969)
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Granger causality: Directed transfer function (DTF)

(Kaminski et al., Evaluating causal relations in neural systems. Biological Cybernetics, 2001)
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o Observe T samples of x[t] € RN (= number of signals).

(Kaminski et al., Evaluating causal relations in neural systems. Biological Cybernetics, 2001)
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Granger causality: Directed transfer function (DTF)

o Observe T samples of x[t] € RN (= number of signals).
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Granger causality: Case study

Bottom-up Granger-causal influence
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(Bosman et al., Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 2012)
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Causal Bayesian Networks: Introductory example

Causal structure
(unkown)

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Introductory example

Causal structure  Empirical data Dependency structure
(unkown) (observable) (inferable)
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Causal Bayesian Networks: Introductory example
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Causal Bayesian Networks: Potential causation

Under the assumptions of faithfulness and causal sufficiency, the following
conditions are sufficient for x to be a cause of y:

o xf~z
oy f~z
e xly

Dependency structure Causal structure

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Spurious association

Under the assumption of faithfulness, the following conditions are
sufficient for x and y to be spuriously related:
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Causal Bayesian Networks: Genuine causation

Under the assumption of faithfulness, the following conditions are
sufficient for x to be a genuine cause of y:

@ z is a potential cause of x

oz [ly
o z lylx

Dependency structure Causal structure

YUY

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Predicting interventions

Given: Causal structure (DAG) & p(x, y, z, w) ° o

Goal: Predict the effect of experimentally controlling x

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Faithfulness

Faithfulness: All observed (conditional) independences are structural.

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Faithfulness: All observed (conditional) independences are structural.

Causal structure  Functional model Dependency structure

X = Uy
y=ax+bz+u,
(if a= —bc)
= bu; + u,

Z=CcX+ u,

For a given causal structure (DAG), the unfaithful distributions have
measure zero in the space of all distributions that can be generated by the
DAG (Meek. UAI, 1995).

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Conditional independence tests

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Conditional independence tests

Independence tests have to be carried out on finite data.
Uncorrelatedness does not imply independence.
Nonlinear independence tests are hard (Gretton et al., JMLR, 2012).

Conditional non-linear independence tests are very hard (Zhang et al.
UAI 2012).

Not finding a dependence is not evidence for independence.

(Pearl J., Causality: Models, reasoning, and inference, 2000)
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Causal Bayesian Networks: Case study

What are the causes of inter-subject variations in performance when
operating a sensorimotor brain-computer interface (BCI)?

(Grosse-Wentrup et al. Causal influence of gamma-oscillations on the sensorimotor-rhythm. Neurolmage, 2011)
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amic causal modelling (DCM)

Causality in DCM is used in a control theory sense and means that, under
the model, activity in one brain area causes dynamics in another, and that
these dynamics cause the observations. (Friston, 2009)

(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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the model, activity in one brain area causes dynamics in another, and that
these dynamics cause the observations. (Friston, 2009)

Inference procedure:

@ Observe an N-dimensional time-series x(t) ¢ RN for t =1,..., T
(e.g., BOLD signals).

@ Define a set of M models M = {my, ..., mpy}, where each model
consists of a set of differential equations with a different connectivity
structure.

© Fit each model to the data (which is a tough problem).

@ Take the connectivity of the model with the best data fit as the true
causal structure.

(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Dynamic causal modelling: The hemodynamic model

The hemodynamic model

neuronal input

state variables
x={z,5,/,,q}

W = [ E(fp) p—v"av

y=2q)

hemodynamic response
(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Dynamic causal modelling: The bilinear model

Z,=QuZ,+

2
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(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Dynamic causal modelling: Model comparison

VS.

(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Dynamic causal modelling

Inference procedure:

© Observe an N-dimensional time-series x(t) € RN for t =1,..., T
(e.g., BOLD signals).

@ Define a set of M models M = {mq,..., my}, where each model
consists of a set of differential equations with a different connectivity
structure.

© Fit each model to the data (which is a tough problem).

@ Take the connectivity of the model with the best data fit as the true
causal structure.

(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Inference procedure:

© Observe an N-dimensional time-series x(t) € RN for t =1,..., T
(e.g., BOLD signals).

@ Define a set of M models M = {mq,..., my}, where each model
consists of a set of differential equations with a different connectivity
structure.

© Fit each model to the data (which is a tough problem).

@ Take the connectivity of the model with the best data fit as the true
causal structure.

If M does not contain the true model, is the best-fitting model in M
similar to the true one in terms of its connectivity structure?

(Friston K.J. et al., Dynamic causal modelling. Neurolmage, 2003)
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Dynamic causal modelling: Model fit & structure similarity

(Lohmann et al., Critical comments on dynamic causal modelling. Neurolmage, 2012)
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— Similarity in terms of model fit does not translate into similarity in
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Model fit

— Similarity in terms of model fit does not translate into similarity in
terms of connectivity structure.

— There is no reason to believe that DCM selects a causal structure that
is structurally similar to the true one.

(Lohmann et al., Critical comments on dynamic causal modelling. Neurolmage, 2012)
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Causal inference in neuroimaging

GC | CBN | DCM | Non-LiINGAM

Provably correct under

reasonable assumptions
Testable interventions

Hidden confounders
Empirical performance

x|\ X
EIRNENEEN
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Outline

@ Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Length

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Length

Let

y="~f(x)+n

for some arbitrary non-linear function f and p(x, n) = p(x)p(n) (x L n).

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Let
y="f(x)+n

for some arbitrary non-linear function f and p(x, n) = p(x)p(n) (x L n).
Is it possible to invert this model to obtain

x=gly)+n

with some arbitrary non-linear function g and p(y, 1) = p(y)p(h) (y L 7)?

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Let
y=f(x)+n

for some arbitrary non-linear function f and p(x, n) = p(x)p(n) (x L n).
Is it possible to invert this model to obtain

x=gly)+n

with some arbitrary non-linear function g and p(y, 1) = p(y)p(h) (y L 7)?
— In general, no!

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Inference procedure:

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Inference procedure:
© Observe N samples of {x;,y;} with i =1,...,N.

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Inference procedure:
© Observe N samples of {x;,y;} with i =1,...,N.

@ Perform a non-linear regression from x to y and test whether for the
residuals e, it holds that e, I x.
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© Observe N samples of {x;,y;} with i =1,...,N.

@ Perform a non-linear regression from x to y and test whether for the
residuals e, it holds that e, I x.

© Perform a non-linear regression from y to x and test whether for the
residuals e, it holds that e, 1L y.
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Inference procedure:
© Observe N samples of {x;,y;} with i =1,...,N.

Perform a non-linear regression from x to y and test whether for the
residuals e, it holds that e, I x.

o

© Perform a non-linear regression from y to x and test whether for the
residuals e, it holds that e, 1L y.

(]

If e, I x decide that x — y.

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 35 /41



Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Inference procedure:
© Observe N samples of {x;,y;} with i =1,...,N.

@ Perform a non-linear regression from x to y and test whether for the
residuals e, it holds that e, I x.

Perform a non-linear regression from y to x and test whether for the
residuals e, it holds that e, L y.

o
@ If e, I x decide that x — y.
Q If ex I y decide that y — x.

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiINGAM)

Inference procedure:
© Observe N samples of {x;,yi} with i=1,... N.

@ Perform a non-linear regression from x to y and test whether for the
residuals e, it holds that e, I x.

Perform a non-linear regression from y to x and test whether for the
residuals e, it holds that e, L y.

If e, I x decide that x — y.
If ex 1Ly decide that y — x.

Do not decide on causal direction if neither e, I x nor e, L y.

(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Causal inference in neuroimaging

GC | CBN | DCM | Non-LiINGAM

Provably correct under

reasonable assumptions
Testable interventions

Hidden confounders
Empirical performance

x|\ X
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x| X[ x| X

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 36 / 41



Causal inference in neuroimaging

GC | CBN | DCM | Non-LiINGAM
v

Provably correct under

reasonable assumptions
Testable interventions

Hidden confounders
Empirical performance

x|\ X
EIRNENEEN
x| X[ x| X

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 36 / 41



Causal inference in neuroimaging

GC | CBN | DCM | Non-LiINGAM
v
v

Provably correct under

reasonable assumptions
Testable interventions

Hidden confounders
Empirical performance

x|\ X
EIRNENEEN
x| X[ x| X

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 36 / 41



Causal inference in neuroimaging
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Outline

© Summary
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Empirical Performance
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(Smith et al., Network modelling methods for fMRI. Neurolmage, 2011)
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Conclusions

Every causal inference algorithms rests on untestable assumptions.

Several causal inference algorithms appear to perform above
chance-level.
Causal inference may be useful

> to guide the design of interventional studies
» when qualitative conclusions do not depend on individual results.

o Causal inference is (at present) not useful, when qualitative
conclusions depend on one individual inference result.
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