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Tübingen, Germany

February 28, 2014

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 1 / 41



Why should we be interested in causal inference?

What should a scientific theory be able to do?

1 Explain already observed data
2 Correctly predict future observations

I of systems that are passively observed.
I of systems that are actively intervened upon.

→The aim of causal inference is to predict how a system reacts to an
intervention.
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The potential outcomes framework

Notation:

A population U
Individual units u ∈ U
A treatment variable S(u) : U → {t, c}
An outcome variable Y (u,S(u)) : U × {t, c} → R

Example:

U : A set of patients

u: An individual patient

S(u): Assignment of patient u to treatment- or control-group

Y (u,S(u)): The survival time of patient u under treatment S(u)
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The potential outcomes framework

The fundamental problem of causal inference:

The effect of cause t on u is measured as Yt(u)− Yc(u).

It is impossible to observe Yt(u) and Yc(u) on the same unit.

Solutions:

1 Assume unit homogeneity : Yt/c(u1) = Yt/c(u2)

2 Assume causal transience: Yt(u)⊥⊥Yc(u)

3 Compute the average causal effect: T = E (Yt)− E (Yc)

But we can only observe E (Yt/c |S = t/c).

When does it hold that E (Yt/c |S = t/c) = E (Yt/c)?

If Y ⊥⊥ S , i.e. if treatment assignments are done randomly.
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The potential outcomes framework

Example:

Treatment

Sex

Survival

E (Survival|Treatment) = E (Survival|Control)

Assume E (Survival|Sex = female) > E (Survival|Sex = male)

Assume E (Treatment|Sex = female) > E (Treatment|Sex = male)

Then E (Survival|Treatment) > E (Survival|Control)

Incorrect conclusion: Treatment → Survival
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Causal inference in neuroimaging

1 Can we do causal inference based on observational data only?

I In general, no.
I Under (usually untestable) assumptions, yes.

2 So what makes for a good causal inference algorithm?

I It is provably correct under reasonable assumptions.
I It makes testable predictions on the effect of interventions.
I It is able to deal with hidden confounders.
I It performs well on finite data.
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Outline

1 Granger Causality

2 Causal Bayesian Networks

3 Dynamic Causal Modelling

4 Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

5 Summary
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Granger causality

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate
past of the first.

Example: First-order autoregressive (AR) process

x [t] = ax [t − 1] + εx [t]
y [t] = by [t− 1] + cx [t− 1] + εy [t]

x [t − 1] x [t] x [t + 1]

y [t − 1] y [t] y [t + 1]

Inference procedure: x → y?

Predict y [t] from its past values ⇒ σ2(y [t]|y [t − 1]).

Predict y [t] from the past of y and x ⇒ σ2(y [t]|y [t − 1], x [t − 1]).

If σ2(y [t]|y [t − 1], x [t − 1]) < σ2(y [t]|y [t − 1]) conclude that x → y .

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 9 / 41
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Granger causality: Confounding

Definition A (not by Granger): One stochastic process is causal to a
second if the autoregressive predictability of the second process at a given
time point is improved by including measurements from the immediate
past of the first.

Definition B (by Granger): If σ2(Y |U) < σ2(Y |U − X ), we say that X is
causing Y , denoted by Xt ⇒ Yt .

Confounding:

x [t − 2] x [t − 1] x [t] x [t + 1]

y [t − 2] y [t − 1] y [t] y [t + 1]

h[t − 2] h[t − 1] h[t] h[t + 1]

→ Control for h: σ2(y |y , x , h) < σ2(y |y , h)!Impossible for latent variables.
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Granger causality: Directed transfer function (DTF)

Observe T samples of x[t] ∈ RN (= number of signals).

Pick an order p of the AR-process.

Learn parameters A[i ] of AR-process x[t] =
∑p

i=1 A[i ]x[t − i ] + ε[t].

Let A[0] = −I :

−
∑p

i=0 A[i ]x[t − i ] = ε[t]

⇔ −A[t] ∗ x[t] = ε[t]
F↔ −A(f )x(f ) = ε(f )

⇔ H(f ) = x(f )
e(f ) = −A−1(f ).

hij(f ) describes the frequency-specific effect of xj [t] on xi [t].
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Granger causality: Case study

M. Grosse-Wentrup (MPI-IS) Causal Inference in Neuroimaging February 28, 2014 12 / 41

(Bosman et al., Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 2012)



Causal inference in neuroimaging

GC CBN DCM Non-LiNGAM
Provably correct under
reasonable assumptions

7

Testable interventions

3

Hidden confounders

7

Empirical performance
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Outline

1 Granger Causality

2 Causal Bayesian Networks

3 Dynamic Causal Modelling

4 Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

5 Summary
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Causal Bayesian Networks: Introductory example

Causal structure

Empirical data Dependency structure

(unkown)

(observable) (inferable)

x y

z

{x1, y1, z1}
x y

z

{x2, y2, z2}
...

{xN , yN , zN}
→ p(x , y , z)
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Causal x y

z

x y

z

x y

z

x y

z

structure

Dependency x y

z

x y

z

x y

z

x y

z

structure
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Causal Bayesian Networks: Potential causation

Under the assumptions of faithfulness and causal sufficiency, the following
conditions are sufficient for x to be a cause of y :

x 6⊥⊥ z

y 6⊥⊥ z

x ⊥⊥ y

Dependency structure Causal structure

x y

z

x y

z

⇒
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Causal Bayesian Networks: Spurious association

Under the assumption of faithfulness, the following conditions are
sufficient for x and y to be spuriously related:
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Causal Bayesian Networks: Genuine causation

Under the assumption of faithfulness, the following conditions are
sufficient for x to be a genuine cause of y :

z is a potential cause of x

z 6⊥⊥ y

z ⊥⊥ y |x

Dependency structure Causal structure
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Causal Bayesian Networks: Predicting interventions

Given: Causal structure (DAG) & p(x , y , z ,w)
Goal: Predict the effect of experimentally controlling x

1 Factorize p(x , y , z ,w) accoding to it’s DAG:

p(x , y , z ,w) = p(w |z)p(z |x , y)p(x)p(y)

2 Compute the interventional distribution:

p(x , y , z ,w |do(x = x̃)) = p(w |z)p(z |x̃ , y)p(y)

3 Compute marginal distribution of variable of interest:

p(w |do(x = x̃)) =
∫
z

∫
y p(w |z)p(z |x̃ , y)p(y)dydz

x

z

y

w
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Causal Bayesian Networks: Faithfulness

Faithfulness: All observed (conditional) independences are structural.

Causal structure Functional model Dependency structure

x y

z

x = ux x y

z

y = ax + bz + uy

(if a = −bc)
= buz + uy

z = cx + uz

For a given causal structure (DAG), the unfaithful distributions have
measure zero in the space of all distributions that can be generated by the
DAG (Meek. UAI, 1995).
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Causal Bayesian Networks: Conditional independence tests

Independence tests have to be carried out on finite data.

Uncorrelatedness does not imply independence.

Nonlinear independence tests are hard (Gretton et al., JMLR, 2012).

Conditional non-linear independence tests are very hard (Zhang et al.
UAI, 2012).

Not finding a dependence is not evidence for independence.
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Causal Bayesian Networks: Case study

What are the causes of inter-subject variations in performance when
operating a sensorimotor brain-computer interface (BCI)?

Causal hypothesis

Instruction

SMR

γ-power

Empirical independence stucture

⊥⊥ /p Instruction SMR γ-power

Instruction - 1e-4 0.44
SMR 6⊥⊥ - 2e-4
γ-power ⊥⊥ 6⊥⊥ -

Instruction

SMR

Neural substrate of
motor imagery

γ-power

Neural substrate of
attention
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Causal inference in neuroimaging

GC CBN DCM Non-LiNGAM
Provably correct under
reasonable assumptions

7

3

Testable interventions 3

3

Hidden confounders 7

3

Empirical performance

7
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Outline

1 Granger Causality

2 Causal Bayesian Networks

3 Dynamic Causal Modelling

4 Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

5 Summary
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Dynamic causal modelling (DCM)

Causality in DCM is used in a control theory sense and means that, under
the model, activity in one brain area causes dynamics in another, and that
these dynamics cause the observations. (Friston, 2009)

Inference procedure:

1 Observe an N-dimensional time-series x(t) ∈ RN for t = 1, . . . ,T
(e.g., BOLD signals).

2 Define a set of M models M = {m1, . . . ,mM}, where each model
consists of a set of differential equations with a different connectivity
structure.

3 Fit each model to the data (which is a tough problem).

4 Take the connectivity of the model with the best data fit as the true
causal structure.
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Dynamic causal modelling: The hemodynamic model
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Dynamic causal modelling: The bilinear model
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Dynamic causal modelling: Model comparison

vs.
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Dynamic causal modelling

Inference procedure:

1 Observe an N-dimensional time-series x(t) ∈ RN for t = 1, . . . ,T
(e.g., BOLD signals).

2 Define a set of M models M = {m1, . . . ,mM}, where each model
consists of a set of differential equations with a different connectivity
structure.

3 Fit each model to the data (which is a tough problem).

4 Take the connectivity of the model with the best data fit as the true
causal structure.

If M does not contain the true model, is the best-fitting model in M
similar to the true one in terms of its connectivity structure?
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Dynamic causal modelling: Model fit & structure similarity

Model fit

N
u
m

b
er
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f 
m
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→ Similarity in terms of model fit does not translate into similarity in
terms of connectivity structure.
→ There is no reason to believe that DCM selects a causal structure that
is structurally similar to the true one.
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Outline

1 Granger Causality

2 Causal Bayesian Networks

3 Dynamic Causal Modelling

4 Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

5 Summary
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Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

Let
y = f (x) + n

for some arbitrary non-linear function f and p(x , n) = p(x)p(n) (x ⊥⊥ n).
Is it possible to invert this model to obtain

x = g(y) + ñ

with some arbitrary non-linear function g and p(y , ñ) = p(y)p(ñ) (y ⊥⊥ ñ)?
→ In general, no!
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(Hoyer et al., Nonlinear causal discovery with additive noise models. NIPS, 2008)
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Non-Linear Non-Gaussian Acyclic Models (Non-LiNGAM)

Inference procedure:

1 Observe N samples of {xi , yi} with i = 1, . . . ,N.

2 Perform a non-linear regression from x to y and test whether for the
residuals ey it holds that ey ⊥⊥ x .

3 Perform a non-linear regression from y to x and test whether for the
residuals ex it holds that ex ⊥⊥ y .

4 If ey ⊥⊥ x decide that x → y .

5 If ex ⊥⊥ y decide that y → x .

6 Do not decide on causal direction if neither ey ⊥⊥ x nor ex ⊥⊥ y .
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Causal inference in neuroimaging
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Provably correct under
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Empirical Performance
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Conclusions

Every causal inference algorithms rests on untestable assumptions.

Several causal inference algorithms appear to perform above
chance-level.

Causal inference may be useful

I to guide the design of interventional studies
I when qualitative conclusions do not depend on individual results.

Causal inference is (at present) not useful, when qualitative
conclusions depend on one individual inference result.
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