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Overview of this Tutorial

I From the Oddball Paradigm to ERP-based BCI Spellers

I From Uni- to Multivariate Features

I Classi�cation of ERP Features

I Understanding Spatial Filters

I The Linear Model

I Illustration of Spatial Patterns and Filters

I Interpretability of Spatial Filters

I Issues in Validation
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Part I

Introduction to ERP-based BCIs
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Non-Invasive Brain-Computer Interaction

Real-time recognition of mental states of users based on brain

activity for enriching human-machine interaction
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Di�erent Occurences of Neural Activity

I spontaneous oscillations, e.g., sensorimotor rhythm (SMR), or visual
alpha rhythm

Oz

10 Hzeyes closed eyes open

I induced oscillations, e.g., steady-state visual evoked potentials
(SSVEP), auditory steady-state response (ASSR), evoked by and
synchronous to a periodic external stimulus

16 Hz

16 Hz
Oz

Oz

I transient activity, event-related potentials (ERPs), time-locked to an
event, most often an external stimulus
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Prototypical ERP
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I The shown components are also labeled P100, N100, P200, N200,
P300.

I The P3 component is often composed of two subcomponents labeled
P3a and P3b which originate from di�erent locations in the brain.

I Be aware: sometimes negative polarity is plotted upwards.
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From the Oddball Paradigm to a BCI Speller

Cz

deviant deviantstandard

I Segments of the signal (shaded in the �gure) are called epochs or single-
trials.

I Typically, trials are grouped into several classes (which are, e.g., de�ned by
experimental conditions), here standards and deviants.
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From the Oddball Paradigm to a BCI Speller

Cz

deviant deviantstandard

I In the visual domain it works the same.
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From the Oddball Paradigm to a BCI Speller

Cz

target targetnontargetattention task:

I Due to the attention task, the two classes of stimuli are also called targets

and nontargets.

I Here, �ve stimuli are presented with the same probability. One of them is
de�ned to be the target in an attention task.

I Thus, the class of nontargets is composed of various stimuli.7



From the Oddball Paradigm to a BCI Speller

Cz

BRAI

N

BRAI NU A S
G T

R N B

T E R
H J G N M

I The intended letter is the target and all others are nontargets.

I In BCI epochs are typically strongly overlapping. (Nontarget epochs are
not shaded in this �gure.)
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Multi-channel Epochs
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ERPs in a Head Plot
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ERPs in a Grid Plot
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ERP Topographies
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Classical Investigation of Target vs Nontarget

The classical way to compare ERPs of di�erent conditions:
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Statistics of peak amplitudes.
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Part II

From Uni- to Multivariate Features
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First, a Simple Approach to Classi�cation

I To implement a BCI Speller, we need to distinguish target from
nontarget trials.

I From the oddball literature, we conjecture that best discrimination
between those classes is granted by the P3 component.

I The P3 component has its spatial focus at electrode position Cz.

I As �rst step for discrimination, we take as `feature':

the amplitude at the peak time of the P3 at Cz
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Univariate Features: Averages and Single-Trials
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I The potential measured 220ms post-stimulus at Cz is a
one-dimensional observation variable: a univariate feature.
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Measures of Separability

In order to assess the discriminative value of univariate features, we are
interested in measures of separability.

One such measure is the r2-value, which is de�ned as

r2(x, y) :=
N1 ·N2

(N1 +N2)2
(µ1 − µ2)

2

var 〈xi〉
with µ1 = mean 〈xi〉yi=1 and µ2 = mean 〈xi〉yi=2 being the class means
and Nk = |{i | yi = k}| being the number of samples of class k.

To retain a sign r2 can be multiplied by the sign of the di�erence µ1−µ2.
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Area under the Curve (AUC) as Measure of Seperation
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I Area Under the ROC Curve (AUC): Measure of separation of two
univariate distributions
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Examples for ROC Curves and AUC Values

10
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0

perfectly separated
distributions:

AUC = 0
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random
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AUC ≈ 0.5

10

1

0

classifier outputs from
our example data

AUC ≈ 0.7

10

1

0

perfectly separated
distributions:

AUC = 1

I AUC is a performance measure (like misclassi�cation rate) but bias
independent.
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Interlude: Representation as Matrix
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ERPs in a Grid Plot with AUC Scores
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ERP Topographies of AUC Scores
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AUC Matrix: Overview of Discriminative Information
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I The AUC Score matrix shows spatio-temporal evolution, and
I can be used to select meaningful time intervals (keep this in mind for

later) or
I to select the most discriminative (univariate) feature.
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Generation of EEG Signals

While it is certainly useful to have a measure to select the most
discriminative (univariate) feature, we will see that and why it is much
more bene�cial to use multivariate features.

To provide background knowledge, we will make detour to the generation
of EEG signals.
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Generation of EEG Signals

+ -

scalp
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EEG
signal
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Volume Conduction in EEG

scalp

skull

cortex

CSF

tissue conductivity

good

bad

The signal arrives with almost equal intensity at di�erent scalp locations
due to the di�erent tissue conductivities.
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Mind Spatial Smearing!

I Raw EEG scalp potentials are known to be associated with a large
spatial scale owing to volume conduction.

I In this typical example data set, most of the channels are highly
correlated:

0

0.1667

0.3333

0.5

0.6667

0.8333

1

The map shows the correlation
coe�cient of each channel with
channel Cz in the center.
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From Uni- to Multivariate Features

We have seen that a discrimination of ERPs to target and nontarget
stimuli is possible based on a univariate feature.

For improved classi�cation of EEG single-trials, we need to accumulate
more information in the features.

I sample ERP signals at multiple time points/intervals
→ temporal feature

I join signals from multiple channels
→ spatial feature

I do both things
→ spatio-temporal feature
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The Virtue of Multivariate Spatial Features

cognitive
source

visual
idle
rhythm

Cz

Oz

I Here, w = [4/3 − 2/3]> is a simple spatial �lter.
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The Virtue of Multivariate Temporal Features

cognitive
source

visual
idle
rhythm
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temporal
filter (e.g.
average)

select some time points
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The Virtue of Multivariate Temporal Features

cognitive
source

DC
drift
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temporal
filter

select some time points
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Extraction of Spatio-Temporal Features

Given a set of channels and a set of time intervals, we de�ne
spatio-temporal features like this:
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The average within each interval is calculated. These values (per interval)
are concatenated for all selected channels.
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Extraction of Temporal Features

A temporal feature is de�ned by sample points in a time interval and
one channel:
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The dimensionality of the feature vector coincides with the number of
sample points in the interval. Alternatively, several time intervals can be
used, and the feature consists of the mean values within each interval.
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Extraction of Spatial Features

A spatial feature is de�ned by a set of channels and one time interval:
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The dimensionality of the feature vector coincides with the number of
(chosen) channels. The values of the feature vector are the (average)
amplitude in the given time interval of the respective channel.
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Overview of Multivariate ERP Features
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Multivariate ERP Model

The ERP model is based on the split into time locked activity p(t)
(assumed constant over trials) and non time locked activity r(t):

xk(t) = p(t) + rk(t) for trials k = 1, . . . ,K

In the probabilistic view, for a �xed time t0 both, xk(t0) and rk(t0) are
(vector valued) random variables over the trials k, from which we
observed K-many draws. The noise r(t0) is iid distributed, and it is
assumed to be Gaussian, say N (0,Σr).

These assumptions lead to the following distribution of x·(t0) across
trials:

I µx = E〈xk(t0)〉k = p(t0)

I Σx = Cov 〈xk(t0)〉k = Cov 〈rk(t0)〉k = Σr

This means that the distribution of 〈xk(t0)〉k is N (p(t0),Σr).
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Averaging across Trials

For one channel, the situation looks as follows:
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Let's Start Simple: a 2D Feature

In view of classi�cation, we are concerned with distributions.

A simple 2D feature: potential at 180ms and at 450ms in channel P5.
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Visualizing 2D Features at Scatter Plot
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Multivariate Gaussian Distributions

(a)
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Eigenvalue Decomposition (EVD)

Given Σ ∈ Rm×m symmetric and pos. de�nite, there exists an
orthonormal matrix V ∈ O(m) of Eigenvectors and a diagonal matrix
D ∈ Diag(m) of Eigenvalues, such that

Σ = VDV>

In our case, Σ is the covariance matrix of EEG signals X ∈ Rm×T .

rotation

I Eigenvalues are the variance of X in direction of corresponding
Eigenvectors.
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Characterization of Gaussian Distributions

Assume samples x1, . . . ,xK ∈ Rp are modeled as N (µ̂, Σ̂).

Eigenvalue decomposition of the covariance:

Σ̂ = VDV>, with orthonormal V and diagonal D.

(b)
I Eigenvectors are columns

of V = [v1, . . . ,vp].

I Eigenvalues are diagonal
elements di of D.

I
√
di = std(v>i X)

I In N (µ,Σ) typically µ is
considered to be the ideal true
value and Σ noise.

I The vector of Eigenvalues is
called Eigenvalue spectrum
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Part III

Classi�cation of ERP Features
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Toward Classi�cation for BCIs
marker marker

epoch epoch

continuous
EEG

epochs of
raw EEG

feature
vectors

feature
extraction

segmentation

output

classification

class 1
class 2

feature
space

A classi�er is a function mapping
samples of the feature space RD to
labels, e.g. for a binary classi�er:

f : RD → {1, 2}

(In our example, class labels 1 and 2
correspond to targets and nontargets.)

Often samples are mapped to R �rst,
and then the label is decided based on a
threshold.

Classi�ers are based on the class
distributions of the samples.
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Distributions of ERP Features

For classi�cation, we have to consider the distribution of the features.
According to our model (ERPs are constant across trials):

xk(t) = p1(t) + rk(t) for trials k of condition 1

xk(t) = p2(t) + rk(t) for trials k of condition 2

with Gaussian noise: r·(t) ∼ N (0,Σ).
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For features of ERP data:

I µ1: ERP of condition 1

I µ2: ERP of condition 2

I Σ: noise: non-phase-locked
activity (independent of
condition)

[Blankertz et al, NeuroImage 2011]
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Nearest Centroid Classi�er (NCC)

(a) Let us assume a simple setting of a classi�cation problem with little
information: Only the means (or centroids) µ1 and µ2 of the two
distributions are known.

(a) half-plane
classified as class 2

half-plane
classified as class 1

separation line

(b)

(b) This leads to a linear separation of the space with the separation line
(or hyperplane in higher dimensions) intersecting perpendicularly the line
connecting the centroids in the middle.
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Formalization of Separating Hyperplanes

(c)

x 7→ w>x− b 7→

{
class 1 if w>x− b >= 0

class 2 if w>x− b < 0
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Can We Expect NCC to Perform Well for ERP Features?

potential at Oz [µV]

po
te

nt
ia

l a
t C

z 
[µ

V
]

-3 -2 -1 0 1 2 3 4 5
-2

-1

0

1

2

48



Linear Discriminant Analysis (LDA)

Using probability theory, one can derive from the following three
assumptions the optimal classi�er for the given class distributions.

Optimality means that the classi�er has the minimum risk of

misclassi�cation for new samples that are drawn from these

class distributions.

1. Features of each class are Gaussian distributed.
2. Gaussians of all classes have the same covariance matrix.
3. True class distributions are known.

This optimal classi�er is called Linear Discriminant Analysis (LDA) and it
can be formalized in the following way: Given two Gaussian distributions
N (µ1,Σ) and N (µ2,Σ), LDA is de�ned by the normal vector

w = Σ−1(µ2 − µ1) and bias b = w>(µ1 + µ2)/2. (1)

First we will look at how the LDA classi�cation looks like and later
discuss the assumptions.
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Linear Disciminant Analysis

(a) Means as in the NCC example, but speci�c distributions are shown.

(a)
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(b)

(b) In Linear Discriminant Analysis, a common covariance matrix for
both classes is estimated, which describes the (class-independent) noise.
Note, that x is classi�ed here di�erently with LDA than with NCC.
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Interlude: Illustration of Whitening Transform

rotation: rotation:scaling:

The whitening transform maps the space such that a Gaussian distribution with

the given covariance matrix becomes a standard normal distribution, i.e., the

variance in all directions is 1. It maps the ellipsoid given by the standard

isodensity line of the Gaussian distribution to the unit sphere.
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Correspondence between NCC and LDA

se
pa

ra
tio

n 
lin

e

(b)

se
pa

ra
tio

n 
lin

e

(c) whitened
space

Classi�cation with LDA in the original space is equivalent to classi�cation
with NCC in the whitened space.
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Linear Discriminant Analysis � Assumptions for Optimality

Now, we come back to the assumptions which are required to warrant
optimality of the LDA classi�er:

1. Features of each class are Gaussian distributed.

2. Gaussians of all classes have the same covariance matrix.

3. True class distributions are known.

The �rst two assumptions have been discussed already. Further empirical
results for (2) are presented on the next slides, and assumption (3) will be
discussed later in this lecture.
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Covariance Matrices of ERP Features

target

 pc #1:  std= 54.2 µV  pc #2:  std= 26.6 µV

 pc #3:  std= 15.4 µV  pc #4:  std= 11.6 µV

non-target

 pc #1:  std= 55.5 µV  pc #2:  std= 26.8 µV

 pc #3:  std= 15.1 µV  pc #4:  std= 10.6 µV

[a.u.]
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

ä Covariances of both classes look very similar.
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For Comparison: Covariances in Handwritten Digits

average

pc  #1 pc  #2

pc  #3 pc  #4

µ
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average
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ä Here, covariances of both classes do not look similar.
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Validation of Classi�cation Procedures

To validate the performance of a classi�er, one needs to have a

I training set on which all parameters of the model are estimated
(weights of the classi�er; selection of features etc.), and a

I validation set on which the performance is calculated.

These sets of samples have to be disjoint and INDEPENDENT.

To that end, one can use a �xed training and validation set (e.g., �rst
half / second half) or cross-validation.

See [Lemm et al, NeuroImage 2011] for details on validation.
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Results of Classifying Spatial Features

Classifying on spatial features for various time intervals results in error
rates between 14% and 31% in this example data set (visual speller):
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Classi�cation of Spatio-Temporal Features

Advancing from temporal or spatial features to spatio-temporal features
means increasing the information.

Accordingly, a better classi�cation performance is to be expected.

But in our example data set, the classi�cation error increases from

I 14% for the spatial feature at the best interval to

I 25% for spatio-temporal features

when classifying with LDA.

??
??

??
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Over�tting of LDA

When LDA was applied to high-dimensional (spatio-temporal) features,
the performance broke down (result worse than on sub-features).

Given the optimality theorem, this should not happen, right?

So far, we did not discuss the third assumption:
The true distributions are known.

I This assumptions is always violated in non-arti�cial problems.

I Distribution parameters have to be estimated from given data.

I Estimated (empirical) distribution parameters necessarily deviate
from the true ones.

I How much this deviation deteriorates performance is variable.
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Bias in Estimating Covariance Matrices

For LDA we need estimates for the distribution parameters:

I µ̂ = 1
K

∑K
k=1 xk empirical mean

I Σ̂ = 1
K−1

∑K
k=1(xk − µ̂)(xk − µ̂)> emp. covariance matrix

But, if the number of samples K is not large relative to the dimension d
(x ∈ Rd), the estimation, in particular Σ̂, is error-prone.

This may a�ect classi�cation with LDA badly.

There is a systematical bias in the empirical covariance matrix:

I Large Eigenvalues of Σ̂ are too large and

I Small Eigenvalues of Σ̂ are too small

compared to those of Σ assuming x1, . . . ,xK ∈ Rd are drawn from a
Gaussian distribution N (µ,Σ).
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Bias in Estimating Covariances (2)

Simulation for d = 200:
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A Remedy for the Estimation Bias

A simple way that counteracts the bias is shrinkage:
The empirical covariance matrix Σ̂ is modi�ed to be more spherical:

Σ̃(γ) = (1− γ)Σ̂ + γνI

for a γ ∈ [0, 1] and ν de�ned as average Eigenvalue trace(Σ̂)/d.

Σ(0.5)
∼

Σ
^

νΙ

Next, we check that shrinkage serves the
intended purpose. Covariance matrices
are described by their Eigenvectors and
Eigenvalues. So, we have to investigate,
what happens to those, when we change
over from the empirical covariance
matrix Σ̂.
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Properties of the Shrunk Covariance Matrix

From the Eigenvalue decomposition of the empirical covariance matrix
Σ̂ = VDV> with orthonormal V and diagonal D, we get an Eigenvalue
decomposition of Σ̃(γ) = (1− γ)Σ̂ + γνI like this:

Σ̃(γ) = (1− γ)VDV> + γνI

= (1− γ)VDV> + γνVIV>

= V ((1− γ)D + γνI)︸ ︷︷ ︸
diagonal matrix

V>

We see that

I Σ̂ and Σ̃(γ) have the same Eigenvectors (columns of V)

I Extreme Eigenvalues (large/small) are shrunk/extended towards the
average Eigenvalue ν as di 7→ (1− γ)di + γν

I γ = 0 means no shrinkage: Σ̃(0) = Σ̂

I γ = 1 corresponds to spherical covariance matrices: Σ̃(1) = νI
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Regularized Linear Discriminant Analysis

This technique can be used to enhance LDA to work better in the case of
a low number-of-samples to dimensionality ratio. The empirical
covariance matrix Σ̂ is replaced by a shrunk covariance matrix Σ̃(γ):

wγ := Σ̃(γ)−1(µ2 − µ1)

Here, γ is a hyperparameter that has to be selected between 0 and 1.

I γ = 0 yields w0 = Σ̂−1(µ2 − µ1), i.e. unregularized LDA

I γ = 1 yields w1 = µ2 − µ1, i.e. NCC

But: There is no golden rule for setting γ. A pragmatic, however
time-consuming way is to use cross-validation for the selection.
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LDA with Di�erent Shrinkage Parameters

Cross-validation results for di�erent sizes of training data (250, 500,
2000) for di�erent values of the shrinkage parameter γ (x-axis). Features
vectors have 250 dimensions.
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Optimal Selection of Shrinkage Parameter

As a (relatively) novel method for selecting the free parameter (γ) other
than with cross-validation, there is an analytical method.

Let x1, . . . ,xK ∈ Rd be K feature vectors and let µ̂ = 1
K

∑K
k=1 xk be

the empirical mean.

Aim: get a better estimate of the true covariance matrix Σ (especially in
case K < d) than the sample covariance matrix

Σ̂ =
1

K − 1

K∑
k=1

(xk − µ̂)(xk − µ̂)>

by selecting a γ in

Σ̃(γ) := (1− γ)Σ̂ + γνI.
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Optimal Selection of Shrinkage Parameter

The approach of [Ledoit & Wolf, J Multivar Anal, 2004] is to minimize

||Σ̃(γ)−Σ||2F with ||·||2F being the Frobenius norm.

We denote by (xk)i resp. (µ̂)i the i-th element of the vector xk resp. µ̂
and de�ne the covariance of feature i and j in trial k:

zij(k) = ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)

Denoting by sij the element in the i-th row and j-th column of the matrix

Σ̂− νI, the optimal shrinkage parameter γ? = argminγ ||Σ̃(γ)−Σ||2F can
be analytically calculated as [Schäfer & Strimmer 2005]

γ? =
K

(K − 1)2

∑d
i,j=1 vark=1,...,K(zij(k))∑d

i,j=1 s
2
ij

.

Shrinkage-LDA: use Σ̃(γ?) instead of Σ̂.
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Classi�cation on Single Components and Combined
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Classi�cation (with N = 750 training samples) on seven di�erent single
components (d = 55) yields errors between 14% and 31%.

LDA on the concatenated feature (d = 7 · 55 = 385) performs with 25%
worse, although information is added: over�tting.

Shrinkage-LDA: only 4% error. [Blankertz et al, NeuroImage 2011]
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Impact of Shrinkage as Trade-o�

LDA with shrinkage: w = Σ̃(γ)−1(µ2 − µ1);
Σ̃(γ) = (1− γ)Σ̂ + γνI

(LDA)

(NCC)
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Impact of Shrinkage as Trade-o�

With increasing shrinkage, the spatial �lters (classi�er) look smoother,
but classi�cation may degrade with too much shrinkage.
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Recap: NCC, LDA and Shrinkage-LDA

w= Σ̂−1(µ2−µ1) w= Σ̃(γ)−1(µ2−µ1) w= µ2−µ1

same signals of interest (µ1,µ2) � di�erent spatial structure of noise (Σ)
or in another view: di�erent belief in the empirical covariance matrix.

The amount of shrinkage (γ) relates to the `believe' in the

estimation of the noise.
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Classi�cation with Shrinkage-LDA at a Glance

NCC LDA

Shrinkage-LDA
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Shrinkage-LDA hyperplane is de�ned by:

w := Σ̃(γ?)−1 (µ2 − µ1)

Σ̃(γ) := (1− γ)Σ̂ + γνI

Calculate optimal γ? analytically:

γ? = argmin
γ
||Σ̃(γ)−Σ||2F

=
K

(K − 1)2

∑d
i,j=1 vark(zij(k))∑d

i,j=1 s
2
ij

with

zij(k) := ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)
>

Selection of shrinkage parameter γ:
[Ledoit & Wolf 2004], [Schäfer & Strimmer 2005]

Tutorial on ERP classi�cation:
[Blankertz et al, NeuroImage 2011]
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Part IV

Understanding Spatial Filters
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LDA as a Spatial Filter

Assume we have continuous EEG signals x(t), from which spatial features
xk (of two classes) have been extracted, e.g., amplitudes of all channels
at the P3 peak latency.

Furthermore, let w be the weight vector of a linear classi�er that was
trained on those features xk.

Then w is the �lter within a discriminative (backward) model with the
objective to estimate classes labels on the training data.

Note, that w can be applied as spatial �lter to continuous EEG signals,
like x(t), to extract a component:

y(t) := w>x(t)

A nice application of this can be found in [Scholler et al, 2012].
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Recap: AUC matrix in RSVP Speller
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In this example from a RSVP Speller experiment, the N2 interval
200-270ms and the P3 interval 370-470ms give discriminative spatial
features. We train one LDA on each of those.
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LDA Weight Vector as Spatial Filter � Example
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This technique can be used to �nd ERP activity in continuous streams of
data in which no timing information of event is available. (But there has
to be training data with events at known time points.)
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Interpretation of Spatial Filters

Let's assume we have a mixture of two sources (ignoring the noise here)

x(t) = a1s1(t) + a2s2(t),

and the task is to �nd a spatial �lter w to recover s1. Applying the (yet
to be determined) �lter w to x(t) yields

w>x(t) = w>a1s1(t) + w>a2s2(t).

To recover s1 (i.e., to eliminate the contribution of s2), the �lter w needs
to be chosen such that w>a2 = 0: the �lter w is orthogonal to a2.

In the (untypical) case of orthogonal propagation vectors (a>1 a2 = 0)
w = a1 does the job: The best �lter corresponds to the propagation
direction of the source, i.e., a pattern.
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Interpretation of Spatial Filters (2)

In the typical case (a>1 a2 6= 0), the best �lter w to recover source s1 also
depends on the interfering source s2, as it must be orthogonal to its
propagation vector a2.

Example. We would like to extract

I s1, the cognitive P300 component

but there is interference from

I s2, the visual area.

The best �lter to recover the P300 component (s1) depends also on the
interfering source of the visual area (s2). In particular, the spatial map of
the �lter probably shows strong weights over occipital area, although the
P300 component originates from the central region.
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Understanding Spatial Filters

(a) clean data
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Understanding Spatial Filters

(a) clean data
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(b) adding disturbance
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Two channel classi�cation of (a): 15% error, (b): 37% error

When disturbing channel Oz is added to the data (3D): 16% error. Here,
channel Oz is required for good classi�cation although itself is not
discriminative.
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The Blessing and Curse of Machine Learning

Machine learning provides multivariate techniques for the analysis of
EEG data involving optimization of user-speci�c models.

This results in a considerably increased sensitivity in the discovering of
neural correlates.

The down side is that the interpretation of where the discriminative
information originates from is not always straight forward...

... nevertheless very important. Do not use ML techniques as black box.
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Interpretation of Classi�er Weights?

The weights of a linear classi�er can be visualized in the domain of the
input features. For spatial features, they can be depicted as scalp
topography.
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LDA trained on spatial
features extracted from the
time interval 380�410 ms. It
is tempting to interpret the
prominent weights of this
map wrt neurophysiology.

Temporal and spatio-temporal features suggest interpretation is an
analogue way. The considerations above have shown that spatial �lters
cannot be interpreted in a direct way. But we will see that there is a
solution [Haufe et al, 2014].
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Part V

The Linear Model
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Linear Model of EEG

Next, a linear model which represents the electrophysics of EEG is
introduced. Although oversimplifying, this model it useful for
understanding.

Remember the issue of volume conduction discussed before:

scalp

skull

cortex

CSF

tissue conductivity

good

bad
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Linear Model of EEG: Propagation of Electrical Activity

I Assumption: The contribution of a current source s(t) to the scalp
potentials x(t) = [x1, . . . , xP ]

> is linear in s(t):

x(t) = [a1s(t), . . . , aP s(t)]
> = a s(t)

I The proportionality factors in vector a are typically unknown and
depend on the spatial distribution and orientation of the current
source and the conductivity distribution of the anatomy [Parra et al,

2005].
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Linear Model of EEG: Forward Model

I Now, we consider several sources with distribution vectors
a1, . . . ,aP .

I Potentials are additive. De�ning the matrix A as being composed of
the vectors a1, . . . ,aP (i.e., A = [a1, . . . ,aP ]), the forward model
is

x(t) = A s(t)

I Contributions not captured by this model are considered as noise,
n(t), typically assumed to be Gaussian distributed with mean 0.

I This gives a simple linear model representing the electrophysics of
EEG:

x(t) = A s(t) + n(t)
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Linear Model of EEG: Backward Model

The counterpart to the forward model is the backward model:

ŝ(t) = W>x(t)

The aim of the backward model might be the estimation of sources. If
this is the case, and if the forward model A is known, the best choise
(least mean squares estimator) is to take W> as A+, the pseudoinverse
of A.

However, the aim may also be the extraction of components with desired
properties, e.g., a good discrimination between conditions (classi�cation
setting).
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Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Each column of A is a spatial pattern: propagation of a source to sensors
Each row of W> is a spatial �lter: weighting of EEG channels.
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Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Pattern:
propagation of
one source

Filter:
extraction of
one component

Each column of A is a spatial pattern: propagation of a source to sensors
Each row of W> is a spatial �lter: weighting of EEG channels.
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Part VI

Illustration of Spatial Patterns and Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Correspondence of Vectors in Feature Space and Patterns
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Left: High-dimensional features spaces are hard to visualize.
Right: A vector in the feature space (such as weight vectors) can be
represented as a scalp topography (for spatial features).

92



Correspondence of Vectors in Feature Space and Patterns
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Right: A vector in the feature space (such as weight vectors) can be
represented as a scalp topography (for spatial features).
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Part VII

Interpretability of Spatial Filters
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The Linear Model Revisited

So far, we have seen that the spatial map of a �lter (that is, e.g.,
obtained from a linear classi�er) is di�cult to interpret. Since patterns
are straight forward to interpret, one is interested in �nding that pattern
which corresponds to a given spatial �lter.

In order to derive which pattern corresponds to the �lter that is obtained
by a (Shrinkage-) LDA classi�er from spatial features, we will consult the
linear model.
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Some Notions

New notions:
In the following, we write X for [x(1), . . . ,x(T )], S for [s(1), . . . , s(T )]
and assume that the factors have zero mean.

To discriminate covariance matrices of di�erent data matrices, we will use
indices:

ΣX =
1

T − 1
XX>, ΣS =

1

T − 1
SS>

Remember the property of the pseudo inverse:
For source signals S ∈ RK×T , we assume that there are more time points
T than sources K. In this case, S+ = S−1R = S>(SS>)−1 and

argmin
A

||X−AS|| = XS+ = XS>(SS>)−1
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Finding Patterns for given Spatial Filters

Let a �lter matrix W be given and de�ne S = W>X. Then, we obtain
the matrix of corresponding patterns Â by [Haufe et al, 2013]:

Â = argmin
A
||X−AS||2 = XS>(SS>)−1 = XX>W(SS>)−1

' ΣxWΣ−1s

I If K = 1 (in particular for LDA), we obtain

â ' Σxw.

I If the factors are uncorrelated (e.g., PCA, ICA), we get

Â ' ΣxW.

I The patterns and �lters coincide if and only if additionally the
observations x are uncorrelated

Â 'W.

However, this assumption is rather unrealistic for EEG due to volume
conduction, as seen earlier (spatial smearing).
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Part VIII

Issues in Validation
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Hall of Shame in Single-Trial EEG Analysis

I preprocessing methods that use statistics of the whole data set like
ICA, or normalization of features
(particularly severe for methods that use label information)

I loss function not appropriate (e.g., unbalanced classes)

I artifacts/outliers are rejected from the whole data set (resulting in a
simpli�ed test set)

I features are selected on the whole data set, including trials that are
later in the test set

I selection of parameters by cross validation on the whole data set and
report the performance for the selected values

I non-stationarity of the data disregarded (chronological training / test
data spilt vs. cross validation)

I insu�cient validation for paradigms with block design

[Lemm et al, NeuroImage 2011]
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Loss Functions for Unbalanced Classes

Blue class: N1 = 900 samples, orange class: N2 = 100 samples.
Weighted error: errweighted = 1

2 (err|class 1 + err|class 2)

Examples of weighted and unweighted error � bias of classi�er is varied:

Error rate
Unweighted: 23.6%
Weighted: 25.1%
AUC-based: 16.6%

Error rate
Unweighted: 12.8%
Weighted: 30.0%
AUC-based: 16.6%

Error rate
Unweighted: 9.5%
Weighted: 39.5%
AUC-based: 16.6%
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