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Noninvasive Brain-Computer Interface

EEG signal

Features (d ~ 400)

DECODING

BCI: Translation of human intentions into a technical control signal
without using activity of muscles or peripheral nerves
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Towards imaginations: Modulation of Brain Rhythms

Most rhythms are idle rhythms, i.e., they are attenuated during activation.

e a-rhythm (around 10 Hz) in visual cortex:
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Single channel

e /i-rhythm (around 10 Hz) in motor and sensory cortex:
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BBCI paradigms

Leitmotiv: »let the machines learn¢

- healthy subjects untrained for BCI

A: training <10min: right/left hand imagined movements

— Infer the respective brain acivities (ML & SP)

B: online feedback session
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Playing with BCI: training session (20 min)




Machine learning approach to BCI: infer prototypical pattern
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BBCI Set-up

multi-channel multiple feature extration classifier continuous
EEG , : feedback
FFT based : !
low-pass filter : ;
= L
% band-pass E E
PO 4-40 Hz -> —|7AR |1
S AR coefs. ! :\ feature
S ! : combiner
%E%EE\\x ; .| 'PROB’
o subject-specific @ : :
TR band-pass filter, : ;
B e.g. 7-14Hz, = 3 Teop !
-> multi-class : ;
CSP : :
Bggegege :
Artifact removal s 1||’w||2 o c |2
w,b,¢é 2 2 K 2

subject to  yp(w'zp+b)=1-§, fork=1,.... K

[cf. Mller et al. 2001, 2007, 2008, Dornhege et al. 2003, 2007, Blankertz et al. 2004, 2005, 2006, 2007, 2008]



Spelling with BBCI: a communication for the disabled
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Future Issues: Shifting distributions within experiment
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Mathematical flavors of non-stationarity

Bias adaptation between training and test f(x) =w x + Db

- Invariant features

- Covariate shift

- SSA: projecting to stationary subspaces

- Nonstationarity due to subject dependence: Mixed effects model

- Transfering nonstationarity

- Co-adaptation ...



Neurophysiological analysis

Feadback

LCePs L cePa

: : - =1 - - Training left
Soielno ) = Training right

== Feedback left
| — Feedback right

[cf. Krauledat et al. 07]




Weighted Linear Regression for covariate shift compensation

siven training samples

Ui, vi) | vi = flx:) +ei}ig

r

for some function f and linearly independent basis functions ® = {y;(x)}:_,,

find

W

ot = (aj,ad, ..., f};}T which minimizes

T

min Z w(x;) (f{:lh} — ?;1')2 + (Ra, av)

{If]'.':l: fI:l -i-=1

P - . . .
A B - . e\ ProlEi) yields unbiased estimator even under
flx)= Z aipi(@), choosing  w(z;) = pir(Ti) covariate shift
i=1

™

cf. Sugiyama & Miiller 2005, Sugiyama et al. IMLR 2007]



Projections <— Nonstationary




Source separation paradigms

Principal Component
Analysis (PCA)

uncorrelated
sources
c-rthogonal -S(l)- masx.
mixing variance
X=A

-d min.
S( )_ variance

] * | = — —Covaniance
PCs




Source separation paradigms

Principal Component |”dEPE"dE"‘f Component
Analysis (PCA) Analysis (ICA)
uncorrelated independent
sources . sources
orthogonal ~ 4 max. arbitrary _ -
mixing S variance mixing s
X=A|: X=A|:
_S{d]_ :nal:;;mce _S(d]_




Source separation paradigms

Principal Component
Analysis (PCA)

uncorrelated

sources
nrth.cgonal -S[l}— max.
mixing variance
X=A|:
d min.
_S ( }_ variance

Independent Component
Analysis (ICA)

independent

sources

arbitrary _ -
mixing SU}

X=A

Sﬁd}

Stationary Subspace
Analysis (SSA)

arbitrary
mixing stationary

5 Sources
nalg

gn non-stationary
t 1 sources




The Stationary Subspace Analysis model

Linear mixing of stationary and non-stationary sources

stationary non-stationary

observed D-variate subspace subspac
‘ditjl _ A f _ [A5 An] Sf d stationary sources
t SE‘I SF D-d non-stationary sources

A source is stationary if its mean and covariance is constant over time, i.e.
— T — T
E[Stl] = E[Stl] and E[Stlstl] = E[Stzstz

for all time points 11,72

[von Bunau P, Meinecke F C, Kiraly F | and Muller K-R.
Phys. Rev. Letter, 2009]




Splitting into stationary and nonstationary subspace:
SSA
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non-stationary

o d stationary source signals s%(t) € R¢
e D — d non-stationary source signals s"(t) € R(P—9)
@ Observed signals: instantaneous linear superpositions of
sources
: s°(t)
x(t) = As(t) = |A°> A"
(t) (1) [ ] s"(t) invert

[cf. BUnau, Meinecke, Kiraly, Miller PRL 09]



SSA

given: Epochs X; of Data points in C"

wanted: Linear subspace S of C" such that
marginalized data sets X |s look the same

,stationary projection”
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Inverting the SSA model

Projection to the

Aim of SSA:find a demixing ;1 {Bﬁl statioary sources

matrix B®

... that separates the two groups of sources in the observed data.

Projection to the non-
stationary sources

Is this inverse unique?

SE] _ s-1ras am [SE] _ [B®A® BA™] [SF
Lé’g] = At A% St~ |B"A® B"A"| |SP
Estimated De- Observed Latent
sources mixing  data sources




Inverting the SSA model

Projection to the

Aim of SSA:find a demixing ;1 {Bﬁl statioary sources

matrix B®

... that separates the two groups of sources in the observed data.

Projection to the non-
stationary sources

Is this inverse unique?

SE1 _ s-1ras 4 [SE] _ [B%A® (BA"] [SF
Lé’g] = At A% St~ |B"A® BTA"| |SP
Estimated De- Observed Latent
sources mixing  data sources




Inverting the SSA model

Projection to the

Aim of SSA: find a demixing A-1 B?® | stationary sources

matrix B™ | Projection to the non-
stationary sources

... that separates the two groups of sources in the observed data.

Is this inverse unique?

al 5 5 AS 5 AN 5
*?t — A1 [Aﬁ An] t| — B*A® (B°A t
3 S¢| ~ (B 4D BTA"| [S;
Estimated D?-. Observed arbitrar }H Latent
sources mixing data sources

Arbitrary because:

* “nonstationary + stationary = nonstationary”
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Inverting the SSA model

Projection to the

Aim of SSA: find a demixing A-1 B?® | stationary sources

matrix B™ | Projection to the non-
stationary sources

... that separates the two groups of sources in the observed data.

Is this inverse unique?

S8 _ o ; 4
e A_ Aﬁ A“] _
-~ n . |: n T n
S t S t S t
Estimated D?-. Observed 3 rbitr ar}«'! Latent
SouUrces mixing data sources

Arbitrary because:
* “nonstationary + stationary = nonstationary”

* Linear transformations do not alter stationarity/nonstationarity
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Inverting the SSA model

Projection to the

Aim of SSA:find a demixing 71 _ B?® | stationary sources

matrix B™ | Projection to the non-
stationary sources

... that separates the two groups of sources in the observed data.

Is this inverse unique?

gs o 5 5
t e -_ [ 5 n] t _ t
an| =AM [Ar A" ] = ¢
t t t
Estimated D?-. Observed 3 rbitr ar }H Latent
SouUrces mixing data sources

Arbitrary because:
* “nonstationary + stationary = nonstationary”

* Linear transformations do not alter stationarity/nonstationarity
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ldentifiability

Fa
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t

Estimated
stationary and non-
stationary sources

De- Observed
mixing data

Latent
sources

arbitrary!




ldentifiability

Fa

s o s s
t | — — t | — t
t

Estimated

stationary and non- De- Ebser""ﬁ‘d arbitrary! Latent

stationary sources mixing data sources

We can identify:
* the true non-stationary space

* the true stationary sources (up to
linear transformations)

4 A®°
_!Bﬁ AR




ldentifiability

\J
5 i 5 5
t — t| — t
o A TA | on 0
t t t
Estimated
stationary and non- D‘_a'_ Ebserv&d arbitrar}f! Latent
stationary sources mxing daia sources
We can identify: We cannot identify:
* the true non-stationary space * the true stationary space
* the true stationary sources (up to

* the true non-stationary sources
linear transformations)

\ A“
. An .

In practice: find the most
nonstationary sources!




The SSA algorithm

Divide the data into epochs (consecutive or sliding window)

Epoch | ... ... Epoch n

Estimate the epoch mean and covariance matrix.

H1, 201 s 2im,

y (WS
‘S



The algorithm: optimizing stationarity

i : - Projection to the
F|r_1-::! tf-lE: two pr_c:]e.c.tmns by . B cationary sources
mlnlmlzlngﬂ’maxlmlzmg d measure A - n

B Projection to the non-

of stationarity

stationary sources

Measure of non-stationarity: KL-divergence between each epoch and the
average epoch using a Gaussian approximation.

B® = ﬁ:fgmiﬂz Dk, [N(Bp;. BE;B' ), N(Bp;, BE;B )]
B .

1=1 Epoch i Average epoch

Find B™ by maximizing this loss function.
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Simplifying the objective (symmetries!)

Without loss of generality we can:

(a) set the average mean to zero;

(b) whiten the average covariance matrix; and

(c) constraint ourselves to projections with orthogonal rows.

B® = argmin

B :
1

=1

mn

— argminz Dxi, [N(B,ui, BEiBT>,~N(O> I)]
BBT=I%_] ‘

— argminz — log det(BZiBT) + ||B/uz'H2
BBT=I ]

This means: A~ = BW Where the >

rotation whitening Whltenmg IS
ﬂ -
y =2



Optimizing in the special orthogonal group

Multiplicative update of the rotation part

BRew . RBOld
Antisymmetric

upda.te matrices
rotation A

-----
w -

Parametrize the update R as the matrix
exponential of an antisymmetric matrix M

R =exp(M) with M'" = —M

Special orthogonal
group SO(D)

rotation angle of axis i '
towards axis | /

B [ 0 Z]
— T
o —Z 0

Interpretation: M, :

This leads to a gradient OL goa
of the form: OM
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SSA: how many epochs?

Estimate Epochs X; by Gaussians N (y;, 22;)

Marginalized Gaussians are N (P ji;, P23, Ps)




Identifiability: theoretical results

Theorem

If the non-stationarity affects both the mean and the covariance
matrix, then we need

n > DQ_ g + 1 epochs

in order to guarantee that there are no spurious stationary directions.

If the mean is constant we need

n>0D—d+ 1 epochs.

N &



Simulations on synthetic data

® Number of dimensions D=8 with four stationary sources d=4
® TJotal number of samples: 1000

® FError measure: subspace angle between the true and the found non-
stationary subspace

80

60

30

Error in degrees

10

2 3 4 5 6 780910 15 20 40 60 80 120
Number of epochs (N)
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Application to Brain-Computer-Interfacing

Original EEG EEG with additional alpha Field Pattern
20— 50— ! ' ' | |
— ® — without SSA Py
with SSA . S ]

—
(&)

n—subspace

Classification Error [%]
o

&)

w/o with 05 067 0.83 1 117  1.33 s—subspace
SSA Mean additional alpha power on test set
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Application to EEG analysis

Brain-Computer-Interfacing experiment: imagined movements leading to event-
related-desynchronization (ERD)

Trial structure

baseline motor imagery rest

Dataset

* 40 subjects

¢ Classes: left/right/foot
e ~|25 trials per class

* 88 EEG channels




What are the strongest changes in the data?

* What are the strongest changes?

* And could we have found them using ICA or PCA?

Setup: concatenate all trials of one subject; divide the data into 0.5s epochs.

Trial | Trial 2 Trial ~375

Apply SSA to find the most non-stationary sources




Results on one subject

Loose Eye Muscle
electrode  movements activity

-
-
—-

) Basis vectors shown
as “‘scalp plots”

(green: zero)

SSA
PCA
ICA

O Artefact

Non-stationarity

e

1 5 10 15 20 25 30 35 40
Directions sorted by non-stationarity




Results on one subject

Loose Eye Muscle
electrode  movements activity

-
-
—-

) Basis vectors shown
as “‘scalp plots”

After artefact rejection

(green: zero)

SSA
PCA
ICA

O Artefact

Non-stationarity
Non-stationarity

e

________
o

1 5 10 15 20 25 30 35 40

1 5 10 15 20 25 30
Directions sorted by non—stationarity Non-artefact directions sorted by non-stat.




PCA and ICA do not find nonstationarities

Results over all 40 subjects after artefact rejection

Percentage of variance/nonstationarity

]
—e—— Nonstationarity (%) = PCA
——e— Variance (%) ——SSA
0.75 -
s\ A 2 AL TN [ 2
5
o5\ oA o~ S <
PCA components by variance Components sorted by nonstationarity
Variance (signal power) is PCA basis is not optimal
not associated with the W.I.t nonstationa_rity
strength of
nonstationarities

Nonstationarity

—— |CA

—— SSA

Components sorted by nonstationarity

ICA basis is not optimal
w.r.t nonstationarity




Classification of SSA directions

Distribution of non-stat. score over all 40 subjects (= 1600 SSA components)

w— A rieiact Boebhood =1 1006%:

MNonstationarity is correlated
with artefact likelihood

Fraquanay
Artolact likalihood

-4 -3 - -1 0 1 2
Degress of non—stationarity (log) 1
score for artefact asl —
Muscle Loose classification over all —
artefacts/eye  electrodes subjects g 08 |
movements =<
o7t T
_.I._
0.6
_I_

Ground truth: manual
classification by an expert




What happens during a trial? (on average)

Setup: sliding window (0.5s) averaged over all trials of of a class for one subject

baseline motor imagery rest

— :
motor |magery
Avel”aglng baseli ne moto imagery
over trials I
' Trial |
2 sec 4 sec 2 sec
= .- :
H. .. [sliding window]

[ |




What happens during a trial? (on average)

Setup: sliding window (0.5s) averaged over all trials of of a class for one subject

baseline motor imagery rest
I ]
basel ine motor i magery

Ave I"agl n g basehne motor imagery rest

over trials I
' Trial |
2 sec 4 sec 2 sec
ITI—I ... [sliding window]

Most non-stationary source for left and right class

T I
‘ ty *" 0

A 3 e -
| Yor! .
: v | = left Basis vectors shown
f ff"( % ) ”ght ‘6 ”
| = | as “‘scalp plots

0s 25 6s 8s




Summary: stationary subspace analysis

« SSA finds subspaces in which the sources are
stationary/nonstationary.

« Important open guestions:

— How to deal with distribution changes in higher-order moments or
temporal structure?

— Model selection: how to choose the number of stationary/non-
stationary sources?




Real Man Machine Interaction




Multimodal<—Nonstationary



Towards a subject independent BCI decoder

o we end up with 1494 features and 83 - 150 = 12450 trials

o to find a subject-independent BCI, we can perform
(1-regularized regression (or others like LMM) using
leave-one-subject-out cross-validation

o note that our trials have a grouping structure

83 datasets

18 temporal filters 3 spatial filter: * _DOWeEr - Q3 Ao
150 trials each p 18x83 spatial filters 18x83 band-power 18 X 83 LDAsS
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Model formulation

o Reminder — Linear regression:
oy=XB8+¢

o Mixed effects model with n groups:

yi=XB8+ Zib; +¢; Vie {1...ﬂ}

Consists of n simultaneous equations, one for each group

The equations are coupled by the common term X3

Each equation has a group-dependent term Z;b;

In our case, each Z; is simply a vector of ones, i.e. the

corresponding b; is scalar and represents the bias of group i
o So-called random intercepts model

bt’ ~ Nq(l],rzfq)

Eq ﬂi(o.‘ U-QITH)

© ¢ © ¢ ©

o Since we expect our features to be redundant and are aiming
for better interpretability, we enforce sparsity by adding an /4
penalty

™ o




linear mixed effects model

Linear Mixed Effects Model: intuition

classic regression

grouped input data /N one bias — one hyperplane

£ 0.16} . |

el |

[ |

S |

= 0.14r |

S

©

15 0.12F |

B i

i

T 0.1r +

[72]

m

=

2 0.08¢

@

=

[&]

,_ﬂD_J 0.06F N

- —T

: —

 0.04

% 1
logistic least squares

method

-
“E [Fazli, Miller et al

. 2011]




Multimodal<—Nonstationary




Motivation: Shifting distributions within experiment

25|

15F

05
1 1 ! 1 |
-2.9 -2 -1.5 -1 -0.5 0

But: Is the nonstationarity different between subjects, i.e. could we learn it
from other subjects?

N &



Changes are similar !

Modalities = Other Subjects

Changes between training and test data are similar between users.

Other multi-subject methods, e.g. cov matrix shrinkage, may improve
estimation quality but do not reduce non-stationarities.
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Similarity between subspaces

12 34567 8 91011121314151617 181920
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Cartoon: learn from adverse nonstationary subspace across subjects

Non-Stationary
Subspace

Stationary
Subspace

Discriminative
Subspace

Dimensions

Usually discriminative information is transfered between subjects.

N &
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Algorithm

(1)

(2)

(3)

(4)

(2)

(&)

(1)

For each subiject i=1...n, t #1i*¥ compute

(1) vi_:fi} af EE?'aiﬂ. - EEE‘“ ]

the eigenvectors v, " ...V,

For each subject i select the [ eigenvectors
with largest absolute eigenvalues.

Aggregate the wvectors into a matriz P.

Apply PCA to reduce the dimensionality of the
non-stationary subspace Sp = span(P) to wv.

Compute the projection matrix Pl to the
orthogonal complement of Sp.

Make i¥s data inwvariant to the changes by pro-
jecting out non-stationarities X = (PH)TPLX.

e

Compute spatial filters from X using CSP.




Results

Two data sets with different stimulus cues in training and test
1. visual cue In training & auditory cue Iin test
2. letters in training & moving objects in test

The size of the non-stationary subspace is determined by CV in a leave-
one-subject-out manner on the other users.

Audio-Visual Data Set BC1 Competition 111 Overall
Subject Al A2 A3 Ad A5 Bl B2 B3 B4 B5 Mean Median  Std
CSP 79.5 800 658 59.2 942 | 66.1 964 582 88.8 Bl.0 76.9 79.8 14.0
ssCSP 87.1 808 675 658 933 | 670 946 582 893 857 78.9 83.3 13.1

ssCSP: stationary subspace CSP

N &




Interpretation

The most non-stationary

directions are very similar
between users.

Activity in occipital and
temporal areas is
penalized as these
regions are mainly
responsible for visual and
auditory processing.




Feature distribution becomes stationary

Dimension 2

8.5

7.5

6.5

B T T ™ ST :
T T e Ry

CSP

Training Data
Test Data

6 8
Dimension 1

10

Dimension 2

8.5

7.5

6.5

5sCSP

Training Data
Test Data

(5] H 10
Dimension 1




Summary Il

Novel “multi-modal” approach to reduce non-stationarities in data

In contrast to other multi-subject methods it does NOT transfer
discriminative information, thus is more robust if subject similarity Is
low.

Non-stationary information appears physiologically interpretable and
meaningful.

The idea of transfering stationary subspaces between subjects can be
applied to many other problems.

N &
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Multimodal<—Nonstationary

[Samek, Kawanabe, Miller IEEE Rev BME 2014, Nips 2013]
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BCI Pipeline

"

Motor Imagery
BCI

Left Right Right Left
Hand Hand Hand Hand

(@)
-% CSP electrode artifacts
= argmax w' S w |=—) eye movements
— W WTEQW | t t
= muscle activity
= T i
8_ argmax Vv_rﬂ external noise
W w ! 21w
)
Not robust !
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Divergence CSP Framework

Theorem: Let W & RP* be CSP filter and V &€ RP*? be a matrix
that can be decomposed into a whitening projection and an
orthogonal projection. Then

span(W) = span(V")

with V¥ = argmax[)k; (N(O,VTZ1V) || N(O,VT22V)).
V

Proof: Samek et al. IEEE Rev Bio Med Eng, 2014, in press

) dx

Symmetric p(x) g(x)
KL-divergence J p(x)log( q(x) e+ [ g (x) ¥)log (=)

N &



Robustness through Beta Divergence

Use the same mathematical formulation, but a different
divergence — “similar to kernel trick”

Beta divergence is generalization of KL-divergence and is robust
(B=O—>DB=DH)

Dy(p(x).q(x) = = (p(x) = q(xV) p(x)dr — [ (p(x)"" = g(x)""")dx

N &



Robustness Property

true mean

!

A

estimated mean
(beta divergence)

1 n s
o Zi:]_ Wiy

estimated mean
(standard estimator)

!

% Z?:l )




Beta divergence CSP

sum

kl-divCSP kl-divCSP B-divCSP

Q O =

robust
> | Q

7ﬂ§31\V’
WTZQW

zz: l)}([,( QﬁEJZVV H VVQhEJEVV)

Dyt (WT21W | WTEQW)

> 155 (WTE?LW | WTEQW)
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Simulations

prob. of outlier 0
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Results

B-divCSP error rate [%]

60

40

20

p = 0.0005

20 40
CSP ermror rate [%]

60

B-divCSP error rate [%]
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Results

2000

artifactin FFCo6

1400

600

Influence of artifact

CSP patter captures
artifactual activity !

1800 -

1600 -

1200

1000 -

800 -

400 |

200 -

div term with artifact

average div term without artifact
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Invariance Through Regularization

Maximizing variance-ratio not the only objective
— add regularization term

LV) = (1—A)Dyy (VT&V 1| VTZZV) _ S

Regularization Term

Mo -

CSP Term

Deflation (one-by-one) and Subspace (all-at-once) optimization
algorithm.

N &



Different Kinds of Regularization

Regularization term A

Within-Session (WS)
A=oy>e X D (VIZELV || VIEV)

Between-Session (BS)

2 K £
A — ﬁ Zc:l Zk:l Dy (VTEE}",EV || VTE?E._.EV)
Across-Subject (AS)
2 K
ANES % D ee1 2 k=1 DPri (VTEE‘P,CV | VTZ?ﬂCV)

Multi-Subject (MS)
A=—% > Du(VIEIV || VIZEV)
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Results

Deflation divCSP-WS Error Rate [%]
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Reducing Shift between Training and Test

9.9 +

PCA Component

25

1.5

CSP

< Training Data
» Test Data

15 10 5 0
Normal to Hyperplane

PCA Component

divCSP-BS

© Training Data
» Test Data

O

-25 -20 15
Normal to Hyperplane




Regularization Towards other Subjects

CSP is affected by artifact in FFC6
This artifact is not present in other subjects data

— Regularization towards other subjects penalizes spatial

Filters that focus on this electrode

Increasing Regularization

O
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Summary Il

Divergence CSP Framework
- Integrates many CSP variants in a principled manner
- Common optimization method, comparability, interpretability

- Easily allows to develop novel CSP variants and to integrate
iInformation from multiple sources

- “Divergence Trick”

All code is available at:
www.divergence-methods.org

N &
O
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llliterates <— Nonstationarity

[Vidaurre, Sannelli, Muller & Blankertz Neural Computation 2011]

™ o



Runs

Approach to ,,Cure® BCI llliteracy

fixed
Laplace

CSP +
sel.Lap.

supervised

CSP

unsupervised

* Direct feedback -> Unspecific LDA classifier.
 Each trial, perform adaptation of the cls.
 Features: log band power (alpha and beta).
* Laplacian channels C3, C4 and Cz.

« Compute CSP and sel. Laps. from runs 1-3.
* Fixed CSP filters, automated laps. selection.
 Each trial retrain the classifier.

« Compute CSP from runs 4-6.
» Perform unsupervised adaptation of pooled mean.
« Update the bias of the classifier.

[cf. Vidaurre, Blankertz, Muller et al. Neural Comp. to appear]



Results (Grand Averages)

BCIl feedback accuracy [%]

100

(o)
o

80
70
60
50
40




Example: one subject of Cat. Il

Runs 1 and 2 Runs 7 and 8

10 15 20  [Hz] 10 15 20 [Hz]

Io.oz Io.oz
- 10.01 - 10.01
1o 10
-0.01 -0.01
-0.02 -0.02

[cf. Vidaurre, Blankertz, Muller et al. 2009]



Conclusion

« BBCI: Untrained, Calibration < 10min, data analysis <<5min, BCI experiment

« 5-8 letters/min mental typewriter CeBit 06,10. Brain2ZRobot@Medica 07, INdW 09
« Machine Learning and modern data analysis is of central importance for BClI et al
« Important issue of this talk: How to learn under nonstationarity?

e Solutions:

« SSA, i.e. project on stationary subspace and learn there, linear, sound & fast

« Modeling: covariate shift based CV: special

* mixed effects model

e co-adaptation, Multimodal

* tracking, invariant features etc

FOR INFORMATION SEE:
www.bbci.de
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